Articles | Volume 21, issue 12
https://doi.org/10.5194/hess-21-6091-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-6091-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany
Bernd Kohlhepp
Friedrich Schiller University Jena, Institute of Geosciences,
Chair of Hydrogeology, Burgweg 11, 07749 Jena, Germany
Robert Lehmann
Friedrich Schiller University Jena, Institute of Geosciences,
Chair of Hydrogeology, Burgweg 11, 07749 Jena, Germany
Paul Seeber
Friedrich Schiller University Jena, Institute of Geosciences,
Chair of Hydrogeology, Burgweg 11, 07749 Jena, Germany
Kirsten Küsel
Friedrich Schiller University Jena, Institute of Ecology,
Chair of Aquatic Geomicrobiology, Dornburger Strasse 159, 07743
Jena, Germany
German Centre for Integrative Biodiversity Research (iDiv),
Halle-Jena-Leipzig, Deutscher Platz 5d, 04103 Leipzig, Germany
Susan E. Trumbore
Max Planck Institute for Biogeochemistry Jena, Department of
Biogeochemical Processes, Hans-Knöll-Str. 10, 07745 Jena, Germany
Friedrich Schiller University Jena, Institute of Geosciences,
Chair of Hydrogeology, Burgweg 11, 07749 Jena, Germany
Related authors
No articles found.
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Saqr Munassar, Christian Roedenbeck, Michał Gałkowski, Frank-Thomas Koch, Kai U. Totsche, Santiago Botía, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-291, https://doi.org/10.5194/egusphere-2024-291, 2024
Short summary
Short summary
CO2 mole fractions simulated over a global stations showed an overestimation of CO2 if the diurnal cycle is missing NEE. This led to biases in the estimated fluxes derived from the inversions at continental and regional scales. IAVof estimated NEE was affected by the diurnal effect. The findings point to the importance of including the diurnal variations of CO2 in the biosphere priors used in inversions to better converge flux estimates among inversions, in particular those contributing to GCB.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2024-883, https://doi.org/10.5194/egusphere-2024-883, 2024
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a doubling of the transit time from 6 ± 2 years and 18 ± 5 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023, https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Short summary
Using different transport models results in large errors in optimized fluxes in the atmospheric inversions. Boundary conditions and inversion system configurations lead to a smaller but non-negligible impact. The findings highlight the importance to validate transport models for further developments but also to properly account for such errors in inverse modelling. This will help narrow the convergence of gas estimates reported in the scientific literature from different inversion frameworks.
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Preprint withdrawn
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Jinxuan Chen, Christoph Gerbig, Julia Marshall, and Kai Uwe Totsche
Geosci. Model Dev., 13, 4091–4106, https://doi.org/10.5194/gmd-13-4091-2020, https://doi.org/10.5194/gmd-13-4091-2020, 2020
Short summary
Short summary
One of the essential challenge for atmospheric CO2 forecasting is predicting CO2 flux variation on synoptic timescale. For CAMS CO2 forecast, a process-based vegetation model is used.
In this research we evaluate another type of model (i.e., the light-use-efficiency model VPRM), which is a data-driven approach and thus ideal for realistic estimation, on its ability of flux prediction. Errors from different sources are assessed, and overall the model is capable of CO2 flux prediction.
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020, https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
Short summary
Volatile organic compounds (VOCs) like scents can appear and disappear quickly. For example, when a bug starts on a tree, the tree releases VOCs that warn the trees around him. Thus, one needs instruments measuring their concentration in real time and identify which VOC is measured. In our study, we compared two instruments doing that, PTR-MS and SIFT-MS. Both work similarly, but we found that the PTR-MS can measure lower concentrations, but the SIFT-MS can identify VOCs better.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Shaun R. Levick, Anna E. Richards, Garry D. Cook, Jon Schatz, Marcus Guderle, Richard J. Williams, Parash Subedi, Susan E. Trumbore, and Alan N. Andersen
Biogeosciences, 16, 1493–1503, https://doi.org/10.5194/bg-16-1493-2019, https://doi.org/10.5194/bg-16-1493-2019, 2019
Short summary
Short summary
We used airborne lidar to map the three-dimensional structure and model the biomass of plant canopies across a long-term fire experiment in the Northern Territory of Australia. Our results show that late season fires occurring every 2 years reduce the amount of carbon stored above-ground by 50 % relative to unburnt control plots. We also show how increased fire intensity removes the shrub layer from savannas and discuss the implications for biodiversity conservation.
Thomas Behrendt, Elisa C. P. Catão, Rüdiger Bunk, Zhigang Yi, Elena Schweer, Steffen Kolb, Jürgen Kesselmeier, and Susan Trumbore
SOIL, 5, 121–135, https://doi.org/10.5194/soil-5-121-2019, https://doi.org/10.5194/soil-5-121-2019, 2019
Short summary
Short summary
We measured net fluxes of OCS from nine soils with different land use in a dynamic chamber system and analyzed for one soil RNA relative abundance and gene transcripts. Our data suggest that indeed carbonic anhydrase (CA) plays an important role for OCS exchange, but the role of other enzymes might have been underestimated. Our study is the first assessment of the environmental significance of different microbial groups producing and consuming OCS by various enzymes other than CA.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Fabio Boschetti, Valerie Thouret, Greet Janssens Maenhout, Kai Uwe Totsche, Julia Marshall, and Christoph Gerbig
Atmos. Chem. Phys., 18, 9225–9241, https://doi.org/10.5194/acp-18-9225-2018, https://doi.org/10.5194/acp-18-9225-2018, 2018
Short summary
Short summary
Retrieving surface–atmosphere fluxes from the combination of atmospheric observations with atmospheric transport models can benefit from combining multiple species in a single inversion. The underlying effect is that species such as CO2 and CO have partially overlapping emission patterns for given sectors and fuel types and so share part of the uncertainties, both related to the a priori knowledge of emissions, and to model–data mismatch error. We show this for airborne profile data from IAGOS.
Rebecca Elizabeth Cooper, Karin Eusterhues, Carl-Eric Wegner, Kai Uwe Totsche, and Kirsten Küsel
Biogeosciences, 14, 5171–5188, https://doi.org/10.5194/bg-14-5171-2017, https://doi.org/10.5194/bg-14-5171-2017, 2017
Short summary
Short summary
In this study we show increasing organic matter (OM) content on ferrihydrite surfaces enhances Fe reduction by the model Fe reducer S. oneidensis and a microbial consortia extracted from peat. Similarities in reduction rates between S. oneidensis and the consortia suggest electron shuttling dominates in OM-rich soils. Community profile analyses showed enrichment of fermenters with pure ferrihydrite, whereas OM–mineral complexes favored enrichment of Fe-reducing Desulfobacteria and Pelosinus sp.
Martin E. Nowak, Valérie F. Schwab, Cassandre S. Lazar, Thomas Behrendt, Bernd Kohlhepp, Kai Uwe Totsche, Kirsten Küsel, and Susan E. Trumbore
Hydrol. Earth Syst. Sci., 21, 4283–4300, https://doi.org/10.5194/hess-21-4283-2017, https://doi.org/10.5194/hess-21-4283-2017, 2017
Short summary
Short summary
In the present study we combined measurements of dissolved inorganic carbon (DIC) isotopes with a set of different geochemical and microbiological methods in order to get a comprehensive view of biogeochemical cycling and groundwater flow in two limestone aquifer assemblages. This allowed us to understand interactions and feedbacks between microbial communities, their carbon sources, and water chemistry.
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
Short summary
We used phospholipid fatty acids (PLFAs) to link specific microbial markers to the spatio-temporal changes of groundwater physico-chemistry. PLFA-based functional groups were directly supported by DNA/RNA results. O2 resulted in increased eukaryotic biomass and abundance of nitrite-oxidizing bacteria but impeded anammox, sulphate-reducing and iron-reducing bacteria. Our study demonstrates the power of PLFA-based approaches to study the nature and activity of microorganisms in pristine aquifers.
