Articles | Volume 21, issue 3
https://doi.org/10.5194/hess-21-1757-2017
https://doi.org/10.5194/hess-21-1757-2017
Research article
 | 
24 Mar 2017
Research article |  | 24 Mar 2017

Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence

Yonggang Yang and Bojie Fu

Related authors

Reconciling the strategic goals of irrigated food production, energy production with environmental flows under water transfer project in the Yellow River Basin
Yichu Huang, Xiaoming Feng, Chaowei Zhou, and Bojie Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3393,https://doi.org/10.5194/egusphere-2024-3393, 2024
Preprint archived
Short summary
Spatial mapping of key plant functional traits in terrestrial ecosystems across China
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024,https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20 years
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023,https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Inter- and intra-event rainfall partitioning dynamics of two typical xerophytic shrubs in the Loess Plateau of China
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022,https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Decreased virtual water outflows from the Yellow River basin are increasingly critical to China
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044, https://doi.org/10.5194/hess-26-2035-2022,https://doi.org/10.5194/hess-26-2035-2022, 2022
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Theory development
Snowmelt-mediated isotopic homogenization of shallow till soil
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 4861–4881, https://doi.org/10.5194/hess-28-4861-2024,https://doi.org/10.5194/hess-28-4861-2024, 2024
Short summary
Hydro-pedotransfer functions: a roadmap for future development
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024,https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
The dimensions of deep-layer soil desiccation and its impact on xylem hydraulic conductivity in dryland tree plantations
Nana He, Xiaodong Gao, Dagang Guo, Yabiao Wu, Dong Ge, Lianhao Zhao, Lei Tian, and Xining Zhao
Hydrol. Earth Syst. Sci., 28, 1897–1914, https://doi.org/10.5194/hess-28-1897-2024,https://doi.org/10.5194/hess-28-1897-2024, 2024
Short summary
Prediction of absolute unsaturated hydraulic conductivity – comparison of four different capillary bundle models
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023,https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Prediction of the absolute hydraulic conductivity function from soil water retention data
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023,https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary

Cited articles

Allison, G. B. and Barnes, C. J.: Estimation of evaporation from the normally dry Lake Frome in South Australia, J. Hydrol., 78, 229–242, 1985.
Arny, E. S., Hans, C. S., Thorsteinn, J., and Sigfus, J. J.: Monitoring the water vapor isotopic composition in the temperate North Atlantic, J. Geophys. Res.-Abstr., 15, 2013–5376, 2013.
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour. Res., 18, 1311–1325, 1982.
Bhatia, M. P., Das, S. B., and Kujawinski, E. B.: Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: insight from a new isotope-mixing model, J. Glaciol., 57, 929–941, 2011.
Bose, T., Sengupta, S., Chakraborty, S., and Borgaonkar, H.: Reconstruction of soil water oxygen isotope values from tree ring cellulose and its implications for paleoclimate studies, Quatern. Int., 425, 387–398, 2016.
Download
Short summary
This paper investigates soil water migration processes in the Loess Plateau using isotopes. The soil water migration is dominated by piston-type flow, but rarely preferential flow. Soil water from the soil lay (20–40 cm) contributed to 6–12% of plant xylem water, while soil water at the depth of 40–60 cm is the largest component (range from 60 to 66 %), soil water below 60 cm depth contributed 8–14 % to plant xylem water, and only 5–8 % is derived from precipitation.