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Abstract. Rainfall exhibits a large spatio-temporal variabil-

ity, especially in complex alpine terrain. Additionally, the

density of the monitoring network in mountainous regions is

low and measurements are subjected to major errors, which

lead to significant uncertainties in areal rainfall estimates.

In contrast, the most reliable hydrological information avail-

able refers to runoff, which in the presented work is used

as input for an inverted HBV-type rainfall–runoff model that

is embedded in a root finding algorithm. For every time

step a rainfall value is determined, which results in a sim-

ulated runoff value closely matching the observed runoff.

The inverse model is applied and tested to the Schliefau and

Krems catchments, situated in the northern Austrian Alpine

foothills. The correlations between inferred rainfall and sta-

tion observations in the proximity of the catchments are of

similar magnitude compared to the correlations between sta-

tion observations and independent INCA (Integrated Now-

casting through Comprehensive Analysis) rainfall analyses

provided by the Austrian Central Institute for Meteorology

and Geodynamics (ZAMG). The cumulative precipitation

sums also show similar dynamics. The application of the in-

verse model is a promising approach to obtain additional in-

formation on mean areal rainfall. This additional information

is not solely limited to the simulated hourly data but also in-

cludes the aggregated daily rainfall rates, which show a sig-

nificantly higher correlation to the observed values. Potential

applications of the inverse model include gaining additional

information on catchment rainfall for interpolation purposes,

flood forecasting or the estimation of snowmelt contribution.

The application is limited to (smaller) catchments, which can

be represented with a lumped model setup, and to the estima-

tion of liquid rainfall.

1 Introduction

The motivation for the concept presented in this paper comes

from practical hydrological problems. Some years back we

set up rainfall–runoff models for different alpine rivers (e.g.

Stanzel et al., 2008; Nachtnebel et al., 2009a, b, 2010a, b).

In the course of these projects, we were confronted with

massive errors in the precipitation input fields. This is a

known problem, especially in alpine environments. Although

the temporal dynamics in the runoff simulations were cap-

tured quite well, significant mass balance errors between

observed and simulated runoff were found. It could be ex-

cluded that erroneous evapotranspiration calculations were

biasing the results (Herrnegger et al., 2012). In the HYDRO-

CAST project (Bica et al., 2011) we tested different precip-

itation interpolation and parameterisation schemes by using

the ensemble of generated inputs for driving a rainfall–runoff

model and comparing the simulated runoff time series with

observations. In essence, the results showed that no signifi-

cant improvements could be made in the runoff simulations

and that the information on the precipitation fields is strongly

determined and limited by the available station time series.

Runoff observations as an additional information source con-

stitute a good proxy to precipitation observations with a con-

siderably lower level of associated uncertainty. The main aim

is therefore to present a proof of concept for the inversion of

a conceptual rainfall–runoff model; that is, to show that it is

possible to use a widely applied model concept to calculate

mean areal rainfall from runoff observations.
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Table 1. Magnitude of different systematic errors in precipitation

measurements (Sevruk, 1981, 1986; Goodison et al, 1998; Elias et

al., 1993; Jacobs et al., 2006; Klemm and Wrzesinsky, 2007).

Systematic error Magnitude

Wind-induced errors 2–10 % (liquid precipitation)

10 –> 50 % (snow)

Wetting losses 2–10 %

Evaporation losses 0–4 %

Splash-out and splash-in 1–2 %

Fog and dew 4–10 %

1.1 Uncertainties in catchment precipitation

Areal or catchment precipitation estimates are fundamental,

as they represent an essential input for modelling hydrolog-

ical systems. They are however subject to manifold uncer-

tainties, since it is not possible to observe the mean catch-

ment rainfall itself (Sugawara, 1992; Valéry et al., 2009).

Catchment rainfall values are therefore generally estimated

by interpolation of point measurements, sometimes incorpo-

rating information on the spatial rainfall structure from re-

mote sensing, e.g. radar (e.g. Haiden et al., 2011). Measure-

ment, sample and model errors can be identified as sources of

uncertainty. Point observations of rainfall, which are the ba-

sis for the calculation of mean areal rainfall values, are error

inflicted (Sevruk, 1981, 1986; Goodison et al., 1998; Sevruk

and Nespor, 1998; Seibert and Moren, 1999; Wood et al.,

2000; Fekete et al., 2004). Occult precipitation forms like fog

or dew are frequently ignored. Although not generally rele-

vant, this precipitation form can be a significant contribution

to the water budget of a catchment (Elias et al., 1993; Jacobs

et al., 2006; Klemm and Wrzesinsky, 2007). The highest sys-

tematic measurement errors of over 50 % are found during

snowfall in strong wind conditions. Other sources of system-

atic measurement errors and their magnitudes are listed in

Table 1.

In complex terrain the rainfall process is characterised by

a high temporal and spatial variability. Especially in these

areas, the density of the measurement network tends to be

low, not capturing the high variability and leading to sam-

ple errors (Wood et al., 2000; Simoni et al., 2011; de Jong et

al., 2002). Further uncertainties arise in the interpolation of

catchment-scale rainfall from point observations. Systematic

and stochastic model errors of the regionalisation methods

can be identified. Systematic model errors can arise during

the regionalisation of rainfall in alpine areas, when e.g. the

elevation dependency is not considered (Haiden and Pistot-

nik, 2009). Quantitative areal rainfall estimates from radar

products are, although they contain precious information on

the rainfall structure, still afflicted with significant uncertain-

ties (Krajewski et al., 2010; Krajewski and Smith, 2002). A

general magnitude of overall uncertainty, which arises dur-

ing the generation of areal rainfall fields, is difficult to assess,

as different factors, e.g. topography, network density and re-

gionalisation method, play a role.

1.2 Uncertainties in runoff observations

Errors in runoff measurements are far from negligible (Di

Baldassarre and Montanari, 2009; McMillan et al., 2010;

Pappenberger et al., 2006; Pelletier, 1987). When applying

the rating-curve method for estimation of river discharge the

uncertainties are a function of the quality of the rating curve

and the water level measurements. The quality of the rating

curve depends on (i) the quality and stability of the measured

cross section over time, (ii) the representativeness of the ve-

locity measurements and (iii) the influence of steady and un-

steady flow conditions. According to literature the overall un-

certainty can vary in the range of 5–20 % (Di Baldassarre

and Montanari, 2009; Pelletier, 1987). Although it can be

expected that the measurement error will certainly be large

during flood events due to its dynamic features, the errors

are considerably lower compared to rainfall measurements

and to the uncertainties introduced when calculating mean

areal rainfall. It must be assumed, however, that transbound-

ary flows and groundwater flows around the gauging station

are negligible.

1.3 Catchment precipitation from runoff observations

through inverse modelling

A classical application of hydrology, the problem of repro-

ducing observed runoff with meteorological forcings as input

through a formalised representation of reality, is a forward or

direct problem. Two inverse problems related to this forward

problem can be identified (Groetsch, 1993).

1. Causation problem: determination of input I (cause),

with given output O (effect) and given model K , in-

cluding model parameters θ (process).

2. Model identification problem: determination of model

K , given input I and output O.

The model identification problem can be divided into

(i) the problem of identifying the model structure itself and

(ii) the determination of model parameters that characterise

the system (Tarantola, 2005). The focus in this contribution

lies in solving the causation problem, i.e. in the determination

of rainfall input from runoff, with a given model structure

and parameters. In the following, the model, which calculates

mean catchment rainfall values from runoff, will be called the

inverse model. The conventional model, which uses rainfall

and potential evapotranspiration as input to calculate runoff,

will be called the forward model.

Runoff from a closed catchment is the integral of rainfall

minus evapotranspiration losses and change in water stor-

age over a certain period of time. Therefore, runoff observa-

tions can be used to derive information on rainfall. This has

been done in several studies (e.g. Bica et al., 2011; Valéry et
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al., 2009, 2010; Ahrens et al., 2003; Jasper and Kaufmann,

2003; Kunstmann and Stadler, 2005; Jasper et al., 2002). The

common basis of these studies was to indirectly gain infor-

mation on catchment rainfall by comparing simulated runoff

results with observations. Hino and Hasabe (1981) fitted an

AR (autoregressive) model to daily runoff data, while assum-

ing rainfall to be white noise. By inverting the AR model

they directly generated time series of rainfall from runoff.

Vrugt et al. (2008) and Kuczera et al. (2006) derived rain-

fall multipliers or correction factors from streamflow with

the DREAM (DiffeRential Evolution Adaptive Metropo-

lis) and BATEA (BAyesian Total Error Analysis) methods;

however, these methods are computationally intensive. In a

well-received study, Kirchner (2009) analytically inverted a

single-equation rainfall–runoff model to directly infer time

series of catchment rainfall values from runoff. The Kirchner

model (when deriving the storage–discharge relationship di-

rectly from runoff data) only has a single parameter and does

not explicitly need rainfall as driving input for calibration.