Shreeya Verma, Julia Marshall, Christoph Gerbig, Christian Rödenbeck, and Kai Uwe Totsche
Atmos. Chem. Phys., 17, 5665–5675, https://doi.org/10.5194/acp-17-5665-2017, https://doi.org/10.5194/acp-17-5665-2017, 2017
Short summary
Short summary
The inverse modelling approach for estimating surface fluxes is based on transport models that have an imperfect representation of atmospheric processes like vertical mixing. In this paper, we show how assimilating commercial aircraft-based vertical profiles of CO2 into inverse models can help reduce error due to the transport model, thus providing more accurate estimates of surface fluxes. Further, the reduction in flux uncertainty due to aircraft profiles from the IAGOS project is quantified.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
Daniel Magnabosco Marra, Niro Higuchi, Susan E. Trumbore, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, Vilany M. C. Carneiro, Adriano J. N. Lima, Jeffrey Q. Chambers, Robinson I. Negrón-Juárez, Frederic Holzwarth, Björn Reu, and Christian Wirth
Biogeosciences, 13, 1553–1570, https://doi.org/10.5194/bg-13-1553-2016, https://doi.org/10.5194/bg-13-1553-2016, 2016
Short summary
Short summary
Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases.
Leandro T. dos Santos, Daniel Magnabosco Marra, Susan Trumbore, Plínio B. de Camargo, Robinson I. Negrón-Juárez, Adriano J. N. Lima, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, and Niro Higuchi
Biogeosciences, 13, 1299–1308, https://doi.org/10.5194/bg-13-1299-2016, https://doi.org/10.5194/bg-13-1299-2016, 2016
Short summary
Short summary
In the Amazon forest, wind disturbances can create canopy gaps of many hundreds of hectares. We show that inputs of plant litter associated with large windthrows cause a short-term increase in soil carbon stock. The degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.
P. Kountouris, C. Gerbig, K.-U. Totsche, A. J. Dolman, A. G. C. A. Meesters, G. Broquet, F. Maignan, B. Gioli, L. Montagnani, and C. Helfter
Biogeosciences, 12, 7403–7421, https://doi.org/10.5194/bg-12-7403-2015, https://doi.org/10.5194/bg-12-7403-2015, 2015
M. E. Nowak, F. Beulig, J. von Fischer, J. Muhr, K. Küsel, and S. E. Trumbore
Biogeosciences, 12, 7169–7183, https://doi.org/10.5194/bg-12-7169-2015, https://doi.org/10.5194/bg-12-7169-2015, 2015
Short summary
Short summary
Microorganisms have been recognized as an important source of soil organic matter (SOM). Autotrophic microorganisms utilize CO2 instead of organic carbon. Microbial CO2 fixation is accompanied with high 13C isotope discrimination. Because autotrophs are abundant in soils, they might be a significant factor influencing 13C signatures of SOM. Thus, it is important to asses the importance of autotrophs for C isotope signatures in soils, in order to use isotopes as a tracer for soil C dynamics.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
J. F. Mori, T. R. Neu, S. Lu, M. Händel, K. U. Totsche, and K. Küsel
Biogeosciences, 12, 5277–5289, https://doi.org/10.5194/bg-12-5277-2015, https://doi.org/10.5194/bg-12-5277-2015, 2015
Short summary
Short summary
We studied filamentous macroscopic algae growing in metal-rich stream water that leaked from a former uranium-mining district. These algae were encrusted with Fe-deposits that were associated with microbes, mainly Gallionella-related Fe-oxidizing bacteria, and extracellular polymeric substances. Algae with a lower number of chloroplasts often exhibited discontinuous series of precipitates, likely due to the intercalary growth of algae which allowed them to avoid detrimental encrustation.
K. Eusterhues, A. Hädrich, J. Neidhardt, K. Küsel, T. F. Keller, K. D. Jandt, and K. U. Totsche
Biogeosciences, 11, 4953–4966, https://doi.org/10.5194/bg-11-4953-2014, https://doi.org/10.5194/bg-11-4953-2014, 2014
C. A. Sierra, M. Müller, and S. E. Trumbore
Geosci. Model Dev., 7, 1919–1931, https://doi.org/10.5194/gmd-7-1919-2014, https://doi.org/10.5194/gmd-7-1919-2014, 2014
R. Kretschmer, C. Gerbig, U. Karstens, G. Biavati, A. Vermeulen, F. Vogel, S. Hammer, and K. U. Totsche
Atmos. Chem. Phys., 14, 7149–7172, https://doi.org/10.5194/acp-14-7149-2014, https://doi.org/10.5194/acp-14-7149-2014, 2014
B. Ahrens, M. Reichstein, W. Borken, J. Muhr, S. E. Trumbore, and T. Wutzler
Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, https://doi.org/10.5194/bg-11-2147-2014, 2014
M. S. Torn, M. Kleber, E. S. Zavaleta, B. Zhu, C. B. Field, and S. E. Trumbore
Biogeosciences, 10, 8067–8081, https://doi.org/10.5194/bg-10-8067-2013, https://doi.org/10.5194/bg-10-8067-2013, 2013
E. Solly, I. Schöning, S. Boch, J. Müller, S. A. Socher, S. E. Trumbore, and M. Schrumpf
Biogeosciences, 10, 4833–4843, https://doi.org/10.5194/bg-10-4833-2013, https://doi.org/10.5194/bg-10-4833-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Instruments and observation techniques
Experimental investigation of the interplay between transverse mixing and pH reaction in porous media
A hydrogeological conceptual model of aquifers in catchments headed by temperate glaciers
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale
Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology
Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods
Evidence for high-elevation salar recharge and interbasin groundwater flow in the Western Cordillera of the Peruvian Andes
Technical note: Effects of iron(II) on fluorescence properties of dissolved organic matter at circumneutral pH
The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia
Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study
Using multiple methods to investigate the effects of land-use changes on groundwater recharge in a semi-arid area
Identifying recharge under subtle ephemeral features in a flat-lying semi-arid region using a combined geophysical approach
Isotopic and chromatographic fingerprinting of the sources of dissolved organic carbon in a shallow coastal aquifer
Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer
Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons
Groundwater–glacier meltwater interaction in proglacial aquifers
A review of methods for measuring groundwater–surface water exchange in braided rivers
Error in hydraulic head and gradient time-series measurements: a quantitative appraisal
The effect of sediment thermal conductivity on vertical groundwater flux estimates
Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics
Microbial community changes induced by Managed Aquifer Recharge activities: linking hydrogeological and biological processes
Application of the pore water stable isotope method and hydrogeological approaches to characterise a wetland system
Comment on “Origin of water in the Badain Jaran Desert, China: new insight from isotopes” by Wu et al. (2017)
Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence
Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses
Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers
A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer
Transfer of environmental signals from the surface to the underground at Ascunsă Cave, Romania
Halon-1301 – further evidence of its performance as an age tracer in New Zealand groundwater
Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange
Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS
Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling
Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA
Quantifying the influence of surface water–groundwater interaction on nutrient flux in a lowland karst catchment
Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4
Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale
Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method
Assessment of Halon-1301 as a groundwater age tracer
Identifying flood recharge and inter-aquifer connectivity using multiple isotopes in subtropical Australia
Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater
Timescales of regional circulation of saline fluids in continental crystalline rock aquifers (Armorican Massif, western France)
A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses
Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China
Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China
Using hydrologic measurements to investigate free-phase gas ebullition in a Maine peatland, USA
Spatially resolved information on karst conduit flow from in-cave dye tracing
The usefulness of outcrop-analogue air-permeameter measurements for analysing aquifer heterogeneity: testing outcrop hydrogeological parameters with independent borehole data
Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach
Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy
Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns
Adi Biran, Tomer Sapar, Ludmila Abezgauz, and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 4755–4770, https://doi.org/10.5194/hess-28-4755-2024, https://doi.org/10.5194/hess-28-4755-2024, 2024
Short summary
Short summary
In Earth sciences, pH-driven reactions in porous environments impact natural processes like mineral dissolution and groundwater remediation. Traditional models struggle due to pore-scale complexities. This study explores how porous structure and flow rate affect mixing and chemical reactions. Surprisingly, pH-driven reactions occur faster than predicted, emphasizing water’s unique pH behavior in porous media.
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024, https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Short summary
We studied groundwater near outlet glaciers of the main Icelandic ice cap. We acquired new data in the field. Two distinct groundwater compartments and their characteristics are identified. We demonstrate the glacial melt recharge impact on the groundwater dynamic. Knowing groundwater systems in a glacial context is crucial to forecast the evolution under climate change of water resources and of potential flood and landslide hazards.
