Articles | Volume 19, issue 4
https://doi.org/10.5194/hess-19-1943-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-1943-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications
Department of Geography, University of the West Indies, St. Augustine, Trinidad & Tobago
M. Durand
Byrd Polar Research Center and School of Earth Sciences, Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA
H. C. Jung
Office of Applied Sciences, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
Science Systems and Applications Inc., 10210 Greenbelt Road, Lanham, MD 20706, USA
D. Alsdorf
Byrd Polar Research Center and School of Earth Sciences, Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA
Related authors
Martin Nguyen, Matthew D. Wilson, Emily M. Lane, James Brasington, and Rose A. Pearson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-356, https://doi.org/10.5194/hess-2024-356, 2024
Preprint under review for HESS
Short summary
Short summary
River depth is crucial in flood modelling, yet often unavailable or costly to collect. Estimation methods can fill this gap but have errors affecting flood modelling. Our study quantified flood-prediction uncertainty due to these errors. Among parameters in Conceptual Multivariate Regression (CMR) and Uniform Flow (UF) methods, river width corresponds to the largest uncertainty, followed by flow and slope. Also, the UF-formula depths have higher uncertainty than the CMR-formula ones.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Martin Nguyen, Matthew D. Wilson, Emily M. Lane, James Brasington, and Rose A. Pearson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-356, https://doi.org/10.5194/hess-2024-356, 2024
Preprint under review for HESS
Short summary
Short summary
River depth is crucial in flood modelling, yet often unavailable or costly to collect. Estimation methods can fill this gap but have errors affecting flood modelling. Our study quantified flood-prediction uncertainty due to these errors. Among parameters in Conceptual Multivariate Regression (CMR) and Uniform Flow (UF) methods, river width corresponds to the largest uncertainty, followed by flow and slope. Also, the UF-formula depths have higher uncertainty than the CMR-formula ones.
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024, https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024, https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Short summary
Seasonal snowfall accumulation plays a critical role in climate. The water stored in it is measured by the snow water equivalent (SWE), the amount of water released after completely melting. We demonstrate a Bayesian physical–statistical framework to estimate SWE from airborne X- and Ku-band synthetic aperture radar backscatter measurements constrained by physical snow hydrology and radar models. We explored spatial resolutions and vertical structures that agree well with ground observations.
Michael Durand, Joel T. Johnson, Jack Dechow, Leung Tsang, Firoz Borah, and Edward J. Kim
The Cryosphere, 18, 139–152, https://doi.org/10.5194/tc-18-139-2024, https://doi.org/10.5194/tc-18-139-2024, 2024
Short summary
Short summary
Seasonal snow accumulates each winter, storing water to release later in the year and modulating both water and energy cycles, but the amount of seasonal snow is one of the most poorly measured components of the global water cycle. Satellite concepts to monitor snow accumulation have been proposed but not selected. This paper shows that snow accumulation can be measured using radar, and that (contrary to previous studies) does not require highly accurate information about snow microstructure.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020, https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
Short summary
The total of snow that falls globally is a critical factor governing freshwater availability. To better understand how this resource is impacted by climate change, we need to know how reliable the current observational datasets for snow are. Here, we compare five datasets looking at the snow falling over the mountains versus the other continents. We show that there is a large consensus when looking at fractional contributions but strong dissimilarities when comparing magnitudes.
Stephen Coss, Michael Durand, Yuchan Yi, Yuanyuan Jia, Qi Guo, Stephen Tuozzolo, C. K. Shum, George H. Allen, Stéphane Calmant, and Tamlin Pavelsky
Earth Syst. Sci. Data, 12, 137–150, https://doi.org/10.5194/essd-12-137-2020, https://doi.org/10.5194/essd-12-137-2020, 2020
Short summary
Short summary
We present a new radar-altimeter-satellite-measured river surface height dataset. Our novel approach is broadly applicable rather than location specific. We were able to measure rivers that account for > 34 % of global drainage area with an accuracy comparable to much of the established literature. 389 of our 932 measurement locations include river gage validation. We have focused our efforts on creating a consistent, well-documented data product to encourage use by the broader science community.