Rainfall data are however needed for the determination of

rainless periods for the estimation of the sensitivity function.

Krier et al. (2012) applied the model of Kirchner (2009) to

24 small and mesoscale catchments in Luxembourg to gener-

ate areal rainfall. No systematic differences in the quality of

the rainfall estimates are found between different catchment

sizes. In periods with higher soil moisture, however, the rain-

fall simulations show a higher performance. The parsimo-

nious approach of Kirchner (2009) is limited to catchments

where discharge is determined by the volume of water in a

single storage and which can be characterized as simple first-

order nonlinear dynamical systems. Also due to the larger

number of model parameters describing several linked stor-

ages, accounting for a variety of different runoff components,

HBV-type conceptual models offer higher degrees of free-

dom and flexibility in the calibration procedure. They can, in

consequence, be applied to catchments with a wider range of

runoff characteristics (Bergström, 1995; Kling et al., 2015;

Kling, 2006; Perrin et al., 2001). Therefore, in this study,

the conceptual rainfall–runoff model COSERO (COntinuous

SEmi-distributed RunOff Model; Nachtnebel et al., 1993;

Eder et al., 2005; Kling and Nachtnebel, 2009; Herrnegger

et al., 2012; Kling et al., 2015; among others), which in its

structure is similar to the HBV model, is used as a basis for

the inverse model. The COSERO model has been frequently

applied in research studies and in engineering projects (see

Kling et al., 2015 for details).

This paper is organised as follows: following this intro-

duction the Methods section describes the conventional con-

ceptual rainfall–runoff model (forward model) and the in-

verse model, including the preconditions and limitations of

its application. The concept of virtual experiments to test the

invertibility of the inverse model and to analyse the effects

of errors in the discharge measurements on the inverse rain-

fall simulations are presented. Additionally, the setup of dif-

ferent simulation experiments, e.g. to evaluate the influence

Figure 1. Structure, parameters and states of the forward model.

of differing calibration periods or possible runoff measure-

ment errors on the simulations, are explained. The inverse

model is applied to two headwater catchments in the foothills

of the northern Austrian Alps, with differing hydro-climatic

and physical conditions. The catchments and the database,

including the calibration periods for the simulation experi-

ments, are presented. The runoff simulations of the forward

model and the rainfall simulations of the inverse model are

described in detail in the results and discussion section. Fi-

nally, the paper ends with a summary and outlook.

2 Methods

2.1 Forward model (rainfall–runoff model)

In the state-space-formulated forward model, the unknown

runoffQt is a function f of the known variables rainfall input

Rt , potential evapotranspiration ETpt
, system states St−1 and

a set of model parameters θi , whereas the index t denotes

time:

Qt = f (Rt ,ETpt
,St−1|θi). (1)

The rainfall–runoff model is based on the COSERO model

(see introduction for references) but has a simpler model

structure. It includes an interception and soil module and

three reservoirs for interflow, baseflow and routing. The

model structure is shown in Fig. 1, model parameters are

summarised in Table 2 and fluxes and system states in Ta-

ble 3.

The COSERO model is formulated in a state space ap-

proach, with state transition functions,

St = f (St−1,It |θi), (2)
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Table 2. Model parameters θi . Parameters in italics are calibrated.

Parameter Units Range Description

INTMAX mm 0.5–2.5 Interception storage capacity

M mm 80–250 Soil storage capacity

FKFAK – 0.5–1 Critical soil moisture for actual evapotranspiration

ETVEGCOR – 0.4–1.1 Vegetation correction factor for actual evapotranspiration from soil

BETA – 0.1–10 Exponent for computing fast runoff generation

KBF h 4000–12 000 Recession coefficient for percolation from soil module

PEX2 – 5–25 Parameter for nonlinear percolation

TAB2 h 50–500 Recession coefficient for interflow

TVS2 h 50–500 Recession coefficient for percolation from interflow reservoir

H2 mm 0–25 Outlet height for interflow

TAB3 h 1000–5000 Recession coefficient for baseflow

TAB4 h 0.05–10 Recession coefficient for routing

Table 3. Model fluxes and system states Si . Fluxes represent sums

over the time step.

Variable Units Type Description

R mm Input Rainfall

ETp mm Input Potential evapotranspiration

ETI mm Output Actual evapotranspiration

from interception module

ETG mm Output Actual evapotranspiration

from soil module

BWI mm State Water stored in

interception module

BW0
mm State Water stored in soil module

BW2
mm State Water stored

in interflow reservoir

BW3
mm State Water stored

in baseflow reservoir

BW4
mm State Water stored

in routing reservoir

R_Soil mm Internal flux Input into soil module

Q1 mm Internal flux Fast runoff from soil module

Q2 mm Internal flux Percolation from soil module

QAB2 mm Internal flux Interflow

QVS2 mm Internal flux Percolation from

interflow reservoir

QAB3 mm Internal flux Baseflow

Qsim mm Output Total runoff

and output functions,

Ot = g(St−1,It |θi), (3)

where

– It represents input, e.g. rainfall,

– Ot represents output, e.g. total runoff,

– St represents system states, e.g. water stored in soil

module,

– θi represents model parameters.

So, the model state and the output at time t depend only

and exclusively on the previous state St−1, the inputs It
and parameters θi . The simplified model formulation can be

found in the Appendix.

2.2 Inverse model (runoff–rainfall model)

In the inverse model the unknown rainfall Rt is a function of

runoff Qt , potential evapotranspiration ETpt
, system states

St−1 and a given set of model parameters θi , where again the

index t denotes time:

Rt = f
−1(Qt ,ETpt

,St−1|θi). (4)

If Eq. (4) is invertible and given ETpt
, St−1 and θi , there is

only one single input It , which results in an outputOt (Eq. 3).

To calculate the inverse rainfall rate the forward model is em-

bedded in a search algorithm to find, for every time step t , the

rainfall rate Rt that best fits the observed runoff:

f (Rt )=Qsimt (Rt ,ETpt
,St−1|θi)−Qobst ≤ ε, (5)

with

Rt,min ≤ Rt <Rt,max. (6)

The upper and lower brackets of rainfall (Rt,min and

Rt,max) are set to 0 and 50 mm h−1. The value of the upper

bound is an arbitrary value, but any reasonable bounds can

be applied. Qsimt and Qobst are the simulated and observed

runoff, respectively. ε denotes a small value, which is ideally

zero.

Solving Eq. (5), which reflects the objective function used

in the search algorithm, is basically a root finding problem.

Different root finding algorithms were tested, with the Van

Wijngaarden–Dekker–Brent method (Brent, 1973; Press et

al., 1992) being the method of choice, as it exhibited the
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Figure 2. Illustration of the iteration progress for one model time step. Note that the right y axis showing the inverse rainfall values (R) is in

a logarithmic scale (units in mm h−1).

fastest results. The Brent method combines root bracket-

ing, bisection and inverse quadratic interpolation to converge

from the neighbourhood of a zero crossing and will always

converge, as long as the function can be evaluated within

the initial defined interval (in our case Rt,min and Rt,max)

known to contain a root (Press et al., 1992). The iteration

progress for one model time step is illustrated in Fig. 2. The

left y axis shows the objective function values and the right

y axis (in logarithmic scale) the associated rainfall values es-

timated during the iteration procedure.

The state space approach of the model is a first-order

Markov process: the system states St and outputs Ot of the

calculation time step depend only on the preceding states

St−1 and some inputs It and not on the sequences of system

states that preceded it, e.g. St−2, St−3, . . . , St−n (see Eqs. 2

and 3). All information of the sequence of the preceding in-

puts (It−1, It−2, . . . , It−n) is implicitly included in the last

relevant system state St−1. No hysteretic effects are consid-

ered in the model and it does not include a parameter which

introduces a lag effect between inputs and outputs.

Given the model structure, parameters and potential evap-

otranspiration as input, the inverse rainfall and resulting

runoff are solely a function of the initial cold system states.

The influence of the initial cold system states on the inverse

rainfall calculation is analysed in the results section.

The determined rainfall value Rt represents the “best”-

simulated rainfall of the catchment and is also used as in-

put into the forward model to simulate runoff. Therefore, for

every time step, the inverse model simulates a rainfall and

corresponding runoff value and also resulting system states.

The simulated runoff value should ideally be identical to the

observed value. This is however not always the case, as will

be shown later.