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023, https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
Short summary
In this paper, we use a novel surface nuclear magnetic resonance (SNMR) method for rapid high-quality data acquisition. The SNMR results from more than 100 soundings in three different case studies were used to map groundwater. The soundings successfully track the water table through the three areas and are compared to boreholes and other geophysical measurements. The study highlights the use of SNMR in hydrological surveys and as a tool for regional mapping of the water table.
Flore Rembert, Marie Léger, Damien Jougnot, and Linda Luquot
Hydrol. Earth Syst. Sci., 27, 417–430, https://doi.org/10.5194/hess-27-417-2023, https://doi.org/10.5194/hess-27-417-2023, 2023
Short summary
Short summary
The formation of underground cavities, called karsts, resulting from carbonate rock dissolution, is at stake in many environmental and societal issues, notably through risk management and the administration and quality of drinking water resources. Facing natural environment complexity, we propose a laboratory study combining hydro-chemical monitoring, 3D imaging, and non-invasive observation of electrical properties, showing the benefits of geoelectrical monitoring to map karst formation.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Marc Ohmer, Tanja Liesch, and Andreas Wunsch
Hydrol. Earth Syst. Sci., 26, 4033–4053, https://doi.org/10.5194/hess-26-4033-2022, https://doi.org/10.5194/hess-26-4033-2022, 2022
Short summary
Short summary
We present a data-driven approach to select optimal locations for groundwater monitoring wells. The applied approach can optimize the number of wells and their location for a network reduction (by ranking wells in order of their information content and reducing redundant) and extension (finding sites with great information gain) or both. It allows us to include a cost function to account for more/less suitable areas for new wells and can help to obtain maximum information content for a budget.
Odiney Alvarez-Campos, Elizabeth J. Olson, Lisa R. Welp, Marty D. Frisbee, Sebastián A. Zuñiga Medina, José Díaz Rodríguez, Wendy R. Roque Quispe, Carol I. Salazar Mamani, Midhuar R. Arenas Carrión, Juan Manuel Jara, Alexander Ccanccapa-Cartagena, and Chad T. Jafvert
Hydrol. Earth Syst. Sci., 26, 483–503, https://doi.org/10.5194/hess-26-483-2022, https://doi.org/10.5194/hess-26-483-2022, 2022
Short summary
Short summary
We present results of a hydrologic study of groundwater recharge near the city of Arequipa, Peru. There are a number of springs below a high-elevation salar that show some chemical evidence of connectivity to the salar basin, possibly facilitated by faults in region. These results suggest that this salar basin is not a strictly terminal lake but that some interbasin groundwater flow exists. In addition, a high-elevation forest ecosystem seems important for groundwater recharge as well.
Kun Jia, Cara C. M. Manning, Ashlee Jollymore, and Roger D. Beckie
Hydrol. Earth Syst. Sci., 25, 4983–4993, https://doi.org/10.5194/hess-25-4983-2021, https://doi.org/10.5194/hess-25-4983-2021, 2021
Short summary
Short summary
The effect of soluble reduced iron, Fe(II), on fluorescence data (excitation–emission matrix spectra parsed using parallel factor analysis) is difficult to quantitatively assign. We added varying quantities of Fe(II) into groundwater from an anaerobic aquifer. We showed that the overall fluorescence intensity decreased nonlinearly as Fe(II) increased from 1 to 306 mg L-1 but that the parallel factor analysis component distribution was relatively insensitive to Fe(II) concentration.
Ashley N. Martin, Karina Meredith, Andy Baker, Marc D. Norman, and Eliza Bryan
Hydrol. Earth Syst. Sci., 25, 3837–3853, https://doi.org/10.5194/hess-25-3837-2021, https://doi.org/10.5194/hess-25-3837-2021, 2021
Short summary
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk J. M. Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci., 24, 4353–4368, https://doi.org/10.5194/hess-24-4353-2020, https://doi.org/10.5194/hess-24-4353-2020, 2020
Short summary
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Karina T. Meredith, Andy Baker, Martin S. Andersen, Denis M. O'Carroll, Helen Rutlidge, Liza K. McDonough, Phetdala Oudone, Eliza Bryan, and Nur Syahiza Zainuddin
Hydrol. Earth Syst. Sci., 24, 2167–2178, https://doi.org/10.5194/hess-24-2167-2020, https://doi.org/10.5194/hess-24-2167-2020, 2020
Short summary
Short summary
Dissolved organic carbon within groundwater and processes controlling it remain largely unknown. The average groundwater concentration at this coastal site was 5 times higher than the global median, doubling with depth, but with no change in chromatographic character. The lack of oxygen limited the rate of organic matter processing, leading to enhanced preservation. Changes in coastal hydrology could lead to the flux of unreacted organic carbon.
Andrea Palacios, Juan José Ledo, Niklas Linde, Linda Luquot, Fabian Bellmunt, Albert Folch, Alex Marcuello, Pilar Queralt, Philippe A. Pezard, Laura Martínez, Laura del Val, David Bosch, and Jesús Carrera
Hydrol. Earth Syst. Sci., 24, 2121–2139, https://doi.org/10.5194/hess-24-2121-2020, https://doi.org/10.5194/hess-24-2121-2020, 2020
Short summary
Short summary
Coastal areas are highly populated and seawater intrusion endangers the already scarce freshwater resources. We use, for the first time, a geophysical experiment called cross-hole electrical resistivity tomography to monitor seawater intrusion dynamics. The technique relies on readings of rock and water electrical conductivity to detect salt in the aquifer. Two years of experiment allowed us to reveal variations in aquifer salinity due to natural seasonality, heavy-rain events and droughts.
Nathan A. Wales, Jesus D. Gomez-Velez, Brent D. Newman, Cathy J. Wilson, Baptiste Dafflon, Timothy J. Kneafsey, Florian Soom, and Stan D. Wullschleger
Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, https://doi.org/10.5194/hess-24-1109-2020, 2020
Short summary
Short summary
Rapid warming in the Arctic is causing increased permafrost temperatures and ground ice degradation. To study the effects of ice degradation on water distribution, tracer was applied to two end members of ice-wedge polygons – a ubiquitous landform in the Arctic. End member type was found to significantly affect water distribution as lower flux was observed with ice-wedge degradation. Results suggest ice degradation can influence partitioning of sequestered carbon as carbon dioxide or methane.
Brighid É. Ó Dochartaigh, Alan M. MacDonald, Andrew R. Black, Jez Everest, Paul Wilson, W. George Darling, Lee Jones, and Mike Raines
Hydrol. Earth Syst. Sci., 23, 4527–4539, https://doi.org/10.5194/hess-23-4527-2019, https://doi.org/10.5194/hess-23-4527-2019, 2019
Short summary
Short summary
We provide evidence of high groundwater storage and flow in catchments with active glaciers. Groundwater is found within gravels at the front of glaciers and replenished by both ice melt and precipitation. We studied a glacier in Iceland for 3 years, characterising the aquifer properties and measuring groundwater, river flow and precipitation. The results are important for accurately measuring meltwater and show that groundwater can provide strategic water supplies in de-glaciating catchments.
Katie Coluccio and Leanne Kaye Morgan
Hydrol. Earth Syst. Sci., 23, 4397–4417, https://doi.org/10.5194/hess-23-4397-2019, https://doi.org/10.5194/hess-23-4397-2019, 2019
Short summary
Short summary
Braided rivers are uncommon internationally but are important freshwater resources. However, there is limited understanding of how characteristics unique to braided rivers affect groundwater–surface water flow paths. This article reviews prior studies that have investigated groundwater–surface water interactions in these rivers and their associated aquifers to provide guidance on methodologies most suitable for future work in braided rivers and highlight gaps in current knowledge.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Eva Sebok and Sascha Müller
Hydrol. Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/hess-23-3305-2019, https://doi.org/10.5194/hess-23-3305-2019, 2019
Short summary
Short summary
Exchange fluxes between groundwater and surface waters can be quantified using temperature measurements from the upper sediment layers of streams and lakes assuming the thermal properties of sediments. This study quantified the natural variabiilty in sediment thermal conductivity in the vertical direction at the bed of surface waters and showed that fluxes can change by up to +/-75 % depending on using standard literature values or in situ measurements for sediment thermal conductivity.