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
High-resolution automated detection of headwater streambeds for large watersheds
Remote quantification of the trophic status of Chinese lakes
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept
A simple cloud-filling approach for remote sensing water cover assessments
Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions
Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery
River-ice and water velocities using the Planet optical cubesat constellation
Exposure of tourism development to salt karst hazards along the Jordanian Dead Sea shore
A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry
Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series
Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle
Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model
Observing river stages using unmanned aerial vehicles
Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging
Satellite radar altimetry for monitoring small rivers and lakes in Indonesia
Quantifying river form variations in the Mississippi Basin using remotely sensed imagery
River ice flux and water velocities along a 600 km-long reach of Lena River, Siberia, from satellite stereo
Geometric dependency of Tibetan lakes on glacial runoff
Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data
River monitoring from satellite radar altimetry in the Zambezi River basin
Flood occurrence mapping of the middle Mahakam lowland area using satellite radar
Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling
Hydro-physical processes at the plunge point: an analysis using satellite and in situ data
Regional scale analysis of landform configuration with base-level (isobase) maps
Reconstructing the Tropical Storm Ketsana flood event in Marikina River, Philippines
Reading the bed morphology of a mountain stream: a geomorphometric study on high-resolution topographic data
Francis Lessard, Naïm Perreault, and Sylvain Jutras
Hydrol. Earth Syst. Sci., 28, 1027–1040, https://doi.org/10.5194/hess-28-1027-2024, https://doi.org/10.5194/hess-28-1027-2024, 2024
Short summary
Short summary
Headwaters streams, which are small streams at the top of a watershed, represent two-thirds of the total length of streams, yet their exact locations are still unknown. This article compares different techniques in order to remotely detect the position of these streams. Thus, a database of more than 464 km of headwaters was used to explain what drives their presence. A technique developed in this article makes it possible to detect headwater streams with more accuracy, despite the land uses.
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023, https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Short summary
1. Blue/red and green/red Rrs(λ) are sensitive to lake TSI. 2. Machine learning algorithms reveal optimum performance of TSI retrieval. 3. An accurate TSI model was achieved by MSI imagery data and XGBoost. 4. Trophic status in five limnetic regions was qualified. 5. The 10m TSI products were first produced in 555 typical lakes in China.
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023, https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022, https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Short summary
A 30 m LAke Water Secchi Depth (LAWSD30) dataset of China was first developed for 1985–2020, and national-scale water clarity estimations of lakes in China over the past 35 years were analyzed. Lake clarity in China exhibited a significant downward trend before the 21st century, but improved after 2000. The developed LAWSD30 dataset and the evaluation results can provide effective guidance for water preservation and restoration.
Pengcheng Su, Jingjing Liu, Yong Li, Wei Liu, Yang Wang, Chun Ma, and Qimin Li
Hydrol. Earth Syst. Sci., 25, 5879–5903, https://doi.org/10.5194/hess-25-5879-2021, https://doi.org/10.5194/hess-25-5879-2021, 2021
Short summary
Short summary
We identified ± 150 glacial lakes in the Poiqu River basin (central Himalayas), and we explore the changes in five lakes over the last few decades based on remote sensing images, field surveys, and satellite photos. We reconstruct the lake basin topography, calculate the water capacity, and propose a water balance equation (WBE) to explain glacial lake evolution in response to local weather conditions. The WBE also provides a framework for the water balance in rivers from glacierized sources.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Connor Mullen, Gopal Penny, and Marc F. Müller
Hydrol. Earth Syst. Sci., 25, 2373–2386, https://doi.org/10.5194/hess-25-2373-2021, https://doi.org/10.5194/hess-25-2373-2021, 2021
Short summary
Short summary
The level of lake water is rapidly changing globally, and long-term, consistent observations of lake water extents are essential for ascertaining and attributing these changes. These data are rarely collected and challenging to obtain from satellite imagery. The proposed method addresses these challenges without any local data, and it was successfully validated against lakes with and without ground data. The algorithm is a valuable tool for the reliable historical water extent of changing lakes.