A more elegant method to calculate rainfall from runoff

is by analytically inverting the equations of a given model,

i.e. bringing the rainfall term onto the right side of the equa-

tion. In Herrnegger (2013) this method was presented but

showed some disadvantages. The model structure, which was

used in Herrnegger (2013) and which can be inverted ana-

lytically, differs from the model presented here. It does not

include interception and routing. Additionally, the inversion

is not possible in certain periods, since the discontinuities in-

troduced by threshold values lead to noninvertibility in the

analytical solution. The precondition that the rainfall–runoff

model is invertible is violated in certain periods. For the for-

ward model used here, an internal time step discretization is

included in the model code to guarantee that the transition

between system states above and below the threshold value

within a time step are solved exactly. This is not possible in

the analytical solution presented in Herrnegger (2013), since

no internal time step discretization can be implemented.

Preconditions and limitations of the application of the

inverse model

It is assumed that runoff from the catchment passes through

the measurement cross section of the gauging station and that

subsurface and transboundary flows are negligible. It is diffi-

cult to apply the inverse model to leaky catchments or catch-

ments where a significant part of the runoff is not observed

at the gauging site. Even with a given quantification of the

leakage process, the application of the inverse model would

lead to an additional uncertainty difficult to quantify. Since a

novel approach is presented, it is also reasonable to exclude

this possible source of error at this point. This is however not

necessarily a limitation of the inverse model. Also, the appli-

cation of a forward hydrological model, which needs to be

calibrated against runoff observations, will fail or will result

in wrong estimates of water balance components.

The inverse model is based on a lumped model setup and

the resulting inverse rainfall value corresponds to the mean

areal rainfall. Applying a spatially distributed model is not

possible, since the origin of outputs of different zones or cells

of a distributed model setup cannot be reproduced by the

inverse model in a deterministic way without additional as-

sumptions. The information of origin gets lost as soon as cell

values are summed and routed to a catchment runoff value.

It is however conceivable to spatially disaggregate the mean
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areal rainfall from the inverse model using additional infor-

mation, e.g. assuming an elevation dependency on rainfall.

Solid precipitation is accumulated without any direct sig-

nal on the hydrograph. It is therefore impossible to use the

inverse model to estimate solid precipitation. The inverse

model can only be used to calculate rainfall in snow-free

catchments or, as in our case, periods in which runoff is not

influenced by snowmelt (i.e. summer months). However, in

rainless periods, where it is clear that snowmelt is dominat-

ing runoff (e.g. in spring), the inverse model can be used to

quantify snowmelt rates from a catchment.

The applicability of the inverse model is limited to catch-

ments which are representable with a lumped model setup

and the proposed model structure. If a catchment is too large,

it will be generally difficult to simulate that system with a

lumped model setup – not necessarily because of neglecting

spatial heterogeneity in the model parameters (although this

may also be an issue) or ignoring a lag between the rainfall

and runoff signal, but simply because the lumped rainfall in-

put used is “wrong” and is not representable for the whole

catchment. If it only rains in the headwaters of a large catch-

ment, the lumped input into the forward model for this time

step or rainfall event will be much lower, since it will be spa-

tially aggregated. This input is not applicable to the whole

catchment and the simulations will show deficits. In this case,

an inversion will be highly flawed. This consideration is in-

dependent of the fact that the sampling of rainfall fields in

larger catchments tends to be statistically better compared to

smaller catchments, where observations are rarer.

It is also clear that catchments, independent of size, exist

where the application of this particular model structure will

fail (e.g. flatland catchments dominated by groundwater).

If hydro-meteorological conditions of the catchment change

or are different from the calibration period and the forward

model (e.g. due to poor parameter estimation, inadequate

model structure and wrong representation of the real world

prototype) is not able to capture these changes, then again

the calculation of rainfall from runoff will fail (as they do

for the forward case). However, if the forward model can be

fitted to the observed runoff data and as long as the forward

model is able to represent the catchment responses to rainfall,

an inversion will be possible.

2.3 Simulation setups

2.3.1 Virtual experiments

In a first step the inverse model is evaluated and tested with

virtual experiments, in order to guarantee that the model

equations are invertible. Runoff simulations are performed

with the forward model driven by observed rainfall as in-

put. The simulated runoff time series of the forward models

are then used as input into the inverse model, with the aim

to reproduce the observed rainfall. Simulated runoff from the

forward model is dependent on the model parameters. There-

Figure 3. Setup of the virtual experiments and evaluation of the

inverse model. All variables are calculated for every Monte Carlo

run in which parameters θ are varied.

fore, to test the inversion procedure for the whole parameter

range, synthetic hydrographs are produced with Monte Carlo

simulations. A total of 20 000 different parameter combina-

tions are chosen randomly from the parameter space, with the

same number of model runs to evaluate the inverse model.

The sampled parameters and associated range are shown in

Table 2. The schematic setup of the virtual experiment and

the evaluation of the inverse model is shown in Fig. 3. Note

that the setup and the evaluation is performed for every in-

dividual Monte Carlo run, as the simulated runoff from the

forward model varies depending on selected model parame-

ters.

All system states and fluxes of the forward model are per-

fectly known at every time step. This information is used

to evaluate the inverse model by calculating the bias be-

tween forward and inverse simulation result of system states

and fluxes. Only after a successful evaluation of the in-

verse model with the virtual experiments can observations

of runoff be used as input into the inverse models.

Additionally, virtual experiments are performed, in which

random noise drawn from a zero-mean normal distribution

and rescaled to represent a range of measurement errors is

added to a runoff simulation of the forward model. These

time series are then used as input into the inverse model to

test the sensitivity of the inferred precipitation rates to short-

term errors in the discharge measurements:

Q_FNi,t =Q_Ft +Q_FtN
(
µ,σ 2

)
αi, (7)

with

– Q_FNi,t as noisy input into inverse model,

Hydrol. Earth Syst. Sci., 19, 4619–4639, 2015 www.hydrol-earth-syst-sci.net/19/4619/2015/
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– Q_Ft as forward simulated runoff based on observed

precipitation,

– N(µ,σ 2) as normal distribution with mean µ= 0 and

standard deviation σ 2
= 1,

– αi as noise scaling factor: 0, 1, 2, 5 and 10 %.

2.3.2 Model calibration and simulations experiments

with observed data

The application of the inverse model is based on the assump-

tion that the forward model can represent the catchment re-

sponses to rainfall. The forward model is therefore calibrated

against runoff observations, using observed rainfall values.

The calibration setup and in consequence model parameters

(for a given model structure) can depend on (i) the calibra-

tion period and length and (ii) the driving input used. The in-

verse rainfall is also a function of the observed runoff, which

may also exhibit possible measurement errors. Finally, the

initial conditions of the system states at the beginning of

the simulations also influence not only the results of the for-

ward model but also those of the inverse model. To evaluate

these influences, i.e. different model parameters due to dif-

ferent calibration periods and lengths, different runoff obser-

vations, different parameter optimisation databases and dif-

ferent initial conditions, several simulation experiments are

performed. An overview table of the simulation experiments

can be found in Sect. 3.3 after the presentation of the avail-

able data. In addition to the calibration period, all simulation

experiments include independent validation periods, which

allow testing the inverse model in periods in which no ob-

served rainfall was used.

In a first step three different periods are used for calibra-

tion of the model parameters. In a further simulation exper-

iment, the runoff observation is increased by a constant off-

set of 10 % to evaluate the influence of possible systematic

streamflow errors on the simulations and the inverse rainfall.

A fifth experiment is performed, in which an independent

rainfall realisation is used as driving input for model calibra-

tion, in order to test the conditioning of the model parame-

ters and in consequence the simulations to the driving input.

Given the model structure, the inverse rainfall is a function of

observed runoff, potential evapotranspiration, system states

and model parameters (Eq. 4). Extending Eq. (4) explicitly

with all relevant system states leads to

Rt =f
−1(Qt ,ETpt

,BWIt−1
,BW0t−1

, (8)

BW2t−1
,BW3t−1

,BW4t−1
|θi).

The forward and inverse models are run as a continuous

simulation in time. The preceding system states are therefore

an integral part of the simulation and are determined intrinsi-

cally within the simulation. However, the initial system states

at the beginning of the simulation period (cold states) will

influence the results of the simulation and should, after an

adequate spin-up time, not influence the runoff but also in-

verse rainfall simulations. Therefore, a sixth experiment was

set up, in which three strongly differing cold start scenarios

are defined:

– reference scenario,

– dry system states scenario,

– wet system states scenario.

For the reference scenario the system states from the con-

tinuous simulation were used. For the cold states, in the dry

scenario the states from the reference scenario were reduced

by a factor of 0.5 and increased by a factor of 1.5 for the wet

scenario.

The simulation experiments do not allow for a systematic

analysis of parameter uncertainty, since this is not the aim

of this paper. The simulation experiments however enable a

first assessment of the robustness of the results and to eval-

uate the forward and inverse model performance, when the

conditions are different from the conditions the model has

been calibrated against (i.e. validation period) or if different

driving inputs are used.