Benoit Vittecoq, Pierre-Alexandre Reninger, Frédéric Lacquement, Guillaume Martelet, and Sophie Violette
Hydrol. Earth Syst. Sci., 23, 2321–2338, https://doi.org/10.5194/hess-23-2321-2019, https://doi.org/10.5194/hess-23-2321-2019, 2019
Short summary
Short summary
Water resource management on volcanic islands is challenging and faces several issues. Taking advantage of new heliborne geophysical technology, correlated with borehole and spring data, we develop a watershed-scale conceptual model and demonstrate that permeability increases with age for the studied formations. Moreover, complex geological structures lead to preferential flow circulations and to discrepancy between topographical and hydrogeological watersheds, influencing river flow rates.
Carme Barba, Albert Folch, Núria Gaju, Xavier Sanchez-Vila, Marc Carrasquilla, Alba Grau-Martínez, and Maira Martínez-Alonso
Hydrol. Earth Syst. Sci., 23, 139–154, https://doi.org/10.5194/hess-23-139-2019, https://doi.org/10.5194/hess-23-139-2019, 2019
Short summary
Short summary
Managed aquifer recharge allows increasing water resources and can be used to improve water quality. We assess the degradative capabilities of infiltrating pollutants by mapping the composition of microbial communities linked to periods of infiltration/drought. From samples of soil, surface and groundwater, we found some microbial species involved in the nitrogen and carbon cycles. Furthermore, we found that, during infiltration, microbial abundance rises, increasing degradative capabilities.
Katarina David, Wendy Timms, Catherine E. Hughes, Jagoda Crawford, and Dayna McGeeney
Hydrol. Earth Syst. Sci., 22, 6023–6041, https://doi.org/10.5194/hess-22-6023-2018, https://doi.org/10.5194/hess-22-6023-2018, 2018
Short summary
Short summary
We investigated the wetland system classified as a threatened ecological community and found that organic-rich soil close to surfaces retains significant moisture necessary for ecosystems. At the base of the swamp an identified sand layer allows relatively rapid drainage and lateral groundwater interaction. Evaporation estimated from stable water isotopes from sediments indicated that groundwater contribution to the swamp is significant in dry periods, supporting ecosystems when water is scarce.
Lucheng Zhan, Jiansheng Chen, Ling Li, and David A. Barry
Hydrol. Earth Syst. Sci., 22, 4449–4454, https://doi.org/10.5194/hess-22-4449-2018, https://doi.org/10.5194/hess-22-4449-2018, 2018
Short summary
Short summary
Using the arithmetic averages of precipitation isotope values, Wu et al. (2017) concluded that the Badain Jaran Desert (BJD) groundwater is recharged by modern local meteoric water. However, based on weighted mean precipitation isotope values, our further analysis shows that modern precipitation on the Qilian Mountains is more likely to be the main source of the groundwater and lake water in the BJD, as found. We believe this comment provides an important improvement for their study.
Dongmei Han and Matthew J. Currell
Hydrol. Earth Syst. Sci., 22, 3473–3491, https://doi.org/10.5194/hess-22-3473-2018, https://doi.org/10.5194/hess-22-3473-2018, 2018
Short summary
Short summary
Based on hydrochemical and isotopic analysis, we investigated the potential hydrogeological processes responsible for the increasing groundwater salinity in the coastal aquifer of Yang–Dai River coastal plain, northern China. Seawater intrusion is the major aspect and can be caused by vertical infiltration along the riverbed at the downstream areas, and lateral inflow into fresh aquifer. Geothermal water also makes a significant contribution to increasing the groundwater salinity.
Stephan Costabel, Christoph Weidner, Mike Müller-Petke, and Georg Houben
Hydrol. Earth Syst. Sci., 22, 1713–1729, https://doi.org/10.5194/hess-22-1713-2018, https://doi.org/10.5194/hess-22-1713-2018, 2018
Short summary
Short summary
Laboratory experiments using water-filled sand and gravel samples with significant contents of iron oxide coatings were performed to identify the relationship between effective hydraulic radius and nuclear magnetic resonance (NMR) response. Our interpretation approach for the NMR data leads to reliable estimates of hydraulic conductivity without calibration, but is limited to coarse material for physical reasons. An NMR-based observation system for iron clogging in boreholes is planned.
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Charlotte P. Iverach, Dioni I. Cendón, Karina T. Meredith, Klaus M. Wilcken, Stuart I. Hankin, Martin S. Andersen, and Bryce F. J. Kelly
Hydrol. Earth Syst. Sci., 21, 5953–5969, https://doi.org/10.5194/hess-21-5953-2017, https://doi.org/10.5194/hess-21-5953-2017, 2017
Short summary
Short summary
This study uses a multi-tracer geochemical approach to determine the extent of artesian groundwater discharge into an economically important alluvial aquifer. We compare estimates for artesian discharge into the alluvial aquifer derived from water balance modelling and geochemical data to show that there is considerable divergence in the results. The implications of this work involve highlighting that geochemical data should be used as a critical component of water budget assessments.
Virgil Drăguşin, Sorin Balan, Dominique Blamart, Ferenc Lázár Forray, Constantin Marin, Ionuţ Mirea, Viorica Nagavciuc, Iancu Orăşeanu, Aurel Perşoiu, Laura Tîrlă, Alin Tudorache, and Marius Vlaicu
Hydrol. Earth Syst. Sci., 21, 5357–5373, https://doi.org/10.5194/hess-21-5357-2017, https://doi.org/10.5194/hess-21-5357-2017, 2017
Monique Beyer, Uwe Morgenstern, Rob van der Raaij, and Heather Martindale
Hydrol. Earth Syst. Sci., 21, 4213–4231, https://doi.org/10.5194/hess-21-4213-2017, https://doi.org/10.5194/hess-21-4213-2017, 2017
Short summary
Short summary
The determination of groundwater age can aid characterization of aquifers, providing information on groundwater mixing, flow, volume, and recharge rates. Here we assess a recently discovered groundwater age tracer, Halon-1301. Its performance as an age tracer is assessed against six other well-established, widely used age tracers in 302 groundwater samples. We show Halon-1301 reliably inferred age, thus potentially becoming a useful groundwater age tracer where other tracers are compromised.
Colby M. Steelman, Celia S. Kennedy, Donovan C. Capes, and Beth L. Parker
Hydrol. Earth Syst. Sci., 21, 3105–3123, https://doi.org/10.5194/hess-21-3105-2017, https://doi.org/10.5194/hess-21-3105-2017, 2017
Short summary
Short summary
The Eramosa River flows along a fractured sedimentary bedrock aquifer with large subsurface channel features. This study examines the potential for groundwater–surface water exchange beneath the fractured bedrock riverbed and the impacts of seasonal and intraseasonal flow system transience on the geoelectrical properties of the rock. Our results will have implications to the conceptual understanding of groundwater–surface water interaction within fractured bedrock river environments.
Linsong Wang, Chao Chen, Jinsong Du, and Tongqing Wang
Hydrol. Earth Syst. Sci., 21, 2905–2922, https://doi.org/10.5194/hess-21-2905-2017, https://doi.org/10.5194/hess-21-2905-2017, 2017
Short summary
Short summary
The North China Plain (NCP), as the interest region in this study, is one of the most uniformly and extensively altered areas due to overexploitation of groundwater by humans. Here, we use GRACE and GPS to study the seasonal and long-term mass change and its resulting vertical displacement. We also removed the vertical rates, which are induced by terrestrial water storage (TWS) from GPS-derived data to obtain the corrected vertical velocities caused by tectonic movement and human activities.
Klaus Haaken, Gian Piero Deidda, Giorgio Cassiani, Rita Deiana, Mario Putti, Claudio Paniconi, Carlotta Scudeler, and Andreas Kemna
Hydrol. Earth Syst. Sci., 21, 1439–1454, https://doi.org/10.5194/hess-21-1439-2017, https://doi.org/10.5194/hess-21-1439-2017, 2017
Short summary
Short summary
The paper presents a general methodology that will help understand how freshwater and saltwater may interact in natural porous media, with a particular view at practical applications such as the storage of freshwater underground in critical areas, e.g., semi-arid zones around the Mediterranean sea. The methodology is applied to a case study in Sardinia and shows how a mix of advanced monitoring and mathematical modeling tremendously advance our understanding of these systems.
