Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-377-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-377-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model
Kiana Zolfaghari
CORRESPONDING AUTHOR
Interdisciplinary Centre on Climate Change and Department of Geography
& Environmental Management, University of Waterloo, Waterloo, Canada
Claude R. Duguay
Interdisciplinary Centre on Climate Change and Department of Geography
& Environmental Management, University of Waterloo, Waterloo, Canada
Homa Kheyrollah Pour
Interdisciplinary Centre on Climate Change and Department of Geography
& Environmental Management, University of Waterloo, Waterloo, Canada
Related authors
No articles found.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Alicia F. Pouw, Homa Kheyrollah Pour, and Alex MacLean
The Cryosphere, 17, 2367–2385, https://doi.org/10.5194/tc-17-2367-2023, https://doi.org/10.5194/tc-17-2367-2023, 2023
Short summary
Short summary
Collecting spatial lake snow depth data is essential for improving lake ice models. Lake ice growth is directly affected by snow on the lake. However, snow on lake ice is highly influenced by wind redistribution, making it important but challenging to measure accurately in a fast and efficient way. This study utilizes ground-penetrating radar on lakes in Canada's sub-arctic to capture spatial lake snow depth and shows success within 10 % error when compared to manual snow depth measurements.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023, https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
Gifty Attiah, Homa Kheyrollah Pour, and K. Andrea Scott
Earth Syst. Sci. Data, 15, 1329–1355, https://doi.org/10.5194/essd-15-1329-2023, https://doi.org/10.5194/essd-15-1329-2023, 2023
Short summary
Short summary
Lake surface temperature (LST) is a significant indicator of climate change and influences local weather and climate. This study developed a LST dataset retrieved from Landsat archives for 535 lakes across the North Slave Region, NWT, Canada. The data consist of individual NetCDF files for all observed days for each lake. The North Slave LST dataset will provide communities, scientists, and stakeholders with the changing spatiotemporal trends of LST for the past 38 years (1984–2021).
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Jinyang Du, John S. Kimball, Claude Duguay, Youngwook Kim, and Jennifer D. Watts
The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017, https://doi.org/10.5194/tc-11-47-2017, 2017
Short summary
Short summary
A new automated method for microwave satellite assessment of lake ice conditions at 5 km resolution was developed for lakes in the Northern Hemisphere. The resulting ice record shows strong agreement with ground observations and alternative ice records. Higher latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower latitude lakes. The new approach allows for rapid monitoring of lake ice cover changes, with accuracy suitable for global change studies.
Cristina M. Surdu, Claude R. Duguay, and Diego Fernández Prieto
The Cryosphere, 10, 941–960, https://doi.org/10.5194/tc-10-941-2016, https://doi.org/10.5194/tc-10-941-2016, 2016
P. Muhammad, C. Duguay, and K.-K. Kang
The Cryosphere, 10, 569–584, https://doi.org/10.5194/tc-10-569-2016, https://doi.org/10.5194/tc-10-569-2016, 2016
Short summary
Short summary
This study involves the analysis of MODIS Level 3500 m snow products, complemented with 250 m Level 1B data, to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013) show that ice-off begins between days of year (DOYs) 115 and 125 and ends between DOYs 145 and 155, resulting in average melt durations of about 30–40 days; we conclude that MODIS can monitor ice break-up.