The model structure applied includes 12 parameters, of

which 10 have to be calibrated. Two parameters (INTMAX

and ETVEGCOR) are estimated a priori (see Table 2). The

interception storage is represented by the model parame-

ter INTMAX, which is estimated as a function of the land

use and month of year to consider changes of interception

within the annual cycle. ETVEGCOR, comparable to the

widely used crop coefficient (Allen et al., 1998), is also esti-

mated depending on the month of year and land use. Values

for INTMAX and ETVEGCOR can be found in Herrneg-

ger et al. (2012). For the application, monthly INTMAX and

ETVEGCOR values were calculated as area-weighted mean

values, depending on the land uses in the catchments, since

a lumped setup is used. For the implementation of the evap-

otranspiration calculations in the model the reader is also re-

ferred to Kling et al. (2015).

Generally only June, July, August and September are used,

since it can be guaranteed that no snowmelt influences runoff

in these months (see Sect. 2.2.1). Parameter calibration in the

simulation experiments is performed for the forward model,

using the shuffled complex evolution algorithm (Duan et al.,

1992). As an optimisation criterion the widely used Nash–

Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) was cho-

sen.

3 Materials

3.1 Study areas

The inverse model is applied to two catchments with dif-

ferent size, geology and land use located at the foothills of

the northern Alps. The Schliefau catchment is located about
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Figure 4. Schliefau and Krems catchments and location of mete-

orological stations. Note that ground observation of rainfall is not

part of the INCA stations network.

Table 4. Characteristics of the study catchments (BMLFUW, 2007;

BMLFUW, 2009).

Schliefau Krems

Basin area (km2) 17.9 38.4

Mean elevation (m) 608 598

Elevation range (m) 390–818 413–1511

Mean annual precipitation (mm) 1390 1345

Mean annual runoff (m3 s−1) 0.38 1.12

110 km south-west of the Austrian capital of Vienna and cov-

ers an area of 17.9 km2 with a mean elevation of 608 m a.s.l.

About 55 % of the area is covered by grassland and mead-

ows, 40 % by coniferous forest and 5 % by mixed forest. The

underlying geology is dominated by marl and sandstone. The

Krems catchment is located about 170 km south-west of Vi-

enna and covers an area of 38.4 km2 with a mean elevation

of 598 m a.s.l. The topography is more heterogeneous, with

an elevation range of 413–1511 m a.s.l., compared to 390–

818 m a.s.l. in the Schliefau catchment. Approximately 46 %

of the area is covered by grassland and meadows, 48 % by

mixed forest, 4 % by settlements and 2 % by coniferous for-

est. On a long-term basis, in both catchments, the highest

runoff can be expected during snowmelt in spring, the lowest

runoff in summer and autumn until October. Figure 4 shows

a map of the catchments and Table 4 summarises important

characteristics of the study areas.

3.2 Meteorological database

Generally, two different rainfall time series are used. Ground

observations of rainfall are available from the station

St. Leonhard am Walde (Schliefau catchment) and Kirch-

dorf (Krems catchment), both located in the proximity of the

catchments (Fig. 4). Additionally, areal rainfall data from the

INCA system (Integrated Nowcasting through Comprehen-

sive Analysis; Haiden et al., 2011) are used. INCA is the op-

erational nowcasting and analysis application developed and

run by the Central Institute for Meteorology and Geodynam-

ics of Austria (ZAMG); it is also used for the majority of

real-time flood forecasting systems in Austria (Stanzel et al.,

2008). For the present study, analysis fields derived from ob-

servations are used (nowcasting fields are not used). Rainfall

in INCA is determined by a nonlinear spatial interpolation

of rain-gauge values, in which the radar field is used as a

spatial structure function. In addition an elevation correction

is applied (Haiden and Pistotnik, 2009). The stations used

for the interpolation of the INCA-rainfall fields are shown

as triangles in Fig. 4. Note that the stations St. Leonhard am

Walde and Kirchdorf are not included in the INCA analysis,

since they are operated by a different institution. The rain-

fall fields from the INCA system cover the test basins in a

spatial resolution of 1 km2. From the spatial data set, mean

catchment rainfall values are obtained by calculating area-

weighted means from the intersecting grid cells.

Potential evapotranspiration input is calculated with a tem-

perature and potential radiation method (Hargreaves and

Samani, 1982).

3.3 Simulation periods

Runoff and rainfall data are available for the period 2006–

2009 in a temporal resolution of 60 min, which is also the

modelling time step. The virtual experiments are performed

for a period of 4.5 months (15 May–30 September 2006) re-

sulting in 3336 time steps being evaluated. As described in

Sect. 2.3.2, different model calibration and simulation exper-

iments are performed. An overview of these experiments is

given in Table 5.

4 Results and discussions

4.1 Virtual experiments

In the virtual experiments it could be shown that the invert-

ibility of the model equations is given. Using all 20 000 sim-

ulated hydrographs from the Monte Carlo runs, where the

parameters were varied stochastically, the observed rainfall

time series could be identically reproduced by the inverse

model. In addition to the rainfall, all fluxes and system states

were also identical in the forward and inverse model runs.

For the second set of virtual experiments, station data from

the Schliefau catchment with model parameters of Exp3 (see

Table 5) were used as driving input in the forward model, and

the resulting runoff simulation was used as input into the in-

verse model. To these resulting runoff simulations, however,

noise with different magnitudes was added beforehand.

Depending on the magnitude of noise added to the runoff

input time series, the inferred precipitation rates differ from

the observed values, as is shown in Table 6. Without any

Hydrol. Earth Syst. Sci., 19, 4619–4639, 2015 www.hydrol-earth-syst-sci.net/19/4619/2015/



M. Herrnegger et al.: Inverse rainfall–runoff modelling in a high temporal resolution 4627

Table 5. Overview of the model calibration and simulations experiments with observed input data. Pobs and PInca refer to the rainfall from

the station observations and the INCA system.

Jun–Sep in year Driving input Purpose

2006 2007 2008 2009 (forward/inverse model)

Exp1 calib. valid. valid. valid. Pobs/Q Influence of different calibration periods

Exp2 calib. calib. valid. valid. Pobs/Q on simulations

Exp3 calib. calib. calib. valid. Pobs/Q

Exp4 calib. calib. calib. valid. Pobs/Q+ 10 % Influence of different runoff Q on simulations

Exp5 calib. calib. calib. valid. PInca/Q Influence of different rainfall input on simulations

Exp6 Parameters from Exp3, Pobs/Q Influence of cold states on simulations

but different initial conditions

Table 6. Correlation (CORR), mean bias and mean squared error (MSE) for different temporal aggregation lengths between observed and

inferred precipitation of the virtual experiments in which different magnitudes of noise were added to the input runoff data. These are

indicated with the noise scaling factor.

Noise scaling factor CORR (–) Mean bias (mm) MSE (mm2)

1 h sums 6 h sums 24 h sums 1 h sums 6 h sums 24 h sums 1 h sums 6 h sums 24 h sums

0 % 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

1 % 0.994 0.999 1.000 −0.001 −0.007 −0.028 0.011 0.016 0.015

2 % 0.982 0.998 1.000 −0.003 −0.015 −0.060 0.034 0.051 0.043

5 % 0.921 0.991 0.999 −0.007 −0.040 −0.160 0.154 0.300 0.230

10 % 0.819 0.977 0.998 −0.013 −0.079 −0.316 0.408 0.770 0.556

noise the observed rainfall is reproduced exactly. With in-

creasing noise a deterioration of the model performance is

evident. Temporal aggregation leads to an increase in the cor-

relation values, since the resulting noise in the inferred pre-

cipitation rates are smoothed out. The mean observed pre-

cipitation rate for the evaluated period in these virtual exper-

iments is 0.21 mm for hourly precipitation, 1.26 mm for the

6 h sums and 5.03 mm for the daily precipitation rates. Based

on these values, the mean quantitative bias ranges between

−0.6 and −6.3 % relative to the mean observed rainfall, de-

pending on the added noise scaling factor of 1–10 %. The

inferred precipitation totals are higher, compared to the ob-

served values, since the noise also leads to a quantitative bias

between the runoff simulation of the inverse model and the

runoff used as input. From the results it is clear that the in-

ferred precipitation rates are sensitive to potential short-term

errors in discharge measurements. Especially for the case in

which the noise scaling factor was set to 10 %, assuming

large short-term errors, the inverse model is not able to re-

produce the disturbed input time series. This is also evident

from the mean squared error values. The noise with a scaling

factor of 10 %, however, leads to a strongly perturbed runoff

time series. Also the forward model would not be able to re-

produce this runoff time series with the given precipitation in

a reasonable manner.

4.2 Forward model: parameter calibration and

validation of the different simulation experiments

A precondition for the application of the inverse model is

that the observed runoff characteristics of the catchment be

reproduced reasonably by the forward model, since these pa-

rameters are also used in the inverse model. The following

section therefore presents the runoff simulations of the for-

ward model, based on the different simulation experiments

Exp1–Exp5.