Donald O. Rosenberry, Martin A. Briggs, Emily B. Voytek, and John W. Lane
Hydrol. Earth Syst. Sci., 20, 4323–4339, https://doi.org/10.5194/hess-20-4323-2016, https://doi.org/10.5194/hess-20-4323-2016, 2016
Short summary
Short summary
The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were thought to be located in areas of substantial groundwater discharge to the river. Physical, thermal, and geophysical methods applied at several spatial scales indicate that DWM are located within or directly downstream of areas of substantial groundwater discharge to the river. DWM may depend on groundwater discharge for their survival.
T. McCormack, O. Naughton, P. M. Johnston, and L. W. Gill
Hydrol. Earth Syst. Sci., 20, 2119–2133, https://doi.org/10.5194/hess-20-2119-2016, https://doi.org/10.5194/hess-20-2119-2016, 2016
Short summary
Short summary
In this study, the influence of surface water–groundwater interaction on the nutrient flux in a lowland karst catchment in western Ireland was investigated with the aid of alkalinity sampling and a hydrological model. Results indicated that denitrification within a number of ephemeral lakes is the main process reducing nitrogen concentrations within the turloughs, whereas phosphorus loss is thought to occur mostly via sedimentation and subsequent soil deposition.
Dongmei Han, Xianfang Song, and Matthew J. Currell
Hydrol. Earth Syst. Sci., 20, 1983–1999, https://doi.org/10.5194/hess-20-1983-2016, https://doi.org/10.5194/hess-20-1983-2016, 2016
Short summary
Short summary
We report new data for carbon and sulfur isotopes of the groundwater flow system in a coastal carbonate aquifer of northeast China. It shows how these can be used to determine the major processes controlling sulfate cycling and transport. Hopefully the study will be of broad international interest, and is expected to improve the understanding of techniques to determine impacts on groundwater quality and flow, leading to improved groundwater protection and monitoring strategies.
W. A. Timms, R. Crane, D. J. Anderson, S. Bouzalakos, M. Whelan, D. McGeeney, P. F. Rahman, and R. I. Acworth
Hydrol. Earth Syst. Sci., 20, 39–54, https://doi.org/10.5194/hess-20-39-2016, https://doi.org/10.5194/hess-20-39-2016, 2016
Short summary
Short summary
Low permeability sediments and rock can leak slowly, yet can act as important barriers to flow for resource development and for waste sequestration. Relatively rapid and reliable hydraulic tests of "tight" geological materials are possible by accelerating gravity. Results from geotechnical centrifuge testing of drill core and in situ pore pressure monitoring were compared with a regional flow model, and considered in the context of inherent geological variability at site and formation scale.
M. J. Hendry, E. Schmeling, L. I. Wassenaar, S. L. Barbour, and D. Pratt
Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, https://doi.org/10.5194/hess-19-4427-2015, 2015
Short summary
Short summary
Improvements and limitations to the measurement δ2H and δ18O of pore waters in geologic core samples using laser spectrometry are presented. These included the use of a δ2H spike to assess the extent of drill fluid contamination and the effect of storage time and type of sample bag on pore water values.
M. Beyer, R. van der Raaij, U. Morgenstern, and B. Jackson
Hydrol. Earth Syst. Sci., 19, 2775–2789, https://doi.org/10.5194/hess-19-2775-2015, https://doi.org/10.5194/hess-19-2775-2015, 2015
Short summary
Short summary
We assess the potential of Halon-1301 as a new groundwater age tracer, which had not been assessed in detail. We determine Halon-1301 and infer age in 17 New Zealand groundwater samples and various modern waters. Halon-1301 reliably inferred age in 71% of the sites within 1 SD of the ages inferred from tritium and SF6. The remaining (anoxic) waters show reduced concentrations of Halon-1301 along with even further reduced concentrations of CFCs. The reason(s) for this need to be further assessed.
A. C. King, M. Raiber, D. I. Cendón, M. E. Cox, and S. E. Hollins
Hydrol. Earth Syst. Sci., 19, 2315–2335, https://doi.org/10.5194/hess-19-2315-2015, https://doi.org/10.5194/hess-19-2315-2015, 2015
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
A. Armandine Les Landes, L. Aquilina, P. Davy, V. Vergnaud-Ayraud, and C. Le Carlier
Hydrol. Earth Syst. Sci., 19, 1413–1426, https://doi.org/10.5194/hess-19-1413-2015, https://doi.org/10.5194/hess-19-1413-2015, 2015
Short summary
Short summary
The crystalline rock aquifers of the Armorican Massif present clear evidence of a marine origin of the saline component in the fluids on the regional scale. High chloride concentrations are attributed to three past marine transgressions. The relationship between chloride concentration and transgression age provides constraints for the timescales of fluid circulation. This time frame is useful information for developing conceptual models of the paleo-functioning of Armorican aquifers.
J. F. Dean, J. A. Webb, G. E. Jacobsen, R. Chisari, and P. E. Dresel
Hydrol. Earth Syst. Sci., 19, 1107–1123, https://doi.org/10.5194/hess-19-1107-2015, https://doi.org/10.5194/hess-19-1107-2015, 2015
Short summary
Short summary
This paper examines modern and historical groundwater recharge rates to determine the impacts of reforestation in south-eastern Australia. This study shows that over both the long and short term, groundwater recharge in the study area occurs predominantly in the lower catchment areas. The results of this study show that spatial variations in recharge are important considerations for locating tree plantations, especially when looking to conserve water for downstream users in low rainfall regions.
F. Liu, X. Song, L. Yang, Y. Zhang, D. Han, Y. Ma, and H. Bu
Hydrol. Earth Syst. Sci., 19, 551–565, https://doi.org/10.5194/hess-19-551-2015, https://doi.org/10.5194/hess-19-551-2015, 2015
Short summary
Short summary
Due to intensive groundwater exploitation in energy base, significant changes in groundwater system will take place. This research identified the origin and geochemical evolution of groundwater in the Subei Lake basin under the influence of human activity, enhancing the knowledge of lake basins in groundwater discharge area and providing valuable groundwater information for decision makers to formulate sustainable groundwater management strategies for other similar lake basins in arid regions.
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
C. E. Bon, A. S. Reeve, L. Slater, and X. Comas
Hydrol. Earth Syst. Sci., 18, 953–965, https://doi.org/10.5194/hess-18-953-2014, https://doi.org/10.5194/hess-18-953-2014, 2014
U. Lauber, W. Ufrecht, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 435–445, https://doi.org/10.5194/hess-18-435-2014, https://doi.org/10.5194/hess-18-435-2014, 2014
B. Rogiers, K. Beerten, T. Smeekens, D. Mallants, M. Gedeon, M. Huysmans, O. Batelaan, and A. Dassargues
Hydrol. Earth Syst. Sci., 17, 5155–5166, https://doi.org/10.5194/hess-17-5155-2013, https://doi.org/10.5194/hess-17-5155-2013, 2013
N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann
Hydrol. Earth Syst. Sci., 17, 3437–3453, https://doi.org/10.5194/hess-17-3437-2013, https://doi.org/10.5194/hess-17-3437-2013, 2013
G. Mongelli, S. Monni, G. Oggiano, M. Paternoster, and R. Sinisi
Hydrol. Earth Syst. Sci., 17, 2917–2928, https://doi.org/10.5194/hess-17-2917-2013, https://doi.org/10.5194/hess-17-2917-2013, 2013
X. Chen, W. Dong, G. Ou, Z. Wang, and C. Liu
Hydrol. Earth Syst. Sci., 17, 2569–2579, https://doi.org/10.5194/hess-17-2569-2013, https://doi.org/10.5194/hess-17-2569-2013, 2013
Cited articles
Adams, B. and Foster, S. S. D.: Land-Surface Zoning for Groundwater Protection, Water Environ. J., 6, 312–319, 1992.
AG Boden: Bodenkundliche Kartieranleitung, 5. Edition, Ad-hoc-Arbeitsgruppe Boden der Geologischen Landesämter und der Bundesanstalt für Geowissenschaften und Rohstoffe der Bundesregierung Deutschland, Schweizerbart, Stuttgart, Hannover, 438 pp., 2005.
Agrawal, G. D., Lunkad, S. K., and Malkhed, T.: Diffuse agricultural nitrate pollution of groundwaters in India, Water Sci. Technol., 39, 67–75, 1999.
Aigner, T.: Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Triassic, SW-Germany), in: Cyclic event stratification, edited by: Einsele, G. and Seilacher, A., Springer, Berlin, Heidelberg, New York, 190–198, 1982.