Song Shu, Hongxing Liu, Richard A. Beck, Frédéric Frappart, Johanna Korhonen, Minxuan Lan, Min Xu, Bo Yang, and Yan Huang
Hydrol. Earth Syst. Sci., 25, 1643–1670, https://doi.org/10.5194/hess-25-1643-2021, https://doi.org/10.5194/hess-25-1643-2021, 2021
Short summary
Short summary
This study comprehensively evaluated 11 satellite radar altimetry missions (including their official retrackers) for lake water level retrieval and developed a strategy for constructing consistent long-term water level records for inland lakes. It is a two-step bias correction and normalization procedure. First, we use Jason-2 as the initial reference to form a consistent TOPEX/Poseidon–Jason series. Then, we use this as the reference to remove the biases with other radar altimetry missions.
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Short summary
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain water level observations. Improvements in instrument design have increased the capabilities of altimeters to observe inland water bodies, including rivers. In this study, we demonstrate how a dense Sentinel-3 water surface elevation monitoring network can be established at catchment scale using publicly accessible processing platforms. The network can serve as a useful supplement to ground observations.
Jean Bergeron, Gabriela Siles, Robert Leconte, Mélanie Trudel, Damien Desroches, and Daniel L. Peters
Hydrol. Earth Syst. Sci., 24, 5985–6000, https://doi.org/10.5194/hess-24-5985-2020, https://doi.org/10.5194/hess-24-5985-2020, 2020
Short summary
Short summary
We want to assess how well the Surface Water and Ocean Topography (SWOT) satellite mission will be able to provide information on lake surface water elevation and how much of an impact wind conditions (speed and direction) can have on these retrievals.
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary
Short summary
The flow of freshwater in rivers is commonly studied with computer programs known as hydrological models. An important component of those programs lies in the description of the river environment, such as the channel resistance to the flow, that is critical to accurately predict the river flow but is still not well known. Satellite data can be combined with models to enrich our knowledge of these features. Here, we show that the coming SWOT mission can help better know this channel resistance.
Anette Eltner, Hannes Sardemann, and Jens Grundmann
Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, https://doi.org/10.5194/hess-24-1429-2020, 2020
Short summary
Short summary
An automatic workflow is introduced to measure surface flow velocities in rivers. The provided tool enables the measurement of spatially distributed surface flow velocities independently of the image acquisition perspective. Furthermore, the study illustrates how river discharge in previously ungauged and unmeasured regions can be retrieved, considering the image-based flow velocities and digital elevation models of the studied river reach reconstructed with UAV photogrammetry.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.
Najib Abou Karaki, Simone Fiaschi, Killian Paenen, Mohammad Al-Awabdeh, and Damien Closson
Hydrol. Earth Syst. Sci., 23, 2111–2127, https://doi.org/10.5194/hess-23-2111-2019, https://doi.org/10.5194/hess-23-2111-2019, 2019
Short summary
Short summary
The Dead Sea shore is a unique salt karst system. Development began in the 1960s, when the water resources that used to feed the Dead Sea were diverted. The water level is falling at more than 1 m yr−1, causing a hydrostatic disequilibrium between the underground fresh water and the base level. Despite these conditions, tourism development projects have flourished. Here, we show that a 10 km long strip of coast that encompasses several resorts is exposed to subsidence, sinkholes and landslides.
Tim Busker, Ad de Roo, Emiliano Gelati, Christian Schwatke, Marko Adamovic, Berny Bisselink, Jean-Francois Pekel, and Andrew Cottam
Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, https://doi.org/10.5194/hess-23-669-2019, 2019
Short summary
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
Andrew Ogilvie, Gilles Belaud, Sylvain Massuel, Mark Mulligan, Patrick Le Goulven, and Roger Calvez
Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, https://doi.org/10.5194/hess-22-4349-2018, 2018
Short summary
Short summary
Accurate monitoring of surface water extent is essential for hydrological investigation of small lakes (1–10 ha), which supports millions of smallholder farmers. Landsat monitoring of long-term surface water dynamics is shown to be suited to lakes over 3 ha based on extensive hydrometric data from seven field sites over 15 years. MNDWI water classification optimized here for the specificities of small water bodies reduced mean surface area errors by 57 % compared to published global datasets.