The model performance for different periods of the for-

ward model, expressed by NSE and the mean bias between

simulated and observed runoff in percent of observed runoff

is shown in Table 7. As mentioned before, only the months

June, July, August and September of the single years are

used.

With the exception of Exp5, the NSE values of the cali-

bration periods are larger than 0.8 in both catchments. The

highest NSE values of 0.87 (Schliefau) and 0.88 (Krems)

are found for Exp1. The short calibration period used in this

experiment (only June–September 2006 are used; see Ta-

ble 5) enables a good fitting of the model parameters to the

runoff observations. In consequence the largest deterioration

of the model performance in the validation period is evident

for Exp1 for both catchments, since runoff conditions differ

from calibration. For the other experiments the differences
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Table 7. Model performance for the different simulation experiments and the two catchments of the forward model, expressed by NSE and

the mean bias between simulated and observed runoff in percent of observed runoff for different periods. Only the months June–September

are evaluated.

NSE (–) mean Bias (%)

Calib. Valid. 2006–2009 Calib. Valid. 2006–2009

S
ch

li
ef

au

Exp1 0.872 0.814 0.822 4.8 8.7 7.8

Exp2 0.858 0.819 0.832 11.4 −0.8 3.9

Exp3 0.812 0.837 0.828 1.5 0.1 0.9

Exp4 0.814 0.840 0.830 −4.4 −8.3 −5.9

Exp5 0.738 0.715 0.728 2.1 −4.9 −0.6

K
re

m
s

Exp1 0.879 0.740 0.763 −9.4 1.2 −1.4

Exp2 0.849 0.851 0.851 −0.3 −8.6 −4.8

Exp3 0.842 0.855 0.851 −3.2 −8.0 −4.8

Exp4 0.845 0.859 0.854 −6.1 −11.5 −7.9

Exp5 0.748 0.815 0.787 3.7 -2.8 1.5

Figure 5. Nash–Sutcliffe efficiency (NSE) of the forward model for

the calibration periods versus single years for the two study areas.

in the NSE values between calibration and validation pe-

riods are less pronounced, with some experiments showing

higher model performance in the validation period. In Exp5

INCA rainfall data are used as driving input for the simula-

tions. The main intention of Exp5 is to evaluate the influence

of a different rainfall input on the calibration of the model

parameters and in consequence also on the inverse rainfall.

For both catchments, the NSE values of the forward model

are mostly significantly lower, also compared to Exp3 which

has the same calibration and validation periods. Although

INCA uses a complex interpolation scheme, also incorpo-

rating radar data and a rainfall-intensity-dependent elevation

correction (Haiden et al., 2011; Haiden and Pistotnik, 2009),

it seems that the data set has deficits representing catchment

rainfall compared to the station observations in the proxim-

ity of the catchments. This can be explained by the larger

distance of about 10–35 km of the INCA stations from the

catchment (see Fig. 4). Note that the ground observations in

the proximity of the catchments are not used in the interpo-

lation process for the INCA-rainfall fields, as they belong to

a monitoring network operated by a different institution.

For Exp1–Exp3, the NSE-values for the period 2006–2009

show that the overall model performance is fairly stable and

comparable, independent of the calibration length. The NSE

values are larger than 0.82, with the exception of Exp1 in the

Krems catchment. Although the calibration lengths and peri-

ods in Exp2 and Exp3 differ, identical model parameters were

found for the Krems catchment in the optimisation for both

simulation experiments. As a consequence the model perfor-

mance is identical in these two experiments for the period

2006–2009.

The mean bias does not show a clear pattern and seems

to be independent from the calibration period and length.

In the Schliefau catchment observed runoff is overestimated

by 7.8–0.9 % and underestimated by −1.4 to −4.8 % in the

Krems catchment for the period 2006–2009, depending on

the simulation Exp1–Exp3. Overall, the calculated bias be-

tween observed and simulated runoff is in reasonable bounds.

In Exp4 the observed runoff is increased by 10 %, mainly

to evaluate the influence of possible streamflow errors on the

simulations and the inverse rainfall. The same calibration pe-

riods were used as in Exp3, with station observations as driv-

ing input into the model. The NSE of Exp4 is comparable to

Exp1, Exp2 and Exp3. The mean bias in Exp4 however be-

comes larger in both catchments. The observed runoff is now

also underestimated in the Schliefau catchment, what is not

surprising since observed runoff was increased.

Figure 5 shows the NSE values of the forward model for

the calibration periods of every simulation experiment versus

the single year’s performance for the two study areas.

For Exp1 a significant larger spread in the model perfor-

mance within the single years is evident. In Exp1 only 2006

was used for calibration. As a consequence, especially for

the Krems catchment, the model performance is lower in the

years 2007–2009, compared to Exp2 and Exp3. In the short

calibration period of 2006 the model parameters are overfit-

ted to the observations. If the conditions in the catchment are
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Figure 6. Schliefau catchment: observed (black points) and simulated (red) runoff of Exp2.

Figure 7. Krems catchment: observed (black points) and simulated (red) runoff of Exp2.

different from the calibration period, the model performance

can be expected to deteriorate, as has been shown before (e.g.

Kling, 2015; Seibert, 2003), and explains the findings. How-

ever, for Exp2–Exp4 the model performance is stable for the

single years, as for 2009, which was not used for calibration

in any simulation experiment. In contrast to the Krems area,

a large spread in the model performance of the single years

for Exp5 is visible in the Schliefau catchment. The reason

is not clear and may be explained by the changing availabil-

ity of station data for the INCA rainfall in the single years.

We can, however, not verify this hypothesis, since we do not

have access to the data sets. In the Schliefau catchment low

NSE values are calculated for the year 2008 for all simula-

tion experiments. In the beginning of June a flood was ob-

served (Fig. 6), which is not simulated in the model runs and

explains the lower NSE values in this year. Excluding this

event in the performance calculations would result in a sig-

nificantly higher NSE of 0.84 for Exp1 for the year 2008,

compared to 0.63 when the flood event is included in the cal-

culation.

Figures 6 (Schliefau) and 7 (Krems) exemplarily show the

runoff simulations based on the results of Exp2. For both

catchments, the dynamics and variability of the runoff ob-

servations are mostly reproduced in a satisfactory manner.

However, a tendency is visible, which is that larger floods

are underestimated in the simulations.

All simulations are performed with a lumped model setup.

Consequently, heterogeneity in geology and land use within

the catchment are not considered in the parameter estimation.

Also taking this into consideration, it can be concluded that

the general responses of the catchment to rainfall input are

captured appropriately by the forward model. Only for Exp1,

with the very short calibration period, is a larger deteriora-

tion of the model performance in the validation period and a

larger spread in independent years evident. It is therefore jus-

tified to calculate areal rainfall from runoff using the inverted

forward model, including the optimised parameters.
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Figure 8. Schliefau catchment: cumulative rainfall curves for observed rainfall (Pobs), INCA rainfall (PInca) and the inverse rainfall of

Exp1–Exp5 (Pinv). Cumulative sums of observed runoff are shown as dashed black lines.

Figure 9. Krems catchment: cumulative rainfall curves for observed rainfall (Pobs), INCA rainfall (PInca) and the inverse rainfall of Exp1–

Exp5. Cumulative sums of observed runoff are shown as dotted black lines.

4.3 Inverse model

For the evaluation of the simulated rainfall from the inverse

model (Pinv) we will compare the calculated values with ob-

served station data (Pobs) of St. Leonhard (Schliefau catch-

ment) and Kirchdorf (Krems catchment) and the rainfall val-

ues from the INCA-system (PInca). In the following, cumula-

tive rainfall sums and the correlation and bias between sim-

ulated and observed rainfall are presented. Additionally, the

rainfall and runoff simulations of a flood event and the influ-

ence of cold system states on the simulations are shown.

4.3.1 Cumulative rainfall sums

Figures 8 and 9 show the cumulative curves of the observed

rainfall (Pobs), INCA rainfall (PInca) and the inverse rain-

fall (Pinv) of the simulation experiments Exp1–Exp5 for the

Schliefau and Krems catchments. Additionally, the cumula-

tive observed runoff (Qobs) is shown as a dashed line. Note

that for the Krems catchment (Fig. 9) the rainfall curves of

Exp2 and Exp3 are identical, since the model parameters are

also identical in these simulation experiments.

The cumulative sums of the inverse rainfall and the

observation-based rainfall realisations Pobs and PInca mostly

show very similar temporal dynamics. Although large devi-

ations are sometimes evident for both catchments, the de-

viations of the cumulative curves of PInca and the different

inverse rainfalls (Pinv) from the cumulative curves of the

ground observation (Pobs) are mostly of similar magnitude.