Aigner, T.: Storm depositional systems: Dynamic stratigraphy in modern and ancient shallow-marine sequences, Lect. Notes Earth Sci., 3, Springer, Berlin, Heidelberg, New York, 174 pp., 1985.
Ali, G. A., L'Heureux, C., Roy, A. G., Turmel, M.-C., and Courchesne, F.: Linking spatial patterns of perched groundwater storage and stormflow generation processes in a headwater forested catchment, Hydrol. Process, 25, 3843–3857, https://doi.org/10.1002/hyp.8238, 2011.
Allocca, V., Manna, F., and De Vita, P.: Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy), Hydrol. Earth Syst. Sci., 18, 803–817, https://doi.org/10.5194/hess-18-803-2014, 2014.
Andreu, J. M., Alcalá, F. J., Vallejos, Á., and Pulido-Bosch, A.: Recharge to mountainous carbonated aquifers in SE Spain: Different approaches and new challenges, J. Arid Environ., 75, 1262–1270, https://doi.org/10.1016/j.jaridenv.2011.01.011, 2011.
Bachmair, S., Weiler, M., and Nützmann, G.: Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone, J. Hydrol., 369, 241–252, https://doi.org/10.1016/j.jhydrol.2009.02.031, 2009.
Backhaus, K., Erichson, B., Plinke, W., and Weiber, R.: Multivariate Analysemethoden: eine anwendungsorientierte Einführung, 14, Springer, Berlin, Heidelberg, 647 pp., 2016.
Bakalowicz, M.: Water geochemistry: water quality and dynamics, Groundw. Ecol., 1, 97–127, 1994.
Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D., and Brun, J.-J.: A review of earthworm impact on soil function and ecosystem services, Eur. J. Soil. Sci., 64, 161–182, https://doi.org/10.1111/ejss.12025, 2013.
Borkhataria, R., Aigner, T., Poeppelreiter, M. C., and Pipping, J. C. P.: Characterization of epeiric “layer-cake” carbonate reservoirs: Upper Muschelkalk (Middle Triassic), the Netherlands, J. Petrol. Geol., 28, 15–42, https://doi.org/10.1111/j.1747-5457.2005.tb00076.x, 2005.
Brandtner, W.: Böden, in: Erläuterungen zur Geologischen Karte 1:25 000 von Thüringen, Blatt 4729 (Schlotheim) und 4730 (Ebeleben) edited by: Grumbt, E., Kästner, H., and Lützner, H., 210–216, Thüringer Landesanstalt für Umwelt und Geologie, Weimar, 1997.
Bullmann, H.: Eigenschaften und Genese periglazialer Deckschichten des Muschelkalks in einem Teilgebiet der Ostthüringer Triaslandschaft, PhD-thesis University of Leipzig, 210 pp., 2010.
Canora, F., Fidelibus, M. D., Sciortino, A., and Spilotro, G.: Variation of infiltration rate through karstic surfaces due to land use changes, Eng. Geol., 99, 210–227, https://doi.org/10.1016/j.enggeo.2007.11.018, 2008.
Cattell, R. B.: The scree test for the number of factors, Multivar. Behav. Res., 1, 245–276, https://doi.org/10.1207/s15327906mbr0102_10, 1966.
Cook, P. G.: A guide to regional groundwater flow in fractured rock aquifers, 151 pp., Australia, CSIRO, 2003.
Deepa, S., Venkateswaran, S., Ayyandurai, R., Kannan, R., and Prabhu, M. V.: Groundwater recharge potential zones mapping in upper Manimuktha Sub basin Vellar river Tamil Nadu India using GIS and remote sensing techniques, Modeling Earth Systems and Environment, 2, 1–13, 2016.
Deumlich, D., Schmidt, R., and Sommer, M.: A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes, J. Plant. Nutr., 173, 843–851, https://doi.org/10.1002/jpln.200900094, 2010.
Deurer, M., Green, S. R., Clothier, B. E., Böttcher, J., and Duijnisveld, W. H. M.: Drainage networks in soils: A concept to describe bypass-flow pathways, J. Hydrol., 272, 148–162, 2003.
Deutsche Stratigraphische Kommission: Stratigraphische Tabelle von Deutschland (STD 2002), 1. Edition, Stein, Potsdam, 2002.
Dibbern, D., Schmalwasser, A., Lüders, T., and Totsche, K. U.: Selective transport of plant root-associated bacterial populations in agricultural soils upon snowmelt, Soil Biol. Biochem., 69, 187–196, 2014.
DIN EN ISO 14689-1: Geotechnical investigation and testing – Identification and classification of rock – Part 1: Identification and description (ISO 14689-1:2003), 26, 2013.
Doerfliger, N., Jeannin, P. Y., and Zwahlen, F.: Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method), Environ. Geol., 39, 165–176, 1999.
Dreybroth, W.: Processes in karst systems – physics, chemistry and geology, Springer, Heidelberg, New York, 288 pp., 1988.
Dunham, R. J.: Classification of carbonate rocks according to depositional texture, in: Classification of carbonate rocks, edited by: Ham, W. E., AAPG Memoir, 1, 108–121, 1962.
Edmunds, W. M. and Smedley, P. L.: Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer, Appl. Geochem., 15, 737–752, 2000.
Elrick, D. E. and Reynolds, W. D.: Methods for Analyzing Constant-Head Well Permeameter Data, Soil Sci. Soc. Am. J., 56, 320–323, 1992.
Fier, A.: Entstehung, Eigenschaften und Klassifikation tonreicher Unterbodenhorizonte auf Carbonatgesteinen in norddeutschen Berg- und Hügelländern, PhD-thesis, University of Halle, 190 pp., 2012.
Ford, D. C. and Williams, P. W.: Karst Hydrogeology and Geomorphology, Wiley, Chichester, 561 pp., 2007.
Furtak, H. and Langguth, H. R.: Zur hydrochemischen Kennzeichnung von Grundwässern und Grundwassertypen mittels Kennzahlen, Mem. IAH-Congress, Hannover, 86–96, 1967.
Garleb, H.: Zu einigen hydrogeochemischen Problemen bei der Erkundung von Grundwasser in der Trias des Thüringer Beckens, Mitteilungsblatt des Thüringischen Geologischen Vereins, 15, 41–45, 2002.
Gleeson, T., Novakowski, K., and Kyser, T. K.: Extremely rapid and localized recharge to a fractured rock aquifer, J. Hydrol., 376, 496–509, 2009.
Gleixner, G.: Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies, Ecol. Res., 28, 683–695, https://doi.org/10.1007/s11284-012-1022-9, 2013.
Goldscheider, N.: Fold structure and underground drainage pattern in the alpine karst system Hochifen-Gottesacker, Eclogae Geol. Helv., 98, 1–17, 2005.
Goldscheider, N., Klute, M., Sturm, S., and Hötzl, H.: The PI method – a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers, Z. Angew. Geol., 46, 157–166, 2000.
Goldscheider, N. and Drew, D.: Methods in Karst Hydrogeology, International Contributions to Hydrogeology, 26, Taylor & Francis, Lodon, Leiden, New York, Philadelphia, Singapore, 264 pp., 2007.
Gradstein, F. M., Ogg, J. G., and Smith, A. G.: A Geologic Time Scale, 1, Cambridge University Press, Cambridge, 2004.
Greitzke, A. and Fiedler, H. J.: Schuttdecken und Bodentypen entlang einer Catena auf Muschelkalk in Buchenbeständen des Hainich (Nordwest-Thüringen), Archiv für Naturschutz und Landschaftforschung, 34, 257–268, 1996.
Grumbt, E., Kästner, H., and Lützner, H.: Erläuterungen zur Geologischen Karte 1 : 25 000 von Thüringen, Blatt 4729 (Schlotheim) und 4730 (Ebeleben), Thüringer Landesanstalt für Umwelt und Geologie, Weimar, 262 pp., 1997.
Guggenberger, G. and Kaiser, K.: Dissolved organic matter in soil: challenging the paradigm of sorptive preservation, Geoderma, 113, 293–310, https://doi.org/10.1016/s0016-7061(02)00366-x, 2003.
Haag, D. and Kaupenjohann, M.: Landscape fate of nitrate fluxes and emissions in Central Europe: A critical review of concepts, data, and models for transport and retention, Agr. Ecosyst. Environ., 86, 1–21, 2001.