C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto
The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, https://doi.org/10.5194/tc-8-167-2014, 2014
K. A. Luus, Y. Gel, J. C. Lin, R. E. J. Kelly, and C. R. Duguay
Biogeosciences, 10, 7575–7597, https://doi.org/10.5194/bg-10-7575-2013, https://doi.org/10.5194/bg-10-7575-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
High-resolution automated detection of headwater streambeds for large watersheds
Remote quantification of the trophic status of Chinese lakes
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept
A simple cloud-filling approach for remote sensing water cover assessments
Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions
Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery
River-ice and water velocities using the Planet optical cubesat constellation
Exposure of tourism development to salt karst hazards along the Jordanian Dead Sea shore
A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry
Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series
Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle
Observing river stages using unmanned aerial vehicles
Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging
Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications
Satellite radar altimetry for monitoring small rivers and lakes in Indonesia
Quantifying river form variations in the Mississippi Basin using remotely sensed imagery
River ice flux and water velocities along a 600 km-long reach of Lena River, Siberia, from satellite stereo
Geometric dependency of Tibetan lakes on glacial runoff
Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data
River monitoring from satellite radar altimetry in the Zambezi River basin
Flood occurrence mapping of the middle Mahakam lowland area using satellite radar
Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling
Hydro-physical processes at the plunge point: an analysis using satellite and in situ data
Regional scale analysis of landform configuration with base-level (isobase) maps
Reconstructing the Tropical Storm Ketsana flood event in Marikina River, Philippines
Reading the bed morphology of a mountain stream: a geomorphometric study on high-resolution topographic data
Francis Lessard, Naïm Perreault, and Sylvain Jutras
Hydrol. Earth Syst. Sci., 28, 1027–1040, https://doi.org/10.5194/hess-28-1027-2024, https://doi.org/10.5194/hess-28-1027-2024, 2024
Short summary
Short summary
Headwaters streams, which are small streams at the top of a watershed, represent two-thirds of the total length of streams, yet their exact locations are still unknown. This article compares different techniques in order to remotely detect the position of these streams. Thus, a database of more than 464 km of headwaters was used to explain what drives their presence. A technique developed in this article makes it possible to detect headwater streams with more accuracy, despite the land uses.
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023, https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Short summary
1. Blue/red and green/red Rrs(λ) are sensitive to lake TSI. 2. Machine learning algorithms reveal optimum performance of TSI retrieval. 3. An accurate TSI model was achieved by MSI imagery data and XGBoost. 4. Trophic status in five limnetic regions was qualified. 5. The 10m TSI products were first produced in 555 typical lakes in China.
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023, https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022, https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Short summary
A 30 m LAke Water Secchi Depth (LAWSD30) dataset of China was first developed for 1985–2020, and national-scale water clarity estimations of lakes in China over the past 35 years were analyzed. Lake clarity in China exhibited a significant downward trend before the 21st century, but improved after 2000. The developed LAWSD30 dataset and the evaluation results can provide effective guidance for water preservation and restoration.
Pengcheng Su, Jingjing Liu, Yong Li, Wei Liu, Yang Wang, Chun Ma, and Qimin Li
Hydrol. Earth Syst. Sci., 25, 5879–5903, https://doi.org/10.5194/hess-25-5879-2021, https://doi.org/10.5194/hess-25-5879-2021, 2021
Short summary
Short summary
We identified ± 150 glacial lakes in the Poiqu River basin (central Himalayas), and we explore the changes in five lakes over the last few decades based on remote sensing images, field surveys, and satellite photos. We reconstruct the lake basin topography, calculate the water capacity, and propose a water balance equation (WBE) to explain glacial lake evolution in response to local weather conditions. The WBE also provides a framework for the water balance in rivers from glacierized sources.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Connor Mullen, Gopal Penny, and Marc F. Müller
Hydrol. Earth Syst. Sci., 25, 2373–2386, https://doi.org/10.5194/hess-25-2373-2021, https://doi.org/10.5194/hess-25-2373-2021, 2021
Short summary
Short summary
The level of lake water is rapidly changing globally, and long-term, consistent observations of lake water extents are essential for ascertaining and attributing these changes. These data are rarely collected and challenging to obtain from satellite imagery. The proposed method addresses these challenges without any local data, and it was successfully validated against lakes with and without ground data. The algorithm is a valuable tool for the reliable historical water extent of changing lakes.
Song Shu, Hongxing Liu, Richard A. Beck, Frédéric Frappart, Johanna Korhonen, Minxuan Lan, Min Xu, Bo Yang, and Yan Huang
Hydrol. Earth Syst. Sci., 25, 1643–1670, https://doi.org/10.5194/hess-25-1643-2021, https://doi.org/10.5194/hess-25-1643-2021, 2021
Short summary
Short summary
This study comprehensively evaluated 11 satellite radar altimetry missions (including their official retrackers) for lake water level retrieval and developed a strategy for constructing consistent long-term water level records for inland lakes. It is a two-step bias correction and normalization procedure. First, we use Jason-2 as the initial reference to form a consistent TOPEX/Poseidon–Jason series. Then, we use this as the reference to remove the biases with other radar altimetry missions.