The inverse rainfall curves of Exp1–Exp5 of the two catch-

ments do not exhibit substantial differences, although dif-

ferent calibration periods and setups were used. At the be-

ginning of June 2008 a flood was observed in the Schliefau

catchment, which was underestimated in the forward sim-

ulation presumably due to inadequate representation of the

storm event in the rainfall observations (see runoff simula-

Hydrol. Earth Syst. Sci., 19, 4619–4639, 2015 www.hydrol-earth-syst-sci.net/19/4619/2015/



M. Herrnegger et al.: Inverse rainfall–runoff modelling in a high temporal resolution 4631

Table 8. Correlation between different rainfall realisations, evaluated for different periods and for 1 h and 24 h sums. (Pobs: ground observa-

tion, Pinv: inverse rainfall from Exp1 to Exp5, PInca: INCA rainfall).

CORR: 1 h sums CORR: 24 h sums

Pobs–Pinv PInca–Pinv Pobs–PInca Pobs–Pinv PInca–Pinv Pobs–PInca

Calib. Valid. 2006–2009 2006–2009 2006–2009 Calib. Valid. 2006–2009 2006–2009 2006–2009

S
ch

li
ef

au

Exp1 0.706 0.460 0.504 0.251 0.463 0.935 0.857 0.871 0.802 0.928

Exp2 0.572 0.540 0.549 0.290 0.939 0.895 0.914 0.840

Exp3 0.515 0.567 0.534 0.284 0.913 0.929 0.918 0.845

Exp4 0.515 0.558 0.530 0.283 0.910 0.928 0.917 0.843

Exp5 0.514 0.545 0.524 0.276 0.916 0.927 0.920 0.842

K
re

m
s

Exp1 0.622 0.430 0.478 0.394 0.469 0.880 0.871 0.871 0.847 0.931

Exp2 0.437 0.602 0.517 0.445 0.907 0.910 0.909 0.889

Exp3 0.493 0.581 0.517 0.445 0.896 0.936 0.909 0.889

Exp4 0.494 0.577 0.517 0.445 0.896 0.936 0.909 0.892

Exp5 0.473 0.593 0.503 0.445 0.884 0.936 0.901 0.888

tion in Fig. 6, lower left). Larger rainfall intensities are there-

fore calculated by the inverse for this period, leading to the

larger deviations between the cumulative sums of Pobs and

Pinv of Exp1–Exp5 as shown in Fig. 8 (lower left). In the

Schliefau catchments larger differences between Exp1 and

Exp5 occur in the year 2009 (Fig. 8, lower right). Here, in

the second half of June, a period of strong rainfall is evident,

which also led to a series of floods in the catchment (see

also the hydrographs in Fig. 6). The rainfall sums originat-

ing from these high flows were calculated differently in the

inverse models, depending on the simulation experiment. In

consequence, the inverse rainfall curves differ from July on-

wards. In 2009, which was the wettest summer in both catch-

ments, the highest inverse rainfall sums were found for Exp4.

This is what could be expected, since the observed runoff

was increased by 10 % in this simulation experiment. How-

ever, in the other years Exp4 does not necessarily show the

largest inverse rainfall sums. The optimised model parame-

ters in Exp4, which control evapotranspiration, were limiting

actual evapotranspiration from the model to fulfil the water

balance, since Pobs was not changed. In the second half of

June 2009, however, during the flood events with low evap-

otranspiration, the higher runoff values used as input show a

clearer signal in the inverse rainfall sums.

The large difference between cumulative rainfall and

runoff curves highlight the importance of actual evapotran-

spiration (ETa) in the catchments. For the Schliefau catch-

ment the mean observed rainfall for the summer months of

2006–2009 is 678 mm, and 266 mm are observed in the mean

for runoff. Neglecting storage effects, a mean actual evap-

otranspiration of 412 mm can be calculated from the water

balance. Over 60 % of rainfall is therefore lost to evapotran-

spiration. The mean actual evapotranspiration from the in-

verse model, depending on the simulation experiment, ranges

from 352 to 362 mm and is lower compared to the ETa calcu-

lated from the water balance. In the Krems catchment a mean

runoff of 334 mm and rainfall of 600 mm, resulting in an ac-

tual evapotranspiration of 266 mm, is calculated. Although

lower compared to Schliefau, nearly 45 % of the rainfall is

lost to the atmosphere. The mean actual evapotranspiration

from the inverse model, again depending on the simulation

experiment, ranges from 276 to 310 mm. If the model would

not capture ETa adequately, the cumulative rainfall curves

would not follow the observations so closely.

On the basis of the different cumulative rainfall sums it

can be concluded that on a longer temporal basis the inverse

model is capable of simulating the catchment rainfall from

runoff observations. This is also the case for independent val-

idation periods and years, which were not used in the calibra-

tion. The results from the different simulation experiments do

not differ substantially and show close correspondence to the

observed data, except for a single summer in the Schliefau

catchment.

4.3.2 Correlation and bias between simulated and

observed rainfall

The performance of the inverse model expressed by the cor-

relation coefficient is used to measure the model’s ability to

reproduce timing and shape of observed rainfall values. It

is independent of a possible quantitative bias. In the intro-

duction, the difficulties involved in the quantitative measure-

ment of rainfall were discussed. It can however be assumed

that a qualitative measurement, e.g. if it rains or not, will be

more reliable. Table 8 shows the correlation values between

ground observations and the different inverse rainfall reali-

sations (Pobs−Pinv) and between ground observations and

INCA rainfall (Pobs−PInca) for different periods and tempo-

ral aggregation lengths.

The highest correlation values between Pobs and Pinv for

the 1 h sums and calibration period are found for Exp1 with

0.71 (Schliefau) and 0.62 (Krems). For the other experiments

the correlation values in the calibration period are lower
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(0.51–0.57 in the Schliefau area and 0.44–0.49 in the Krems

catchment). For the validation period the correlation between

Pobs and Pinv deteriorates in Exp1. For the remaining ex-

periments, however, the correlation in the validation period

is mostly higher, compared to calibration. This agrees with

the finding from the forward simulation results, since better

model performance in the validation period of the forward

model also leads to a higher correlation between Pobs and

Pinv. For the temporally aggregated 24 h sums the correla-

tion values generally increase for the calibration and valida-

tion periods.

For the period 2006–2009 and 1 h sums, the lowest corre-

lation values between Pobs and Pinv are found for the simu-

lation results of Exp1 in both catchments. The highest corre-

lation values are found for Exp2 in the Schliefau catchment

and Exp2–Exp4 in the Krems catchment. This agrees with

the performance of the forward model presented in Sect. 4.2.

The correlation of the 1 h sums between Pobs and Pinv is

rather weak. However, the correlation between Pobs and Pinv

is higher for all simulation experiments and 1 h sums com-

pared to the correlation between Pobs and PInca. This is in-

teresting, since PInca is based on station rainfall observations

and Pinv is indirectly derived from runoff through simula-

tions. With temporal aggregation the correlation values gen-

erally increase significantly for all combinations. Small dif-

ferences or timing errors in the 1 h sums are eliminated with

temporal aggregation. This is also the case for the INCA data.

For Exp1–Exp4, the model parameters used for the for-

ward and inverse models were automatically calibrated us-

ing the ground observation Pobs as input. It could therefore

be concluded that the model parameters are conditioned by

Pobs and that in consequence the fairly good agreement be-

tween Pobs and Pinv originates from this conditioning. Based

on this hypothesis, calibrating the model with INCA data

should lead to a better agreement between the INCA data

and the corresponding inverse rainfall and a deterioration of

the correlation between station data and inverse rainfall. For

Exp5, the forward model was therefore calibrated with INCA

data and the resulting parameter set was then used to calcu-

late the inverse rainfall. The correlation between PInca and

Pinv for Exp5 is however not higher compared to the other

simulation experiments and Exp3, which had the same cali-

bration period. This excludes that the parameters are condi-

tioned (at least for the rainfall simulations) by the input used

for calibration. The comparison of Exp3 and Exp5 is critical

and shows that the inverse model provides reasonable results

in the case where the forward model is calibrated with rain-

fall data that are independent from the observed catchment

rainfall: the forward model exhibits significantly lower NSE

in Exp5 compared to Exp3, which is expected because the

forward model is driven with the lower quality INCA rainfall

in Exp5 (see Table 7). The correlation between Pobs and Pinv

however suggests that Exp5 is comparably representative of

the rainfall dynamics as Exp3.

The correlations between PInca and Pinv are generally very

weak, with values ranging from 0.25 to 0.29 for the Schliefau

catchment and from 0.39 to 0.445 for the Krems catchment.