Hecht, G.: Grundwässer, in: Geologie von Thüringen, edited by: Seidel, G., Schweizerbart, Stuttgart, 529–586, 2003.
Heinz, J. and Aigner, T.: Hierarchical dynamic stratigraphy in various Quaternary gravel deposits, Rhine glacier area (SW Germany): implications for hydrostratigraphy, Int. J. Earth Sci., 92, 923–938, 2003.
Hem, J. D.: Study and Interpretation of the chemical characteristics of natural water, third edition, U.S. Geological Survey, Water Supply Paper 2254, U.S. Geological Survey, Alexandria, 263 pp., 1985.
Hiekel, W., Fritzlar, F., Nöllert, A., and Westhus, W.: Die Naturräume Thüringens, Naturschutzreport 21, Thüringer Landesantstalt für Umwelt und Geologie, Jena, 364 pp., 2004.
Hölting, B., Haertlé, T., Hohberger, K. H., Nachtigall, K. H., Villinger, E., Weinzierl, W., and Wrobel, J. P.: Konzept zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung, Geol. Jb., C63, 5–24, Hannover, 1995.
Hoppe, W.: Die hydrogeologischen Grundlagen der Wasserversorgung in Thüringen, Fischer, Jena, 109 pp., 1952.
Hoppe, W.: Die Bedeutung der herzynischen Störungszonen für die Grundwasserführung des Thüringer Beckens, Geologie, 11, 679–699, 1962.
Hoppe, W. and Seidel, G.: Geologie von Thüringen, Haack, Gotha, 1000 pp., 1974.
Hsu, C.-H., Han, S.-T., Kao, Y.-H., and Liu, C.-W.: Redox characteristics and zonation of arsenic-affected multi-layers aquifers in the Choushui River alluvial fan, Taiwan, J. Hydrol., 391, 351–366, 2010.
IUSS Working Group WRB: World reference base for soil resources (WRB), World soil resources reports, FAO, Rom, 103 pp., 2006.
Jeong, C. H.: Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea, J. Hydrol., 253, 194–210, 2001.
Jordan, H. and Weder, H. J.: Hydrogeologie und Methoden, Regionale Hydrogeologie: Mecklenburg-Vorpommern, Brandenburg und Berlin, Sachsen-Anhalt, Sachsen, Thüringen, Enke, Stuttgart, 601 pp., 1995.
Kaiser, E.: Erläuterungen zur geologischen Karte von Preussen und benachbarten Bundesstaaten, Blatt 4828 (Langula), Königlich Preussische Geologische Landesanstalt und Bergakademie, Berlin, 58 pp., 1905.
Khan, M. M. A. and Umar, R.: Significance of silica analysis in groundwater in parts of Central Ganga Plain, Uttar Pradesh, India, Curr. Sci., 98, 1237–1240, 2010.
Klaus, J., Zehe, E., Elsner, M., Külls, C., and McDonnell, J. J.: Macropore flow of old water revisited: experimental insights from a tile-drained hillslope, Hydrol. Earth Syst. Sci., 17, 103–118, https://doi.org/10.5194/hess-17-103-2013, 2013.
Kleber, A.: Gliederung und Eigenschaften der Hang-Schuttdecken und ihre Bedeutung für die Bodengenese, Mitteilungen der deutschen bodenkundlichen Gesellschaft, 66, 807–809, 1991.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision, Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Klimchouk, A. B.: Conceptualisation of speleogenesis in multi-storey artesian systems: a model of transverse speleogenesis, Int. J. Speleol., 34, 45–64, https://doi.org/10.5038/1827-806X.34.1.4, 2005.
Klimchouk, A. B. and Ford, D. C.: Types of Karst and Evolution of Hydrogeologic Setting, in: Speleogenesis – Evolution of karst aquifers, edited by: Klimchouk, A. B., Ford, D. C., Palmer, A. N. and Dreybrodt, W., and Huntsville, A., National Speleological Society of America, 45–53, 2000.
König, E.: Das Hainichgebiet und seine Karsterscheinungen, Thüringer Höhlen, 4, 92–101, 1930.
Kostic, B. and Aigner, T.: Sedimentary and poroperm anatomy of shoal-water carbonates (Muschelkalk, South-German Basin): an outcrop-analogue study of inter-well spacing scale, Facies, 50, 113–131, https://doi.org/10.1007/s10347-004-0003-z, 2004.
Kottek, M. J., Grieser, C., Beck, B., Rudolf, F., and Rubel, F.: World map of the Koeppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kralik, M., Zieritz, I., Grath, J., Vincze, G., Philippitsch, R., and Pavlik, H.: Hydrochemische Karte Österreichs: Oberflächennaher Grundwasserkörper und Fliessgewässer, Mittelwerte von Wassererhebungsdaten (WGEV-Daten) 1991–2001, Berichte BE-269, 2nd revised edition, Vienna, 14 pp., 2005.
Kunkel, R., Voigt, H.-J., Wendland, F., and Hannappel, S.: Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, 47, Forschungszentrum Jülich, Jülich, 204 pp., 2004.
Küsel, K., Totsche, K. U., Trumbore, S. E., Lehmann, R., Steinhäuser, C., and Herrmann, M.: How Deep Can Surface Signals Be Traced in the Critical Zone? Merging Biodiversity with Biogeochemistry Research in a Central German Muschelkalk Landscape, Front. Earth Sci., 32, 1–18, https://doi.org/10.3389/feart.2016.00032, 2016.
Lazar, C. S., Stoll, W., Lehmann, R., Herrmann, M., Schwab, V. F., Akob, D. M., Nawaz, A., Wubet, T., Buscot, F., Totsche, K. U., and Küsel, K.: Archaeal Diversity and CO2 Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems, Archaea, 2017, 2136287, https://doi.org/10.1155/2017/2136287, 2017.
Lucia, F. J.: Petrophysical parameters estimated from visual descriptions of carbonate rocks: A field classification of carbonate pore space, J. Petrol. Technol., 216, 221–224, https://doi.org/10.2118/10073-PA, 1983.
Malcher, G.: Karstland Thüringen – Morphologie Hydrologie in Thüringen, in: Thüringen – Karst und Höhle 2011–2014, edited by: Verband der Deutschen Höhlen und Karstforscher, München, 9–24, 2014.
Matthess, G.: Lehrbuch der Hydrogeologie, Band 2, Die Beschaffenheit des Grundwassers, Bornträger, Berlin, Stuttgart, 483 pp., 1994.
Meier, S., Bauer, J. F., and Philipp, S. L.: Fault zone characteristics, fracture systems and permeability implications of Middle Triassic Muschelkalk in Southwest Germany, J. Struct. Geol., 70, 170–189, 2015.
Mempel, G.: Die hydrogeologischen Verhältnisse von Nordwest-Thüringen, Jahrbuch der Preußischen Geologischen Landesanstalt, 59, Preußische Geologische Landesanstalt, Berlin, 587–646, 1939.
Merz, G.: Zur Petrographie, Stratigraphie, Paläogeographie und Hydrogeologie des Muschelkalks (Trias) im Thüringer Becken, Zeitschrift der geologischen Wissenschaften, 15, 457–473, 1987.
Moore, P. J., Martin, J. B., and Screaton, E. J.: Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer, J. Hydrol., 376, 443–455, https://doi.org/10.1016/j.jhydrol.2009.07.052, 2009.
Münch, J. M., Totsche, K. U., and Kaiser, K.: Physicochemical factors controlling the release of dissolved organic dissolved organic carbon release in forest subsoils – a column study, Eur. J. Soil Sci., 53, 311–320, https://doi.org/10.1046/j.1365-2389.2002.00439.x, 2002.
Muir, K. S. and Johnson, M. J.: Classification of ground-water recharge potential in three parts of Santa Cruz County, California, U.S. Geological Survey, Open-File Report 79-1065, 1979.
Nennstiel, K.: Springquellen und andere starke Quellen Thüringens, Beiträge zur Geologie von Thüringen, 3, 33–66, 1933.
Ockert, W. and Rein, S.: Biostratigraphische Gliederung des Oberen Muschelkalkes von Thüringen, Beiträge zur Geologie von Thüringen, 7, 195–228, 2000.