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Short summary
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain water level observations. Improvements in instrument design have increased the capabilities of altimeters to observe inland water bodies, including rivers. In this study, we demonstrate how a dense Sentinel-3 water surface elevation monitoring network can be established at catchment scale using publicly accessible processing platforms. The network can serve as a useful supplement to ground observations.
Jean Bergeron, Gabriela Siles, Robert Leconte, Mélanie Trudel, Damien Desroches, and Daniel L. Peters
Hydrol. Earth Syst. Sci., 24, 5985–6000, https://doi.org/10.5194/hess-24-5985-2020, https://doi.org/10.5194/hess-24-5985-2020, 2020
Short summary
Short summary
We want to assess how well the Surface Water and Ocean Topography (SWOT) satellite mission will be able to provide information on lake surface water elevation and how much of an impact wind conditions (speed and direction) can have on these retrievals.
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary
Short summary
The flow of freshwater in rivers is commonly studied with computer programs known as hydrological models. An important component of those programs lies in the description of the river environment, such as the channel resistance to the flow, that is critical to accurately predict the river flow but is still not well known. Satellite data can be combined with models to enrich our knowledge of these features. Here, we show that the coming SWOT mission can help better know this channel resistance.
Anette Eltner, Hannes Sardemann, and Jens Grundmann
Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, https://doi.org/10.5194/hess-24-1429-2020, 2020
Short summary
Short summary
An automatic workflow is introduced to measure surface flow velocities in rivers. The provided tool enables the measurement of spatially distributed surface flow velocities independently of the image acquisition perspective. Furthermore, the study illustrates how river discharge in previously ungauged and unmeasured regions can be retrieved, considering the image-based flow velocities and digital elevation models of the studied river reach reconstructed with UAV photogrammetry.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.
Najib Abou Karaki, Simone Fiaschi, Killian Paenen, Mohammad Al-Awabdeh, and Damien Closson
Hydrol. Earth Syst. Sci., 23, 2111–2127, https://doi.org/10.5194/hess-23-2111-2019, https://doi.org/10.5194/hess-23-2111-2019, 2019
Short summary
Short summary
The Dead Sea shore is a unique salt karst system. Development began in the 1960s, when the water resources that used to feed the Dead Sea were diverted. The water level is falling at more than 1 m yr−1, causing a hydrostatic disequilibrium between the underground fresh water and the base level. Despite these conditions, tourism development projects have flourished. Here, we show that a 10 km long strip of coast that encompasses several resorts is exposed to subsidence, sinkholes and landslides.
Tim Busker, Ad de Roo, Emiliano Gelati, Christian Schwatke, Marko Adamovic, Berny Bisselink, Jean-Francois Pekel, and Andrew Cottam
Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, https://doi.org/10.5194/hess-23-669-2019, 2019
Short summary
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
Andrew Ogilvie, Gilles Belaud, Sylvain Massuel, Mark Mulligan, Patrick Le Goulven, and Roger Calvez
Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, https://doi.org/10.5194/hess-22-4349-2018, 2018
Short summary
Short summary
Accurate monitoring of surface water extent is essential for hydrological investigation of small lakes (1–10 ha), which supports millions of smallholder farmers. Landsat monitoring of long-term surface water dynamics is shown to be suited to lakes over 3 ha based on extensive hydrometric data from seven field sites over 15 years. MNDWI water classification optimized here for the specificities of small water bodies reduced mean surface area errors by 57 % compared to published global datasets.