Filippo Bandini, Daniel Olesen, Jakob Jakobsen, Cecile Marie Margaretha Kittel, Sheng Wang, Monica Garcia, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 4165–4181, https://doi.org/10.5194/hess-22-4165-2018, https://doi.org/10.5194/hess-22-4165-2018, 2018
Short summary
Short summary
Water depth observations are essential data to forecast flood hazard, predict sediment transport, or monitor in-stream habitats. We retrieved bathymetry with a sonar wired to a drone. This system can improve the speed and spatial scale at which water depth observations are retrieved. Observations can be retrieved also in unnavigable or inaccessible rivers. Water depth observations showed an accuracy of ca. 2.1 % of actual depth, without being affected by water turbidity or bed material.
Kiana Zolfaghari, Claude R. Duguay, and Homa Kheyrollah Pour
Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017, https://doi.org/10.5194/hess-21-377-2017, 2017
Short summary
Short summary
A remotely-sensed water clarity value (Kd) was applied to improve FLake model simulations of Lake Erie thermal structure using a time-invariant (constant) annual value as well as monthly values of Kd. The sensitivity of FLake model to Kd values was studied. It was shown that the model is very sensitive to variations in Kd when the value is less than 0.5 m-1.
Tomasz Niedzielski, Matylda Witek, and Waldemar Spallek
Hydrol. Earth Syst. Sci., 20, 3193–3205, https://doi.org/10.5194/hess-20-3193-2016, https://doi.org/10.5194/hess-20-3193-2016, 2016
Short summary
Short summary
We study detectability of changes in water surface areas on orthophotomaps. We use unmanned aerial vehicles to acquire visible light photographs. We offer a new method for detecting changes in water surface areas and river stages. The approach is based on the application of the Student's t test, in asymptotic and bootstrapped versions. We test our approach on aerial photos taken during 3-year observational campaign. We detect transitions between all characteristic river stages using drone data.
E. Lalot, F. Curie, V. Wawrzyniak, F. Baratelli, S. Schomburgk, N. Flipo, H. Piegay, and F. Moatar
Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015, https://doi.org/10.5194/hess-19-4479-2015, 2015
Short summary
Short summary
This work shows that satellite thermal infrared images (LANDSAT) can be used to locate and quantify groundwater discharge into a large river (Loire River, France - 100 to 300 m wide). Groundwater discharge rate is found to be highly variable with time and space and maximum during flow recession periods and in winter. The main identified groundwater discharge area into the Loire River corresponds to a known discharge area of the Beauce aquifer.
Y. B. Sulistioadi, K.-H. Tseng, C. K. Shum, H. Hidayat, M. Sumaryono, A. Suhardiman, F. Setiawan, and S. Sunarso
Hydrol. Earth Syst. Sci., 19, 341–359, https://doi.org/10.5194/hess-19-341-2015, https://doi.org/10.5194/hess-19-341-2015, 2015
Short summary
Short summary
This paper investigates the possibility of monitoring small water bodies through Envisat altimetry observation. A novel approach is introduced to identify qualified and non-qualified altimetry measurements by assessing the waveform shapes for each returned radar signal. This research indicates that small lakes (extent < 100 km2) and medium-sized rivers (e.g., 200--800 m in width) can be successfully monitored by satellite altimetry.
Z. F. Miller, T. M. Pavelsky, and G. H. Allen
Hydrol. Earth Syst. Sci., 18, 4883–4895, https://doi.org/10.5194/hess-18-4883-2014, https://doi.org/10.5194/hess-18-4883-2014, 2014
Short summary
Short summary
Many previous studies have used stream gauge data to estimate patterns of river width and depth based on variations in river discharge. However, these relationships may not capture all of the actual variability in width and depth. We have instead mapped the widths of all of the rivers wider than 100 m (and many narrower) in the Mississippi Basin and then used them to also improve estimates of depth as well. Our results show width and depth variations not captured by power-law relationships.
