Articles | Volume 20, issue 2
Hydrol. Earth Syst. Sci., 20, 771–785, 2016
https://doi.org/10.5194/hess-20-771-2016
Hydrol. Earth Syst. Sci., 20, 771–785, 2016
https://doi.org/10.5194/hess-20-771-2016
Research article
19 Feb 2016
Research article | 19 Feb 2016

The cost of ending groundwater overdraft on the North China Plain

Claus Davidsen et al.

Related authors

High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022,https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
River hydraulic modelling with ICEsat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Randall, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
EGUsphere, https://doi.org/10.5194/egusphere-2022-377,https://doi.org/10.5194/egusphere-2022-377, 2022
Short summary
Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021,https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021,https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Hydrology and beyond: the scientific work of August Colding revisited
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020,https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Stochastic approaches
Spatiotemporal responses of the crop water footprint and its associated benchmarks under different irrigation regimes to climate change scenarios in China
Zhiwei Yue, Xiangxiang Ji, La Zhuo, Wei Wang, Zhibin Li, and Pute Wu
Hydrol. Earth Syst. Sci., 26, 4637–4656, https://doi.org/10.5194/hess-26-4637-2022,https://doi.org/10.5194/hess-26-4637-2022, 2022
Short summary
Bridging the scale gap: obtaining high-resolution stochastic simulations of gridded daily precipitation in a future climate
Qifen Yuan, Thordis L. Thorarinsdottir, Stein Beldring, Wai Kwok Wong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 25, 5259–5275, https://doi.org/10.5194/hess-25-5259-2021,https://doi.org/10.5194/hess-25-5259-2021, 2021
Short summary
3D multiple-point geostatistical simulation of joint subsurface redox and geological architectures
Rasmus Bødker Madsen, Hyojin Kim, Anders Juhl Kallesøe, Peter B. E. Sandersen, Troels Norvin Vilhelmsen, Thomas Mejer Hansen, Anders Vest Christiansen, Ingelise Møller, and Birgitte Hansen
Hydrol. Earth Syst. Sci., 25, 2759–2787, https://doi.org/10.5194/hess-25-2759-2021,https://doi.org/10.5194/hess-25-2759-2021, 2021
Short summary
News media coverage of conflict and cooperation dynamics of water events in the Lancang–Mekong River basin
Jing Wei, Yongping Wei, Fuqiang Tian, Natalie Nott, Claire de Wit, Liying Guo, and You Lu
Hydrol. Earth Syst. Sci., 25, 1603–1615, https://doi.org/10.5194/hess-25-1603-2021,https://doi.org/10.5194/hess-25-1603-2021, 2021
Analysis of the effects of biases in ensemble streamflow prediction (ESP) forecasts on electricity production in hydropower reservoir management
Richard Arsenault and Pascal Côté
Hydrol. Earth Syst. Sci., 23, 2735–2750, https://doi.org/10.5194/hess-23-2735-2019,https://doi.org/10.5194/hess-23-2735-2019, 2019
Short summary

Cited articles

Andreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized decision-support system for water-resources planning and operational management, J. Hydrol., 177, 269–291, 1996.
Bellman, R. E.: Dynamic Programming, Princeton University Press, Princeton, NJ, USA, 1957.
Berkoff, J.: China: The South-North Water Transfer Project – is it justified?, Water Policy, 5, 1–28, 2003.
Booker, J. F., Howitt, R. E., Michelsen, A. M., and Young, R. A.: Economics and the modeling of water resources and policies, Nat. Resour. Model., 25, 168–218, 2012.
Bright, E. A., Coleman, P. R., King, A. L., and Rose, A. N.: LandScan 2007, available at: http://web.ornl.gov/sci/landscan/ (last access: 15 February 2016), 2008.
Download
Short summary
In northern China, rivers run dry and groundwater tables drop, causing economic losses for all water use sectors. We present a groundwater-surface water allocation decision support tool for cost-effective long-term recovery of an overpumped aquifer. The tool is demonstrated for a part of the North China Plain and can support the implementation of the recent China No. 1 Document in a rational and economically efficient way.