Filippo Bandini, Daniel Olesen, Jakob Jakobsen, Cecile Marie Margaretha Kittel, Sheng Wang, Monica Garcia, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 4165–4181, https://doi.org/10.5194/hess-22-4165-2018, https://doi.org/10.5194/hess-22-4165-2018, 2018
Short summary
Short summary
Water depth observations are essential data to forecast flood hazard, predict sediment transport, or monitor in-stream habitats. We retrieved bathymetry with a sonar wired to a drone. This system can improve the speed and spatial scale at which water depth observations are retrieved. Observations can be retrieved also in unnavigable or inaccessible rivers. Water depth observations showed an accuracy of ca. 2.1 % of actual depth, without being affected by water turbidity or bed material.
Tomasz Niedzielski, Matylda Witek, and Waldemar Spallek
Hydrol. Earth Syst. Sci., 20, 3193–3205, https://doi.org/10.5194/hess-20-3193-2016, https://doi.org/10.5194/hess-20-3193-2016, 2016
Short summary
Short summary
We study detectability of changes in water surface areas on orthophotomaps. We use unmanned aerial vehicles to acquire visible light photographs. We offer a new method for detecting changes in water surface areas and river stages. The approach is based on the application of the Student's t test, in asymptotic and bootstrapped versions. We test our approach on aerial photos taken during 3-year observational campaign. We detect transitions between all characteristic river stages using drone data.
E. Lalot, F. Curie, V. Wawrzyniak, F. Baratelli, S. Schomburgk, N. Flipo, H. Piegay, and F. Moatar
Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015, https://doi.org/10.5194/hess-19-4479-2015, 2015
Short summary
Short summary
This work shows that satellite thermal infrared images (LANDSAT) can be used to locate and quantify groundwater discharge into a large river (Loire River, France - 100 to 300 m wide). Groundwater discharge rate is found to be highly variable with time and space and maximum during flow recession periods and in winter. The main identified groundwater discharge area into the Loire River corresponds to a known discharge area of the Beauce aquifer.
M. D. Wilson, M. Durand, H. C. Jung, and D. Alsdorf
Hydrol. Earth Syst. Sci., 19, 1943–1959, https://doi.org/10.5194/hess-19-1943-2015, https://doi.org/10.5194/hess-19-1943-2015, 2015
Short summary
Short summary
We use a virtual mission analysis on a ca. 260km reach of the central Amazon River to assess the hydraulic implications of potential measurement errors in swath-altimetry imagery from the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission. We estimated water surface slope from imagery of water heights and then derived channel discharge. Errors in estimated discharge were lowest when using longer reach lengths and channel cross-sectional averaging to estimate water slopes.
Y. B. Sulistioadi, K.-H. Tseng, C. K. Shum, H. Hidayat, M. Sumaryono, A. Suhardiman, F. Setiawan, and S. Sunarso
Hydrol. Earth Syst. Sci., 19, 341–359, https://doi.org/10.5194/hess-19-341-2015, https://doi.org/10.5194/hess-19-341-2015, 2015
Short summary
Short summary
This paper investigates the possibility of monitoring small water bodies through Envisat altimetry observation. A novel approach is introduced to identify qualified and non-qualified altimetry measurements by assessing the waveform shapes for each returned radar signal. This research indicates that small lakes (extent < 100 km2) and medium-sized rivers (e.g., 200--800 m in width) can be successfully monitored by satellite altimetry.
Z. F. Miller, T. M. Pavelsky, and G. H. Allen
Hydrol. Earth Syst. Sci., 18, 4883–4895, https://doi.org/10.5194/hess-18-4883-2014, https://doi.org/10.5194/hess-18-4883-2014, 2014
Short summary
Short summary
Many previous studies have used stream gauge data to estimate patterns of river width and depth based on variations in river discharge. However, these relationships may not capture all of the actual variability in width and depth. We have instead mapped the widths of all of the rivers wider than 100 m (and many narrower) in the Mississippi Basin and then used them to also improve estimates of depth as well. Our results show width and depth variations not captured by power-law relationships.