Odling, N. E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J. P., Christensen, N. P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice, R., Aarseth, E., Walsh, J. J., and Watterson, J.: Variations in fracture system geometry and their implications for fluid flow in fractured hydrocarbon reservoirs, Petrol. Geosci., 5, 373–384, 1999.
Otto, C.: Historische Landschaftsanalyse im Nationalpark Hainich und deren Moeglichkeiten der Anwendung, diploma thesis, Fachhochschule Eberswalde, 87 pp., 2000.
Palmer, A. N.: Geochemical models for the origin of macroscopic solution porosity in carbonate rocks, in: Unconformities and porosity in carbonate strata, edited by: Budd A. D., Saller A. H., and Harris, P. M., AAPG Memoir, 63, Tulsa (Oklahoma), 77–101, 1995.
Patzelt, G.: Der Hainich, Cordier, Heiligenstadt, 48 pp., 1998.
Piper, A. M.: A graphic procedure in the geochemical interpretation of water analysis, Eos T. Am. Geophys. Un., 25, 914–928, https://doi.org/10.1029/TR025i006p00914, 1944.
Poser, S.: Rekonstruktion der Nutzungsgeschichte für einen Teilbereich des NLP Hainich mit Anlage vegetationskundlicher Dauerbeobachtungsflächen und Vorschlägen zur Besucherinformation, Diploma thesis, Fachhochschule Anhalt, 108 pp., 2004.
Pronk, M., Goldscheider, N., Zopfi, J., and Zwahlen, F.: Percolation and Particle Transport in the Unsaturated Zone of a Karst Aquifer, Ground Water, 47, 361–369, https://doi.org/10.1111/j.1745-6584.2008.00509.x, 2009.
Rau, D. and Unger, K. P.: Erläuterungen zur Bodenkarte von Thüringen, Blatt 4732 (Kindelbrück), Thüringer Landesanstalt für Geologie und Umwelt, Weimar, 108 pp., 1997.
Röhling, S. and Safar, D.: Forstgeschichte und waldbauliche Nutzung des Weberstedter Holzes ab dem 18. Jahrhundert im heutigen Nationalpark Hainich, Belegarbeit Lehrgebiet Forstgeschichte, University of Dresden, 24 pp., 2004.
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., and Schulze, E.-D.: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals, Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013, 2013.
Schwab, V. F., Herrmann, M., Roth, V.-N., Gleixner, G., Lehmann, R., Pohnert, G., Trumbore, S., Küsel, K., and Totsche, K. U.: Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches, Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, 2017.
Seidel, G.: Geologie von Thüringen, Schweizerbart, Stuttgart, 601 pp., 2003
Shaban, A., Khawlie, M., and Abdallah, C.: Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon, J. Hydrol., 14, 433–443, 2006.
Sharp Jr., J. M.: A Glossary of Hydrogeological Terms, Department of Geological Sciences, The University of Texas: Austin (Texas), 63 pp., 2007.
Simon, T.: The Muschelkalk karst in southwest Germany, in: Tracer hydrology 97 – proceedings of the international symposium on water tracing, edited by: Kranjc, A., Portoroz (Slovenia), 26–31 May 1997, 297–286, 1997.
Smart, P. L. and Hobbs, S. L.: Characterization of carbonate aquifers – A conceptual base, in: Environmental problems in karst terranes and their solutions: Bowling Green, KY, 1–14, 1986.
Steward, D. R., Yang, X., Lauwo, S. Y., Staggenborg, S. A., Macpherson, G. L., and Welch, S. M.: From precipitation to groundwater baseflow in a native prairie ecosystem: a regional study of the Konza LTER in the Flint Hills of Kansas, USA, Hydrol. Earth Syst. Sci., 15, 3181–3194, https://doi.org/10.5194/hess-15-3181-2011, 2011.
Suk, H. and Lee, K. K.: Characterization of a Ground Water Hydrochemical System Through Multivariate Analysis: Clustering Into Ground Water Zones, Ground Water, 37, 348–366, https://doi.org/10.1111/j.1745-6584.1999.tb01112.x, 1999.
Suschka, A.: Erdfälle im Nationalpark Hainich (Thüringen): Natürliche und anthropogen bedingte Veränderungen von Erdfallstandorten in die Umweltbildung, diploma thesis, University of Greifswald, 96 pp., 2007.
TLUG (Thüringer Landesanstalt für Umwelt: Grundwasser in Thüringen): Bericht zu Menge und Beschaffenheit, Thüringer Landesanstalt für Umwelt und Thüringer Landesanstalt für Geologie, Erfurt, 163 pp., 1996.
TLUG (Thüringer Landesanstalt für Umwelt und Geologie): Umwelt regional, available at: http://www.tlug–jena.de/uw_raum/umweltregional/uh/uh09.html, last access: 18 January 2016.
Totsche, K. U., Jann, S., and Kögel-Knabner, I.: Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material, Vadose Zone J., 5, 469–479, https://doi.org/10.2136/vzj2005.0057, 2006.
Totsche, K. U., Jann, S., and Kögel-Knabner, I.: Single event driven release of PAH, colloids and suspended matter under natural conditions, Vadose Zone J., 6, 233–243, https://doi.org/10.2136/vzj2006.0083, 2007.
Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., and Kögel-Knabner, I.: Microaggregates in soils, J. Plant. Nutr. Soil. Sc., 1–33, https://doi.org/10.1002/jpln.201600451, 2017.
Urich, P. B.: Land use in karst terrain: review of impacts of primary activities on temperate karst ecosystems, Department of Conservation, Wellington, 58 pp., 2002.
Vías, J. M., Andreo, B., Perles, M. J., Carrasco, F., Vadillo, I., and Jiménez, P.: Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method, Hydrogeol. J., 14, 912–925, 2006.
Voigt, T., von Eynatten, H., and Franzke, H. J.: Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany), Acta Geol. Pol., 54, 673–694, 2004.
Völker, C. and Völker, R.: Bemerkenswertes zu Karstquellen im Bereich Mühlhausen und des Eichsfeldes, in: Die Geologie von NW Thüringen, edited by: Thüringer Geologischer Verein (TGV), Exkursionsführer, 10–17, 2002.
Vrba, J. and Zaporozec, A.: Guidebook on mapping groundwater vulnerability, International Association of Hydrogeologists, International Contributions to Hydrogeology, 16, 131 pp., Heise, Hannover, 1994.
Ward, J. H.: Hierarchical Grouping to Optimize an Objective Function, J. Am. Statist. Assoc., 48, 236–244, 1963.
Wätzel, A.: Geologische Heimatkunde des Unstrut-Hainich-Kreises, Mühlhäuser Beiträge, 30, 20–41, 2007.
Weigand, H. and Totsche, K. U.: Flow and reactivity effects on dissolved organic matter transport in soil columns, Soil Sci. Soc. Am. J., 62, 1268–1274, https://doi.org/10.2136/sssaj1998.03615995006200050017x, 1998.
Weiler, M. and Naef, F.: An experimental tracer study of the role of macropores in infiltration in grassland soils, Hydrol. Process., 17, 477–493, https://doi.org/10.1002/hyp.1136, 2003.
Weiss, A. D.: Topographic Position and Landforms Analysis, Conference Poster, ESRI International User Conference, San Diego, CA, USA, 2001.
White, W. B.: Conceptual Models for Carbonate Aquifers (reprint 2012), Ground Water, 7, 180–186, 1969.
Wienhöfer, J. and Zehe, E.: Predicting subsurface stormflow response of a forested hillslope – the role of connected flow paths, Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, 2014.
Witkowski, A. J., Rubin, K., Kowalczyk, A., Różkowski, A., and Wrobel, J.: Groundwater vulnerability map of the Chrzanów karst-fissured Triassic aquifer (Poland), Env. Geol., 44, 59–67, https://doi.org/10.1007/s00254-002-0735-4, 2003.
Wong, C. I., Mahler, B. J., Musgrove, M., and Banner, J. L.: Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions, J. Hydrol., 468, 159–172, 2012.
Worthington, S. R. H.: A Comprehensive strategy for understanding flow in carbonate aquifer, in: Karst Modeling, Proceedings of the symposium held 24–27 February, 1999 Charlottesville (Virginia), edited by: Palmer, A. N., Palmer, M. V., and Sasowsky, I. D., Karst Waters Institute Special Publication 5, Karst Waters Institute, Charles Town (West Virginia), 30–37, 1999.