A. Kääb, M. Lamare, and M. Abrams
Hydrol. Earth Syst. Sci., 17, 4671–4683, https://doi.org/10.5194/hess-17-4671-2013, https://doi.org/10.5194/hess-17-4671-2013, 2013
V. H. Phan, R. C. Lindenbergh, and M. Menenti
Hydrol. Earth Syst. Sci., 17, 4061–4077, https://doi.org/10.5194/hess-17-4061-2013, https://doi.org/10.5194/hess-17-4061-2013, 2013
N. M. Velpuri and G. B. Senay
Hydrol. Earth Syst. Sci., 16, 3561–3578, https://doi.org/10.5194/hess-16-3561-2012, https://doi.org/10.5194/hess-16-3561-2012, 2012
C. I. Michailovsky, S. McEnnis, P. A. M. Berry, R. Smith, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 16, 2181–2192, https://doi.org/10.5194/hess-16-2181-2012, https://doi.org/10.5194/hess-16-2181-2012, 2012
H. Hidayat, D. H. Hoekman, M. A. M. Vissers, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 16, 1805–1816, https://doi.org/10.5194/hess-16-1805-2012, https://doi.org/10.5194/hess-16-1805-2012, 2012
M. Potes, M. J. Costa, and R. Salgado
Hydrol. Earth Syst. Sci., 16, 1623–1633, https://doi.org/10.5194/hess-16-1623-2012, https://doi.org/10.5194/hess-16-1623-2012, 2012
A. T. Assireu, E. Alcântara, E. M. L. M. Novo, F. Roland, F. S. Pacheco, J. L. Stech, and J. A. Lorenzzetti
Hydrol. Earth Syst. Sci., 15, 3689–3700, https://doi.org/10.5194/hess-15-3689-2011, https://doi.org/10.5194/hess-15-3689-2011, 2011
C. H. Grohmann, C. Riccomini, and M. A. C. Chamani
Hydrol. Earth Syst. Sci., 15, 1493–1504, https://doi.org/10.5194/hess-15-1493-2011, https://doi.org/10.5194/hess-15-1493-2011, 2011
C. C. Abon, C. P. C. David, and N. E. B. Pellejera
Hydrol. Earth Syst. Sci., 15, 1283–1289, https://doi.org/10.5194/hess-15-1283-2011, https://doi.org/10.5194/hess-15-1283-2011, 2011
S. Trevisani, M. Cavalli, and L. Marchi
Hydrol. Earth Syst. Sci., 14, 393–405, https://doi.org/10.5194/hess-14-393-2010, https://doi.org/10.5194/hess-14-393-2010, 2010
Cited articles
Alsdorf, D., Lettenmaier, D., and Vörösmarty, C.: The Need for Global, Satellite-based Observations of Terrestrial Surface Waters, Eos, Transactions American Geophysical Union, 84, 269–275, https://doi.org/10.1029/2003EO290001, 2003.
Alsdorf, D., Bates, P., Melack, J., Wilson, M., and Dunne, T.: Spatial and temporal complexity of the Amazon flood measured from space, Geophys. Res. Lett., 34, L08402, https://doi.org/10.1029/2007GL029447, 2007a.
Alsdorf, D., Rodríguez, E., and Lettenmaier, D.: Measuring surface water from space, Rev. Geophys., 45, RG2002, https://doi.org/10.1029/2006RG000197, 2007b.
Bates, P. and De Roo, A.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000.
Berry, P. A. M., Garlick, J. D., Freeman, J., and Mathers, E.: Global inland water monitoring from multi-mission altimetry, Geophys. Res. Lett., 32, L16401, https://doi.org/10.1029/2005GL022814, 2005.
Birkett, C.: Contribution of the TOPEX NASA Radar Altimeter to the global monitoring of large rivers and wetlands, Water Resour. Res., 34, 1223–1239, https://doi.org/10.1029/98WR00124, 1998.
Birkett, C., Mertes, L., Dunne, T., Costa, M., and Jasinski, M.: Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry, J. Geophys. Res., 107, 8059, https://doi.org/10.1029/2001JD000609, 2002.
Birkinshaw, S. J., Moore, P., Kilsby, C., O'Donnell, G. M., Hardy, A., and Berry, P. A. M.: Daily discharge estimation at ungauged river sites using remote sensing, Hydrol. Process., 28, 1043–1054, https://doi.org/10.1002/hyp.9647, 2012.