A. Kääb, M. Lamare, and M. Abrams
Hydrol. Earth Syst. Sci., 17, 4671–4683, https://doi.org/10.5194/hess-17-4671-2013, https://doi.org/10.5194/hess-17-4671-2013, 2013
V. H. Phan, R. C. Lindenbergh, and M. Menenti
Hydrol. Earth Syst. Sci., 17, 4061–4077, https://doi.org/10.5194/hess-17-4061-2013, https://doi.org/10.5194/hess-17-4061-2013, 2013
N. M. Velpuri and G. B. Senay
Hydrol. Earth Syst. Sci., 16, 3561–3578, https://doi.org/10.5194/hess-16-3561-2012, https://doi.org/10.5194/hess-16-3561-2012, 2012
C. I. Michailovsky, S. McEnnis, P. A. M. Berry, R. Smith, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 16, 2181–2192, https://doi.org/10.5194/hess-16-2181-2012, https://doi.org/10.5194/hess-16-2181-2012, 2012
H. Hidayat, D. H. Hoekman, M. A. M. Vissers, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 16, 1805–1816, https://doi.org/10.5194/hess-16-1805-2012, https://doi.org/10.5194/hess-16-1805-2012, 2012
M. Potes, M. J. Costa, and R. Salgado
Hydrol. Earth Syst. Sci., 16, 1623–1633, https://doi.org/10.5194/hess-16-1623-2012, https://doi.org/10.5194/hess-16-1623-2012, 2012
A. T. Assireu, E. Alcântara, E. M. L. M. Novo, F. Roland, F. S. Pacheco, J. L. Stech, and J. A. Lorenzzetti
Hydrol. Earth Syst. Sci., 15, 3689–3700, https://doi.org/10.5194/hess-15-3689-2011, https://doi.org/10.5194/hess-15-3689-2011, 2011
C. H. Grohmann, C. Riccomini, and M. A. C. Chamani
Hydrol. Earth Syst. Sci., 15, 1493–1504, https://doi.org/10.5194/hess-15-1493-2011, https://doi.org/10.5194/hess-15-1493-2011, 2011
C. C. Abon, C. P. C. David, and N. E. B. Pellejera
Hydrol. Earth Syst. Sci., 15, 1283–1289, https://doi.org/10.5194/hess-15-1283-2011, https://doi.org/10.5194/hess-15-1283-2011, 2011
S. Trevisani, M. Cavalli, and L. Marchi
Hydrol. Earth Syst. Sci., 14, 393–405, https://doi.org/10.5194/hess-14-393-2010, https://doi.org/10.5194/hess-14-393-2010, 2010
Cited articles
Armengol, J., Caputo, L., Comerma, M., Feijoó, C., García, J. C., Marcé, R., Navarro, E., and Ordoñez, J.: Sau reservoir's light climate: relationships between Secchi depth and light extinction coefficient, Limnetica, 22, 195–210, 2003.
Arst, H., Erm, A., Herlevi, A., Kutser, T., Leppäranta, M., Reinart, A., and Virta, J.: Optical properties of boreal lake waters in Finland and Estonia, Boreal Environ. Res., 13, 133–158, 2008.
Attila, J., Koponen, S., Kallio, K., Lindfors, A., Kaitala, S., and Ylostalo, P.: MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea, Remote Sens. Environ., 128, 138–149, 2013.
Binding, C. E. Jerome, J. H., Bukata, R. P., and Booty, W. G.: Trends in water clarity of the lower Great Lakes from remotely sensed aquatic color, J. Great Lakes Res., 33, 828–841, 2007.
Binding, C. E., Greenberg, T. A., Watson, S. B., Rastin, S., and Gould, J.: Long term water clarity changes in North America's Great Lakes from multi-sensor satellite observations, Limnol. Oceanogr., 60, 1967–1995, 2015.
Bootsma, H. and Hecky, R.: A comparative introduction to the biology and limnology of the African Great Lakes, J. Great Lakes Res., 29, 3–18, 2003.
Brown, L. C. and Duguay, C. R.: The response and role of ice cover in lake-climate interactions, Prog. Phys. Geog., 34, 671–704, 2010.
Daher, S.: Lake Erie LAMP Status Report, 1-267, U.S. EPA and Environment Canada, 2000.
