Articles | Volume 19, issue 3
https://doi.org/10.5194/hess-19-1247-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-1247-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach
E. Isokangas
CORRESPONDING AUTHOR
Water Resources and Environmental Engineering Research Group, University of Oulu, P.O. Box 4300, 90014 Oulun yliopisto, Finland
K. Rozanski
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland
P. M. Rossi
Water Resources and Environmental Engineering Research Group, University of Oulu, P.O. Box 4300, 90014 Oulun yliopisto, Finland
A.-K. Ronkanen
Water Resources and Environmental Engineering Research Group, University of Oulu, P.O. Box 4300, 90014 Oulun yliopisto, Finland
B. Kløve
Water Resources and Environmental Engineering Research Group, University of Oulu, P.O. Box 4300, 90014 Oulun yliopisto, Finland
Related authors
No articles found.
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 4861–4881, https://doi.org/10.5194/hess-28-4861-2024, https://doi.org/10.5194/hess-28-4861-2024, 2024
Short summary
Short summary
The snowmelt event governs the hydrological cycle of sub-arctic areas. In this study, we conducted a tracer experiment on a forested hilltop in Lapland to identify how high-volume infiltration events modify the soil water storage. We found that a strong tracer signal remained in deeper soil layers after the experiment and over the winter, but it got fully displaced during the snowmelt. We propose a conceptual infiltration model that explains how the snowmelt homogenizes the soil water storage.
Umer Saleem, Ali Torabi Haghighi, Björn Klöve, and Mourad Oussalah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1170, https://doi.org/10.5194/egusphere-2024-1170, 2024
Short summary
Short summary
This paper discusses the impact of citizen science and remote sensing on water quality monitoring. It explores applications combining citizen science with tools like microwave and optical systems, assessing parameters and techniques via apps such as EyeOnWater and HydroColor. It highlights the transformative potential in addressing water quality research gaps.
Getnet Demil, Ali Torabi Haghighi, Björn Klöve, and Mourad Oussalah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1158, https://doi.org/10.5194/egusphere-2024-1158, 2024
Short summary
Short summary
This review explores using advanced image-based methods to estimate snow parameters for water resource management. Deep learning and satellite imagery improve accuracy in predicting snowmelt and depth. Challenges like data availability persist; addressing them requires novel deep learning architectures and better data synchronization. Integration of image-based approaches can revolutionize snow hydrology modeling and environmental management.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023, https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary
Short summary
Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter at a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones, and a reduction in accuracy was observed when moving from an open mire area to forest-covered areas.
Leo-Juhani Meriö, Anssi Rauhala, Pertti Ala-aho, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4363–4380, https://doi.org/10.5194/tc-17-4363-2023, https://doi.org/10.5194/tc-17-4363-2023, 2023
Short summary
Short summary
Information on seasonal snow cover is essential in understanding snow processes and operational forecasting. We study the spatiotemporal variability in snow depth and snow processes in a subarctic, boreal landscape using drones. We identified multiple theoretically known snow processes and interactions between snow and vegetation. The results highlight the applicability of the drones to be used for a detailed study of snow depth in multiple land cover types and snow–vegetation interactions.
Nizar Abou Zaki, Ali Torabi Haghighi, Pekka M. Rossi, Mohammad J. Tourian, and Bjørn Klove
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-471, https://doi.org/10.5194/hess-2018-471, 2018
Preprint withdrawn
Short summary
Short summary
Groundwater is considered a main source of fresh water in semi-arid climatic zones, especially for agricultural usage. This study compares in-situ groundwater volume variation measurements with GRACE derived water mass data. The study concludes the possibility of using GRACE data to monitor groundwater depletion in catchments that lack measured data. GRACE data can here help in drawing general conclusions for integrated water resources management, and sustainable usage of this resources.
P. Ala-aho, P. M. Rossi, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1961–1976, https://doi.org/10.5194/hess-19-1961-2015, https://doi.org/10.5194/hess-19-1961-2015, 2015
Short summary
Short summary
We present a novel simulation method for estimating spatially distributed and transient groundwater recharge in unconfined sandy aquifers. The approach uses field data for the most important parameters affecting groundwater recharge and accounts for parameter uncertainty. The results show that tree canopy cover is the most important factor in controlling groundwater recharge at our study area. Tree canopy is thinned by forestry, which may lead to a significant increase of groundwater recharge.