Bjerklie, D., Lawrencedingman, S., Vorosmarty, C., Bolster, C., and Congalton, R.: Evaluating the potential for measuring river discharge from space, J. Hydrol., 278, 17–38, https://doi.org/10.1016/S0022-1694(03)00129-X, 2003.
Bjerklie, D. M., Moller, D., Smith, L. C., and Dingman, S. L.: Estimating discharge in rivers using remotely sensed hydraulic information, J. Hydrol., 309, 191–209, https://doi.org/10.1016/j.jhydrol.2004.11.022, 2005.
Depetris, P. J. and Gaiero, D. M.: Water-surface slope, total suspended sediment and particulate organic carbon variability in the Parana River during extreme flooding, Naturwissenschaften, 85, 26–28, https://doi.org/10.1007/s001140050445, 1998.
Durand, M., Andreadis, K. M., Alsdorf, D. E., Lettenmaier, D. P., Moller, D., and Wilson, M.: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model, Geophys. Res. Lett., 35, L20401, https://doi.org/10.1029/2008GL034150, 2008.
Durand, M., Fu, L.-L., Lettenmaier, D., Alsdorf, D., Rodríguez, E., and Esteban-Fernandez, D.: The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies, P. IEEE, 98, 766–779, https://doi.org/10.1109/JPROC.2010.2043031, 2010.
Durand, M., Neal, J., Rodríguez, E., Andreadis, K. M., Smith, L. C., and Yoon, Y.: Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope, J. Hydrol., 511, 92–104, https://doi.org/10.1016/j.jhydrol.2013.12.050, 2014.
Fekete, B. M. and Vörösmarty, C.: The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements, in: Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 20–22 November 2002). IAHS Publ. 309, November 2002, 129–136, IAHS, Wallingford, UK, 2007.
Hossain, F., Katiyar, N., Hong, Y., and Wolf, A.: The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world, Nat. Hazards, 43, 199–210, https://doi.org/10.1007/s11069-006-9094-x, 2007.
Jung, H. C., Hamski, J., Durand, M., Alsdorf, D., Hossain, F., Lee, H., Hossain, A. K. M. A., Hasan, K., Khan, A. S., and Hoque, A. Z.: Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers, Earth Surf. Process. Land., 35, 294–304, https://doi.org/10.1002/esp.1914, 2010.
Kiel, B., Alsdorf, D., and Lefavour, G.: Capability of SRTM C- and X-band DEM Data to Measure Water Elevations in Ohio and the Amazon, Photogramm. Eng. Rem. S., 72, 1–8, 2006.
Lambin, J., Morrow, R., Fu, L.-L., Willis, J. K., Bonekamp, H., Lillibridge, J., Perbos, J., Zaouche, G., Vaze, P., Bannoura, W., Parisot, F., Thouvenot, E., Coutin-Faye, S., Lindstrom, E., and Mignogno, M.: The OSTM/Jason-2 Mission, Mar. Geod., 33, 4–25, https://doi.org/10.1080/01490419.2010.491030, 2010.
LeFavour, G. and Alsdorf, D.: Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission digital elevation model, Geophys. Res. Lett., 32, L17404, https://doi.org/10.1029/2005GL023836, 2005.
Legates, D. R. and McCabe, G. J.: Evaluating the use of "goodness-of-fit" Measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233–241, https://doi.org/10.1029/1998WR900018, 1999.
Meade, R. H., Dunne, T., Richey, J. E., DE M Santos, U., and Salati, E.: Storage and remobilization of suspended sediment in the lower Amazon river of Brazil, Science, 228, 488–90, https://doi.org/10.1126/science.228.4698.488, 1985.
Meade, R. H., Rayol, J. M., Conceicão, S. C., and Natividade, J. R. G.: Backwater effects in the Amazon River basin of Brazil, Environ. Geol. Water S., 18, 105–114, https://doi.org/10.1007/BF01704664, 1991.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas, Water Resour. Res., 48, W11506, https://doi.org/10.1029/2012WR012514, 2012.
NRC: Earth science and applications from space: National imperatives for the next decade and beyond, National Acadamies Press, Washington, DC, available at: http://www.nap.edu/catalog.php?record_id=11820 (last access: 1 August 2014), 2007.