De Bruijn, E. I. F., Bosveld, F. C., and Van Der Plas, E. V.: An intercomparison study of ice thickness models in the Netherlands, Tellus A, 66, 21244–21255, 2014.
Duguay, C. R., Flato, G. M., Jeffries, M. O., Ménard, P., Morris, K., and Rouse, W. R.: Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations, Hydrol. Process., 17, 3465–3483, 2003.
Eerola, K., Rontu, L., Kourzeneva, E., and Shcherbak, E.: A study on effects of lake temperature and ice cover in HIRLAM, Boreal Environ. Res., 15, 130–142, 2010.
Gordon, H. R.: Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?, Limonol. Oceanogr., 34, 1389–1409, 1989.
Gueymard, C., Perez, R., Schlemmer, J., Hemker, K., Kivalov, S., and Kankiewicz, A.: Satellite-to-Irradiance Modeling – A New Version of the SUNY Model, 42nd IEEE PV Specialists Conference, New Orleans, LA, June 2015.
Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M., Miettinen, H., Sandström, H., Eugster, W., Leppäranta, M., Järvinen, H., Vesala, T., and Nordbo, A.: Effects of water clarity on lake stratification and lake-atmosphere heat exchange, J. Geophys. Res.-Atmos., 120, 7412–7428, 2015.
Hinzman, L. D., Goering, D. J., and Kane, D. L.: A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions, J. Geophys. Res., 103, 28975–28991, 1998.
Kheyrollah Pour, H., Duguay, C. R., Martynov, A., and Brown, L. C.: Simulation of surface temperature and ice cover of large northern lakes with 1-D models: A comparison with MODIS satellite data and in situ measurements, Tellus A, 64, 17614–17633, 2012.
Kheyrollah Pour, H., Duguay, C., Solberg, R., and Rudjord, Ø.: Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part I: evaluation of remotely-sensed lake surface water temperature observations, Tellus A, 66, 21534–21546, 2014a.
Kheyrollah Pour, H., Rontu, L., and Duguay, C.: Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II: Analysis of lake surface temperature and ice cover, Tellus A, 66, 21395–21413, 2014b.
Kleissl, J., Perez, R., Cebecauer, T., and Šúri, M.: Solar Energy Forecasting and Resource Assessment, Elsevier, MA, USA, 2013.
Koenings, J. P. and Edmundson, J. A.: Secchi disk and photometer estimates of light regimes in Alaskan lakes: Effects of yellow color and turbidity, Limnol. Oceanogr., 36, 91–105, 1991.
Kourzeneva, E.: External data for lake parameterization in Numerical Weather Prediction and climate modeling, Boreal Environ. Res., 15, 165–177, 2010.
Kourzeneva, E., Martin, E., Batrak, Y., and Moigne, P. Le: Climate data for parameterisation of lakes in Numerical Weather Prediction models, Tellus A, 64, 17226–17243, 2012a.
Kourzeneva, E., Asensio, H., Martin, E., and Faroux, S.: Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling, Tellus A, 64, 15640–15654, 2012b.
Martynov, A., Sushama, L., and Laprise, R.: Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models, Boreal Environ. Res., 15, 143–164, 2010.
Martynov, A., Sushama, L., Laprise, R., Winger, K., and Dugas, B.: Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America, Tellus A, 64, 16226–16248, 2012.
Maykut, G. A. and Church, P. E.: Radiation Climate of Barrow Alaska, 1962–66, J. Appl. Meteorol., 12, 620–628, 1973.
Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., Chaffin, J. D., Cho, K., Confesor, R., Daloglu, I., DePinto, J. V., Evans, M. A., Fahnenstiel, G. L., He, L., Ho, J. C., Jenkins, L., Johengen, T. H., Kuo, K. C., LaPorte, E., Liu, X., McWilliams, M. R., Moore, M. R., Posselt, D. J., Richards, R. P., Scavia, D., Steiner, A. L., Verhamme, E., Wright, D. M., and Zagorski, M. A.: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions, P. Natl. Acad. Sci. USA, 110, 6448–6452, 2013.
Mironov, D.: Parameterization of lakes in numerical weather prediction. Part 1: Description of a lake model. Offenbach: Consortium for Small-scale Modeling, Technical Report 11, 47 pp., 2008.