T. P. Karjalainen, P. M. Rossi, P. Ala-aho, R. Eskelinen, K. Reinikainen, B. Kløve, M. Pulido-Velazquez, and H. Yang
Hydrol. Earth Syst. Sci., 17, 5141–5153, https://doi.org/10.5194/hess-17-5141-2013, https://doi.org/10.5194/hess-17-5141-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Theory development
Spatiotemporal variation of modern lake, stream, and soil water isotopes in Iceland
Impacts of science on society and policy in major river basins globally
Conceptualising surface water–groundwater exchange in braided river systems
Evaporation and sublimation measurement and modeling of an alpine saline lake influenced by freeze–thaw on the Qinghai–Tibet Plateau
Rediscovering Robert E. Horton's lake evaporation formulae: new directions for evaporation physics
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow
Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Integrating network topology metrics into studies of catchment-level effects on river characteristics
Estimating the effect of rainfall on the surface temperature of a tropical lake
Toward a conceptual framework of hyporheic exchange across spatial scales
HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists
River water quality changes in New Zealand over 26 years: response to land use intensity
A review of current and possible future human–water dynamics in Myanmar's river basins
A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze)
An index of floodplain surface complexity
Hydroclimatological influences on recently increased droughts in China's largest freshwater lake
Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake
Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480
A methodological approach of estimating resistance to flow under unsteady flow conditions
Quantitative historical hydrology in Europe
Variations in quantity, composition and grain size of Changjiang sediment discharging into the sea in response to human activities
The KULTURisk Regional Risk Assessment methodology for water-related natural hazards – Part 1: Physical–environmental assessment
The use of taxation records in assessing historical floods in South Moravia, Czech Republic
New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru
Dissolved and particulate nutrient transport dynamics of a small Irish catchment: the River Owenabue
Water balance of selected floodplain lake basins in the Middle Bug River valley
Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover
Inverse streamflow routing
A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage
Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden
A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota
Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)
Physical and chemical consequences of artificially deepened thermocline in a small humic lake – a paired whole-lake climate change experiment
A flume experiment on the effect of constriction shape on the formation of forced pools
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Shuanglei Wu and Yongping Wei
Hydrol. Earth Syst. Sci., 28, 3871–3895, https://doi.org/10.5194/hess-28-3871-2024, https://doi.org/10.5194/hess-28-3871-2024, 2024
Short summary
Short summary
This study developed a framework to understand the structures of knowledge development in 72 river basins globally from 1962–2017 using Web of Science. It was found that the knowledge systems were characterized by increasingly interconnected management issues addressed by limited disciplines and were linked more strongly to societal impacts than that to policy. Understanding the current state of knowledge casts a light on sustainable knowledge transformations for river basin management.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Solomon Vimal and Vijay P. Singh
Hydrol. Earth Syst. Sci., 26, 445–467, https://doi.org/10.5194/hess-26-445-2022, https://doi.org/10.5194/hess-26-445-2022, 2022
Short summary
Short summary
Evaporation from open water is a well-studied problem in hydrology. Robert E. Horton, unknown to most investigators on the subject, studied it in great detail by conducting experiments and relating them to physical laws. His work furthered known theories of lake evaporation but was not recognized. This is unfortunate because it performs better than five variously complex methods across scales (local to continental; 30 min–2 months) and seems quite relevant for climate-change-era problems.
Shannon M. Sterling, Sarah MacLeod, Lobke Rotteveel, Kristin Hart, Thomas A. Clair, Edmund A. Halfyard, and Nicole L. O'Brien
Hydrol. Earth Syst. Sci., 24, 4763–4775, https://doi.org/10.5194/hess-24-4763-2020, https://doi.org/10.5194/hess-24-4763-2020, 2020
Short summary
Short summary
Wild salmon numbers in Nova Scotia, Canada, have been plummeting in recent decades. In 2014, we launched an ionic aluminium monitoring program in Nova Scotia to see if this toxic element was a threat to salmon populations. We found that all 10 monitored rivers had ionic aluminium concentrations that exceeded the threshold for aquatic health. Our results demonstrate that elevated aluminium still threatens aquatic ecosystems and that delays in recovery from acid rain remains a critical issue.