NSTC: Science and technology to support fresh water availability in the United States, Tech. Rep. November, National Science and Technology Council, Committee on Environment and Natural Resources, subcommittee on Water Availability and Quality, Washington, DC, available at: http://water.usgs.gov/owq/swaq.pdf, last access: 1 August 2004.
Papa, F., Bala, S. K., Pandey, R. K., Durand, F., Gopalakrishna, V. V., Rahman, A., and Rossow, W. B.: Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal, J. Geophys. Res., 117, C11021, https://doi.org/10.1029/2012JC008158, 2012.
Richey, J. E., Nobre, C., and Deser, C.: Amazon river discharge and climate variability: 1903 to 1985, Science (New York, N.Y.), 246, 101–103, https://doi.org/10.1126/science.246.4926.101, 1989.
Rodríguez, E.: Surface Water and Ocean Topography Mission (SWOT): Science Requirements Document, Tech. rep., NASA Jet Propulsion Laboritory, available at: http://swot.jpl.nasa.gov/files/swot/SWOT_Science_Requirements_Document.pdf, last access: 1 August 2014.
Seyler, F., Calmant, S., Silva, J. S. D., Moreira, D. M., Mercier, F., and Shum, C.: From TOPEX/Poseidon to Jason-2/OSTM in the Amazon basin, Adv. Space Res., 51, 1542–1550, https://doi.org/10.1016/j.asr.2012.11.002, 2013.
Shiklomanov, A. I., Lammers, R., and Vörösmarty, C.: Widespread decline in hydrological monitoring threatens Pan-Arctic research, Eos, Transactions American Geophysical Union, 83, 13–17, https://doi.org/10.1029/2002EO000008, 2002.
Trigg, M., Wilson, M. D., Bates, P. D., Horritt, M. S., Alsdorf, D. E., Forsberg, B. R., and Vega, M. C.: Amazon flood wave hydraulics, J. Hydrol., 374, 92–105, https://doi.org/10.1016/j.jhydrol.2009.06.004, 2009.
USGS: A New Evaluation of the USGS Streamgaging Network: A Report to Congress, Tech. rep., United States Geological Survey, available at: http://water.usgs.gov/streamgaging/report.pdf (last access: 1 August 2014), 1998.
Vorosmarty, C., Askew, A., Grabs, W., Barry, R. G., Birkett, C., Doll, P., Goodison, B., Hall, A., Jenne, R., Kitaev, L., Landwehr, J., Keeler, M., Leavesley, G., Schaake, J., Strzepek, K., Sundarvel, S. S., Takeuchi, K., and Webster, F.: Global water data: A newly endangered species, Eos, Transactions American Geophysical Union, 82, 54–54, https://doi.org/10.1029/01EO00031, 2001.
Wilson, M., Bates, P., Alsdorf, D., Forsberg, B., Horritt, M., Melack, J., Frappart, F., and Famiglietti, J.: Modeling large-scale inundation of Amazonian seasonally flooded wetlands, Geophys. Res. Lett., 34, L15404, https://doi.org/10.1029/2007GL030156, 2007.
Wolf, A. T., Natharius, J. A., Danielson, J. J., Ward, B. S., and Pender, J. K.: International River Basins of the World, Int. J. Water Resour. D., 15, 387–427, https://doi.org/10.1080/07900629948682, 1999.
Yoon, Y., Durand, M., Merry, C. J., Clark, E. a., Andreadis, K. M., and Alsdorf, D. E.: Estimating river bathymetry from data assimilation of synthetic SWOT measurements, J. Hydrol., 464–465, 363–375, https://doi.org/10.1016/j.jhydrol.2012.07.028, 2012.
Short summary
We use a virtual mission analysis on a ca. 260km reach of the central Amazon River to assess the hydraulic implications of potential measurement errors in swath-altimetry imagery from the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission. We estimated water surface slope from imagery of water heights and then derived channel discharge. Errors in estimated discharge were lowest when using longer reach lengths and channel cross-sectional averaging to estimate water slopes.
We use a virtual mission analysis on a ca. 260km reach of the central Amazon River to assess the...