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO, Boreal Environ. Res., 15, 218–230, 2010.
Mironov, D., Ritter, B., Schulz, J.-P., Buchhold, M., Lange, M., and Machulskaya, E.: Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service, Tellus A, 64, 17330–17346, 2012.
Moore, T. S., Dowell, M. D., Bradt, S., and Ruiz-Verdu, A.: An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters, Remote Sens. Environ., 143, 97–111, 2014.
NOAA, National Centre for Coastal Ocean Science and Great Lakes Environmental Research Laboratory: Experimental Lake Erie Harmful Algal Bloom Bulletin 08, 1 pp., 2015.
Olmanson, L., Brezonik, P., and Bauer, M.: hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota, Remote Sens. Environ., 130, 254–265, 2013.
Persson, I. and Jones, I.: The effect of water colour on lake hydrodynamics: A modelling study, Freshwater Biol., 53, 2345–2355, 2008.
Poole, H. H. and Atkins, W. R. G.: Photo-electric measurements of submarine illumination throughout the year, Mar. Biol., 16, 297–394, 1929.
Potes, M., Costa, M. J., and Salgado, R.: Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling, Hydrol. Earth Syst. Sci., 16, 1623–1633, https://doi.org/10.5194/hess-16-1623-2012, 2012.
Rinke, K., Yeates, P., and Rothhaupt, K. O.: A simulation study of the feedback of phytoplankton on thermal structure via light extinction, Freshwater Biol., 55, 1674–1693, 2010.
Ruescas, A., Brockmann, C., Stelzer, K., Tilstone, G. H., and Beltrán-Abaunza, J. M.: DUE Coastcolour Final Report, version 1, Brockmann Consult, , 2014.
Samuelsson, P., Kourzeneva, E., and Mironov, D.: The impact of lakes on the European climate as simulated by a regional climate model, Boreal Environ. Res., 15, 113–129, 2010.
Thiery, W., Martynov, A., Darchambeau, F., Descy, J.-P., Plisnier, P.-D., Sushama, L., and van Lipzig, N. P. M.: Understanding the performance of the FLake model over two African Great Lakes, Geosci. Model Dev., 7, 317–337, https://doi.org/10.5194/gmd-7-317-2014, 2014.
Wilcox, S.: National Solar Radiation Database 1991–2010 Update: User's Manual, National Renewable Energy Laboratory, 2012.
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194, 1981.
Willmott, C. J. and Wicks, D. E.: An Empirical Method for the Spatial Interpolation of Monthly Precipitation within California, Phys. Geogr., 1, 59–73, 1980.
Willmott, C. J., Robeson, S. M., and Matsuura, K.: A refined index of model performance, Int. J. Climatol., 32, 2088–2094, 2012.
Wu, G., De Leeuw, J., and Liu, Y.: Understanding Seasonal Water Clarity Dynamics of Lake Dahuchi from In Situ and Remote Sensing Data, Water Resour. Manag., 23, 1849–1861, 2008.
Zhao, D., Cai, Y., Jiang, H., Xu, D., Zhang, W., and An, S.: Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery, Adv. Water Resour., 34, 165–173, 2011.
Zolfaghari, K. and Duguay, C. R.: Estimation of Water Quality Parameters in Lake Erie from MERIS Using Linear Mixed Effect Models, Remote Sens., 8, 473, https://doi.org/10.3390/rs8060473, 2016.
Zolfaghari, K., Duguay, C. R., and Kheyrollah Pour, H.: Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model, link to supplementary data, https://doi.org/10.1594/PANGAEA.870520, 2017.
Short summary
A remotely-sensed water clarity value (Kd) was applied to improve FLake model simulations of Lake Erie thermal structure using a time-invariant (constant) annual value as well as monthly values of Kd. The sensitivity of FLake model to Kd values was studied. It was shown that the model is very sensitive to variations in Kd when the value is less than 0.5 m-1.
A remotely-sensed water clarity value (Kd) was applied to improve FLake model simulations of...