For the period 2006–2009, the correlation between Pobs

and Pinv for the 1 h sums ranges between 0.48 and 0.55 and is

higher compared to the correlation between Pobs and PInca. In

contrast, Kirchner (2009) shows correlation values between

simulated and observed rainfall of 0.81 and 0.88 for his two

sites. The Schliefau and Krems catchments differ substan-

tially in size, hydrological characteristics, land use and ge-

ology. The NSE values of the runoff simulations in Kirch-

ner (2009) are higher, compared to the values presented here

for the forward model. As a consequence the better perfor-

mance in the rainfall simulations may be explained by the

fact that the Kirchner (2009) model better reflects the catch-

ment conditions leading to runoff.

For the 24 h sums and the period 2006–2009 we calculate

a correlation of 0.87–0.92, depending on the catchment and

simulation experiment. Here, Kirchner (2009) shows correla-

tions of 0.96 and 0.97. Krier et al. (2012) present correlations

between simulated and observed rainfall of 0.81–0.98, with

a mean value of 0.91 for a total of 24 catchments, however

only on the basis of data of a single year. The correlation

in our results is therefore in the range of other studies. Un-

fortunately, Krier et al. (2012) do not present NSE values of

the runoff simulations. It is therefore not possible to check

the link between the performance of the forward model and

rainfall simulations in their study.

Figure 10 shows the correlation between Pobs and Pinv for

the calibration periods of the simulation experiments Exp1–

Exp5 versus the correlation in single years for the two study

areas. For the Schliefau catchment, the largest spread in the

correlation values of the single years is found for Exp1,

which also corresponds to the performance of the runoff

simulations of the forward model. For Exp2–Exp5 a spread

is also visible between the single years, but differences are

smaller. For the years 2006, 2008 and 2009 the correlation

values in the Krems catchment do not differ substantially.

Here however the correlation for the year 2007 is very low,

regardless of the simulation experiment. This may be ex-

plained by the comparatively dry summer of 2007. Also,

in the Schliefau catchment the correlation values are mostly

lower in 2007, compared to the other years.

Table 9 summarises the mean bias (in mm h−1 and

mm d−1) between different rainfall realisations, evaluated for

different periods, and for 1 h and 24 h sums. Except for Exp1

the bias is larger in the validation compared to the calibration

periods.

For the period 2006–2009 and the Schliefau catchment,

the bias between Pinv and Pobs is mostly higher, compared to

the bias between PInca and Pobs. Only Exp2, with a mean bias

of 0.07 mm d−1, has a comparable bias to that between PInca

and Pobs of 0.02 mm d−1. Exp2 also showed the highest per-

formance in the runoff simulations concerning the NSE. In

contrary, for the Krems catchment, the bias is lower between
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Figure 10. Correlation between Pobs and Pinv for the calibration pe-

riods of the simulation experiments Exp1–Exp5 versus single years

for the two study areas.

Pinv and Pobs for Exp1–Exp3, compared to PInca and Pobs.

For Exp1–Exp3 and the period 2006–2009 mean biases of

0.14 mm d−1 (Schliefau) and 0.36 mm d−1 (Krems) are cal-

culated. As a comparison, Krier et al. (2014) published mean

bias values between simulated and observed rainfall of −3.3

to 1.5 mm d−1 (mean −0.35 mm d−1) for 24 catchments on

the basis of a single year. From all simulation experiments,

Exp4 shows the largest bias, which is explained by the fact

that runoff was increased in this experiment. Here the in-

creased runoff clearly shows a signal in the inverse rainfall.

4.3.3 Rainfall and runoff simulations for a flood event

Figure 11 exemplarily illustrates the temporal development

of the different rainfall realisations and runoff simulations

for the highest flood event in the Krems catchment. Results

from Exp3 are shown. Compared to Pobs and PInca the inverse

rainfall Pinv exhibits higher variability and higher intensities.

The higher variability and oscillating nature of the inverse

rainfall is explainable with the reaction of the inverse model

to small fluctuations in runoff observations: in case of rising

runoff observations, rainfall will be estimated by the inverse

model. If the observed runoff decreases and the simulated

runoff of the inverse model is larger than observed runoff, no

inverse rainfall will be calculated, leading to the visible oscil-

lations. Figure 11b shows that the forward model, driven with

Pobs as input, underestimates both flood peaks. The forward

model, driven with the inverse rainfall, simulates the driven

periods very well (Inverse Qsim). However, especially, the

falling limb after the second flood peak on 7 September 2007

is overestimated by the inverse model. In this period it is also

visible that, in consequence, no rainfall is calculated by the

inverse model, since simulated runoff is higher than observed

runoff.

For a given time interval, the inverse model will yield an

exact agreement between observed and simulated runoff, as

long as there is a positive rainfall value Rt to solve Eq. (5).

This will be the case in periods of rising limbs of observed

runoff (driven periods), as a rainfall value can be estimated,

Figure 11. Krems catchment: temporal development of the different

rainfall realisations (a) and runoff (b) for a flood event. Simulations

originate from Exp3.

Figure 12. Krems catchment: monthly sums of inverse rainfall sim-

ulated in the scenarios “reference”, “dry” and “wet” from Exp6.

which raises the simulated runoff value to match the observa-

tions. Conversely, in periods of observed falling limbs (non-

driven periods) the simulated runoff will solely be a function

of the model structure, its parameters and the antecedent sys-

tem states, as negative rainfall values are ruled out before-

hand. This explains why, in periods in which the simulated

runoff is higher than the observed value, no rainfall is calcu-

lated by the inverse model.

4.3.4 Influence of cold system states on the inverse

rainfall (Exp6)

To test the influence of cold states on the inverse rainfall

simulations the simulation experiment Exp6 was performed.

Three different cold states (reference, dry and wet system

states) were thereby defined (see Sect. 2.3.2). Figure 12 ex-

emplarily shows the results of Exp6 for the Krems catchment.
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Table 9. Mean Bias (in mm) between different rainfall realisations, evaluated for different periods and 1 h and 24 h sums.

Mean bias: 1 h sums (mm h−1) Mean bias: 24 h sums (mm d−1)

Pinv−Pobs Pinv−PInca PInca−Pobs Pinv−Pobs Pinv−PInca PInca−Pobs

Calib. Valid. 2006–2009 2006–2009 2006–2009 Calib. Valid. 2006–2009 2006–2009 2006–2009

S
ch

li
ef

au

Exp1 0.001 0.007 0.006 0.005 0.001 0.019 0.179 0.139 0.118 0.021

Exp2 −0.008 0.014 0.003 0.002 −0.204 0.339 0.067 0.046

Exp3 0.003 0.027 0.009 0.008 0.075 0.639 0.216 0.195

Exp4 0.009 0.041 0.017 0.016 0.225 0.986 0.415 0.394

Exp5 0.007 0.034 0.014 0.013 0.169 0.817 0.331 0.310

K
re

m
s

Exp1 0.029 0.006 0.012 −0.008 0.020 0.686 0.148 0.283 −0.191 0.473

Exp2 0.013 0.020 0.017 −0.003 0.324 0.485 0.404 −0.069

Exp3 0.015 0.022 0.017 −0.003 0.362 0.531 0.404 −0.069

Exp4 0.019 0.033 0.022 0.003 0.450 0.785 0.534 0.061

Exp5 0.020 0.022 0.021 0.001 0.478 0.536 0.493 0.019

From the monthly rainfall sums of the different model

runs, it is evident that the inverse rainfall calculations dif-

fer significantly at the beginning of the simulation. In the

first month the reference scenario results in a monthly rainfall

sum of 30 mm, the dry scenario in 111 mm and the wet sce-

nario in only 9 mm. Generally, the model will always strive

towards an equilibrium in its system states, which are a func-

tion of the model structure and parameters. In the scenario

“wet” a lot of water is stored in the states of the model at the

beginning, with the result that little inverse rainfall is calcu-

lated. In the dry scenario, on the other hand, a higher amount

of rainfall is estimated, since less water is stored in the states

at the beginning. With time, however, the different system

states converge. In consequence, also the inverse rainfall val-

ues converge and after 9 months no differences are visible.

Extreme assumptions were made concerning the dry and

wet scenarios, since the intention of Exp6 is to evaluate the

general influences of the cold states and spin-up time on the

inferred rainfall. In particular, the long memory of the ground

water storage explains the long warm-up period in the pre-

sented results. In practice, reasonable cold states must there-

fore be defined at start-up, as is the case for forward mod-

els formulated in a state–space approach. After an adequate

spin-up time the system states will however converge, lead-

ing to deterministic and unique inverse rainfall estimates.