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Short summary
We found that heat transported from Lake Baikal to its ice cover is up to 10 times higher than traditionally assumed and strongly affects the ice melting. The heat is transported by under-ice currents on the background of a strong temperature gradient between the ice base and warmer waters beneath. To parameterize this newly quantified transport mechanism, an original boundary layer model was developed. The results are crucial for understanding seasonal ice dynamics on lakes and marginal seas.
Jennifer C. Murphy
Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020, https://doi.org/10.5194/hess-24-991-2020, 2020
Short summary
Short summary
Between 1992 and 2012, concentrations of suspended sediment decreased at about 60 % of 137 US stream sites, with increases at only 17 % of sites. Sediment trends were primarily attributed to changes in land management, but streamflow changes also contributed to these trends at > 50 % of sites. At many sites, decreases in sediment occurred despite small-to-moderate increases in the amount of anthropogenic land use, suggesting sediment reduction activities across the US may be seeing some success.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Eleanore L. Heasley, Nicholas J. Clifford, and James D. A. Millington
Hydrol. Earth Syst. Sci., 23, 2305–2319, https://doi.org/10.5194/hess-23-2305-2019, https://doi.org/10.5194/hess-23-2305-2019, 2019
Short summary
Short summary
River network structure is an overlooked feature of catchments. We demonstrate that network structure impacts broad spatial patterns of river characteristics in catchments using regulatory data. River habitat quality increased with network density, but other characteristics responded differently between study catchments. Network density was quantified using a method that can easily be applied to any catchment. We suggest that river network structure should be included in catchment-level studies.
Gabriel Gerard Rooney, Nicole van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 6357–6369, https://doi.org/10.5194/hess-22-6357-2018, https://doi.org/10.5194/hess-22-6357-2018, 2018
Short summary
Short summary
This paper uses a unique observational dataset of a tropical African lake (L. Kivu) to assess the effect of rain on lake surface temperature. Data from 4 years were categorised by daily rain amount and total net radiation to show that heavy rain may reduce the end-of-day lake temperature by about 0.3 K. This is important since lake surface temperature may influence local weather on short timescales, but the effect of rain on lake temperature has been little studied or parametrised previously.
Chiara Magliozzi, Robert C. Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, https://doi.org/10.5194/hess-22-6163-2018, 2018
Short summary
Short summary
The hyporheic zone is the area below riverbeds where surfacewater and groundwater mix. Hyporheic flow is linked to river processes and functions, but research to date has not sufficiently addressed how factors operating at different scales in time and space drive hyporheic flow variations at reach and larger scales. This review presents the scale-specific processes and interactions that control hyporheic flow, and a case study showing how valley factors affect its expression at the reach scale.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Jason P. Julian, Kirsten M. de Beurs, Braden Owsley, Robert J. Davies-Colley, and Anne-Gaelle E. Ausseil
Hydrol. Earth Syst. Sci., 21, 1149–1171, https://doi.org/10.5194/hess-21-1149-2017, https://doi.org/10.5194/hess-21-1149-2017, 2017
Short summary
Short summary
New Zealand is a natural laboratory for investigating water quality responses to land use intensity because it has one of the highest rates of agricultural intensification globally over recent decades. We interpreted water quality state and trends (1989–2014) of 77 river sites across NZ. We show that the greatest long-term negative impacts on river water quality have been increased cattle densities and legacy nutrients from intensively managed grasslands and plantation forests.
Linda Taft and Mariele Evers
Hydrol. Earth Syst. Sci., 20, 4913–4928, https://doi.org/10.5194/hess-20-4913-2016, https://doi.org/10.5194/hess-20-4913-2016, 2016
Short summary
Short summary
The country of Myanmar and its abundant water resources are facing major challenges due to political and economic reforms, massive investments from neighbouring countries and climate change impacts. Publications on current and future impacts from human activities and climate change on Myanmar's river basins have been reviewed in order to gain an overview of the key drivers in these human–water dynamics. The review reveals the relevance of this information with regard to human–water interactions.
