Articles | Volume 19, issue 11
https://doi.org/10.5194/hess-19-4619-2015
https://doi.org/10.5194/hess-19-4619-2015
Research article
 | 
23 Nov 2015
Research article |  | 23 Nov 2015

From runoff to rainfall: inverse rainfall–runoff modelling in a high temporal resolution

M. Herrnegger, H. P. Nachtnebel, and K. Schulz

Related authors

LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021,https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Machine-learning methods for stream water temperature prediction
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021,https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020,https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks
Frederik Kratzert, Daniel Klotz, Claire Brenner, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018,https://doi.org/10.5194/hess-22-6005-2018, 2018
Short summary
Demonstrating the “unit hydrograph” and flow routing processes involving active student participation – a university lecture experiment
Karsten Schulz, Reinhard Burgholzer, Daniel Klotz, Johannes Wesemann, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 22, 2607–2613, https://doi.org/10.5194/hess-22-2607-2018,https://doi.org/10.5194/hess-22-2607-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023,https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023,https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Changes in Mediterranean flood processes and seasonality
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023,https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745, https://doi.org/10.5194/hess-27-2725-2023,https://doi.org/10.5194/hess-27-2725-2023, 2023
Short summary
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023,https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary

Cited articles

Ahrens, B., Jasper, K., and Gurtz, J.: On ALADIN precipitation modeling and validation in an Alpine watershed, Ann. Geophys., 21, 627–637, https://doi.org/10.5194/angeo-21-627-2003, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, Rome, Italy, 1998.
Bergström, S.: The HBV model, in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highland Ranch, CO, USA, 443–476, 1995.
Bica, B., Herrnegger, M., Kann, A., and Nachtnebel, H. P.: HYDROCAST – Enhanced estimation of areal rainfallby combining a meteorological nowcasting system with a hydrological model, Final report, Austrian Academy of Science, Vienna, https://doi.org/10.1553/hydrocast2011, 2011.
BMLFUW: Hydrological Atlas of Austria, 3rd Edn., Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna, Austria, ISBN: 3-85437-250-7, 2007.
Download
Short summary
Especially in alpine catchments, areal rainfall estimates often exhibit large errors. Runoff measurements are, on the other hand, one of the most robust observations within the hydrological cycle. We therefore calculate mean catchment rainfall by inverting an HBV-type rainfall-runoff model, using runoff observations as input. The inverse model may e.g. be used to analyse rainfall conditions of extreme flood events or estimation of snowmelt contribution.