5 Summary and outlook

A calibrated rainfall–runoff model (forward model) reflects

the catchment processes leading to runoff generation. Thus,

inverting the model, i.e. calculating rainfall from runoff,

yields the temporally disintegrated rainfall. In this paper

we applied a conceptual rainfall–runoff model, which is in-

verted in an iterative approach, to simulate catchment rain-

fall from observed runoff. The precondition of invertibility

of the model equations is successfully tested with virtual ex-

periments, in which simulated runoff time series are used as

input into the inverse model to derive rainfall. Additional vir-

tual experiments are performed, in which noise is added to

the runoff input time series to analyse the effects of possible

short-term errors in runoff on the inferred precipitation rates.

The approach is applied and tested in two study areas in

Austria. The estimated inverse rainfall is compared with two

different rainfall realisations: in addition to ground obser-

vations, areal rainfall fields of the INCA system are used.

Hourly data are available for the years 2006–2009. Only the

months of June–September are used, as the inverse model

can only be applied to simulate rainfall in periods in which

runoff is not influenced by snowmelt (i.e. summer months).

In a first step, the forward model is calibrated against

runoff observations. To evaluate the influences of (i) differ-

ent model parameters due to different calibration periods and

lengths, (ii) different runoff observations and (iii) different

parameter optimisation data based on the runoff and rainfall

calculations, several simulation experiments are performed.

Additionally, the influence of different initial conditions on

the rainfall simulations are evaluated.

The forward model mostly shows stable results in both

catchments and reproduces the dynamics and variability of

the catchment responses to rainfall in a satisfactory manner.

Only the simulation experiment in which a single summer

was used for parameter calibration shows a larger deteriora-

tion of the model performance in the validation period and

independent years. The model parameters are then used for

deriving catchment rainfall from runoff observations.

The cumulative rainfall curves of the different rainfall real-

isations (ground observation, Pobs; INCA, PInca; and inverse

rainfall from the different simulation experiments, Pinv) are

very similar, suggesting that the inverse model is capable of

representing the long-term quantitative rainfall conditions of

the catchment. About 60 % (Schliefau) and 45 % (Krems) of

rainfall is lost to the atmosphere due to actual evapotranspi-

ration (ETa). If the model would not capture ETa adequately,

the cumulative rainfall curves would not follow the observa-
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tions so closely. This is also the case for independent valida-

tion periods and years, which were not used in the calibra-

tion.

The correlation between Pinv and Pobs, although rather

low, is higher or of the same magnitude compared to the cor-

relation between Pobs and PInca, suggesting that the inverse

model also reflects the timing of rainfall with the same qual-

ity as INCA. This is especially the case for the aggregated

daily rainfall values. The correlation between Pinv and Pobs is

mostly stable for the calibration, validation and, in the single

years, independent of the simulation experiment. However,

again, for the simulation experiment with only a single sum-

mer for parameter calibration, a larger spread in the correla-

tion for the single years is visible. An increase in observed

runoff (Exp4) does not show negative effects on the inverse

rainfall measured by the correlation coefficient. A larger bias

between observed and modelled rainfall is however visible in

Exp4. Generally, the simulation experiment with the highest

performance in the runoff simulation also shows the highest

correlation values in the rainfall simulations.

To test if the inverse rainfall is conditioned by observed

rainfall used as calibration input, additional model calibra-

tion is conducted using independent INCA data as driving

rainfall input for the forward model calibration. The simula-

tion of inverse rainfall on the basis of this model parameter

set shows similar results as before, suggesting that the inverse

rainfall is not conditioned to the rainfall input used for model

calibration. This result is interesting, since it shows that the

inverse model provides reasonable results in the case where

the forward model is calibrated with rainfall data that are in-

dependent from the observed rainfall in the proximity of the

catchment. Generally, the results do not differ substantially

between the two test catchments.

Since the inverse model is formulated in a state–space ap-

proach additional simulations are performed with differing

cold states at the beginning of the simulations. Here the re-

sults show that the inferred rainfall values converge to iden-

tical values after an adequate spin-up time.

Like with most environmental models, a calibration of the

forward model is necessary. It is clear that the application of

the inverse model is therefore not possible if the catchment

is completely ungauged. However, this issue is comparable

to the application of conventional rainfall–runoff models in

gauged and ungauged catchments. As long as a rainfall–

runoff model shows reasonable results for the calibration and

validation period, the model can be used for different practi-

cal applications, e.g. environmental change impact studies,

design flood estimations or flood forecasting. This is also

conceivable for the inverse model, since additional informa-

tion on the catchment rainfall is made available for potential

practical applications mentioned above. This additional in-

formation is not solely limited to the simulated hourly data

but also includes the aggregated daily rainfall rates, which

show a significant higher correlation to the observed values.

It can be concluded that the application of the inverse

model is a feasible approach to gain additional information

on the mean areal rainfall values. The mean areal rainfall val-

ues may be used to enhance interpolated rainfall fields, e.g.

for the estimation of rainfall correction factors or the param-

eterisation of elevation dependency. With the inverse model,

it is not possible to calculate solid rainfall. In rainless periods

where it is clear that snowmelt is dominating runoff (e.g. in

spring), the inverse model can however be used to quantify

the snowmelt contribution.

Areal rainfall estimates leading to extreme flood events are

afflicted with major uncertainties. This is underlined by the

results where the largest deviations between observed and

modelled rainfall are found during flood events. Here the in-

verse modelling approach can be used as an additional in-

formation source concerning the rainfall conditions during

extreme events.

The inverse model was applied to two catchments. The

application and analysis of the proposed method to a wider

range of catchments with differing hydrological characteris-

tics will therefore be an important task in the near future. Fur-

ther investigations should include water-limited catchments

with an aridity index far lower than 1, where the influences

of high evapotranspiration on the inferred rainfall must be

investigated.

In the presented work several different model parameter

sets were used as a basis to calculate inverse rainfall. In fur-

ther works the influences and uncertainties in the inverse

rainfall, which arise from different model parameters, should

be analysed systematically. Additionally, a comparison of in-

verse rainfall estimates from a different model structure for

the two catchments with our results would be of interest, in

order to check the links between the performance of the for-

ward model and the results obtained by the inversion method.
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Appendix A

The forward model is formulated as follows, considering pa-

rameters and variables in Tables 2 and 3:

BWIt =max(min(INTMAX,BWIt−1
+ 0.5Rt −ETIt ),0)

=max(min(INTMAX,BWIt−1
+ 0.5Rt (A1)

− f (ETpt
, INTMAX)),0),

R_Soilt =0.5Rt +max(BWIt−1
+ 0.5Rt (A2)

−ETIt − INTMAX,0),

BW0t =BW0t−1
+R_Soilt −ETGt −Q1t −Q2t

=BW0t−1
+R_Soilt −min

(
BW0t−1

FKFAK×M
,1

)
(A3)

(ETpt
−ETIt )ETVEGCOR−R_Soilt(

BW0t−1

M

)BETA

− f (PEX2)BW0t−1
,

BW2t =BW2t−1
+Q2t −QAB2t −QVS2t

=BW2t−1
+ f (PEX2)BW0t−1

−α2 (A4)

max(BW2t−1
−H2,0)−β2BW2t−1

,

BW3t =BW3t−1
+QVS2t −QAB3t (A5)

=BW3t−1
+β2BW2t−1

−α3BW3t−1
,

BW4t =BW4t−1
+Q1t +QAB2t +QAB3t −Qsimt

=BW4t−1
+R_Soilt

(
BW0t−1

M

)BETA

(A6)

+α2max(BW2t−1
−H2,0)+α3BW3t−1

−α4BW4t−1
,

with

αi =
1t

TABi
and (A7)

βi =
1t

TVSi
, (A8)

where TABi/TVSi are recession coefficients and 1t is the

modelling time step in units of hours. α and β vary with

modelling time step and represent smoothing functions of the

linear reservoirs.

Equations (A1)–(A8) are simplified representations of the

model algorithm. min/max operators, by introducing dis-

continuities, can lead to noninvertibility. Equations (A4) and

(A6) do not include a threshold function in the actual model

code. The differential equations of the linear reservoirs are

solved analytically. An internal time step discretization is in-

cluded in the code, to guarantee that the transition between

system states above and below the threshold value is solved

exactly. Equation (A3), representing the soil layer, does in-

clude a min() operator for estimating the ratio between actual

and potential evapotranspiration as a function of soil water

content. This is however not a limiting factor for the inver-

sion, since this factor is a function of the preceding soil state

BW0t−1
, which is known. Only 50 % of rainfall is used as in-

put into the interception storage BWI. By assuming that the

other 50 % is always throughfall, Eqs. (A1) and (A2) also do

not limit the inversion, since a continuous signal through the

whole model cascade is guaranteed. The recession coefficient

representing percolation processes in the soil layer exhibits

a nonlinear characteristic and is calculated as a function of

actual soil water content and a as a function of the form pa-

rameter PEX2 (–). This model concept reflects the fact that

higher soil moisture levels lead to higher soil permeability

values. These induce higher percolation rates which are re-

flected by lower recession coefficients.
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