Giri R. Kattel, Xuhui Dong, and Xiangdong Yang
Hydrol. Earth Syst. Sci., 20, 2151–2168, https://doi.org/10.5194/hess-20-2151-2016, https://doi.org/10.5194/hess-20-2151-2016, 2016
M. W. Scown, M. C. Thoms, and N. R. De Jager
Hydrol. Earth Syst. Sci., 20, 431–441, https://doi.org/10.5194/hess-20-431-2016, https://doi.org/10.5194/hess-20-431-2016, 2016
Short summary
Short summary
An index of floodplain surface complexity is developed in this paper and applied to eight floodplains from different geographic settings. Floodplain width and sediment yield were associated with the index or with sub-indicators, whereas hydrology was not. These findings suggest that valley and sediment conditions are important determinants of floodplain surface complexity, and these should complement hydrology as a focus of floodplain research and management.
Y. Liu and G. Wu
Hydrol. Earth Syst. Sci., 20, 93–107, https://doi.org/10.5194/hess-20-93-2016, https://doi.org/10.5194/hess-20-93-2016, 2016
Short summary
Short summary
Lake droughts result in significant hydrological, ecological and economic consequences. This study proposes approaches for quantifying the lake drought features and estimating the contributions from individual factors, taking China’s largest freshwater lake as a case examination. Our results showed that the recently increased lake droughts were due to hydroclimatic effects, with less important contributions from the water impoundments of the world’s largest dam affecting the lake outflows.
E. Nixdorf and B. Boehrer
Hydrol. Earth Syst. Sci., 19, 4505–4515, https://doi.org/10.5194/hess-19-4505-2015, https://doi.org/10.5194/hess-19-4505-2015, 2015
I. Himmelsbach, R. Glaser, J. Schoenbein, D. Riemann, and B. Martin
Hydrol. Earth Syst. Sci., 19, 4149–4164, https://doi.org/10.5194/hess-19-4149-2015, https://doi.org/10.5194/hess-19-4149-2015, 2015
Short summary
Short summary
The article presents a long-term analysis of flood occurrence along the southern part of the Upper Rhine River system and of 14 of its tributaries in France and Germany since 1480 BC. Special focus is given to temporal and spatial variations of flood events and their underlying meteorological causes over time, knowledge about the historical aspects of flood protection and flood vulnerability, while comparing selected historical and modern extreme events, establishing a common evaluation scheme.
M. M. Mrokowska, P. M. Rowiński, and M. B. Kalinowska
Hydrol. Earth Syst. Sci., 19, 4041–4053, https://doi.org/10.5194/hess-19-4041-2015, https://doi.org/10.5194/hess-19-4041-2015, 2015
Short summary
Short summary
This paper presents evaluation of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. Theoretical description is facilitated with the analysis of field data from artificial dam-break flood waves in a small lowland watercourse. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The study shows the Manning coefficient is less sensitive to simplified relations than other parameters.
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Short summary
Historical hydrology combines documentary data with hydrological methods to lengthen flow records to the past centuries. We describe the methodological evolution of historical hydrology under the influence of developments in hydraulics and statistics. Analysis of 45 case studies in Europe show that present flood magnitudes are not unusual in the context of the past, whereas flood frequency has decreased, although some rivers show a reactivation of rare floods over the last two decades.
J. H. Gao, J. Jia, Y. P. Wang, Y. Yang, J. Li, F. Bai, X. Zou, and S. Gao
Hydrol. Earth Syst. Sci., 19, 645–655, https://doi.org/10.5194/hess-19-645-2015, https://doi.org/10.5194/hess-19-645-2015, 2015
P. Ronco, V. Gallina, S. Torresan, A. Zabeo, E. Semenzin, A. Critto, and A. Marcomini
Hydrol. Earth Syst. Sci., 18, 5399–5414, https://doi.org/10.5194/hess-18-5399-2014, https://doi.org/10.5194/hess-18-5399-2014, 2014
Short summary
Short summary
This paper proposes a methodology, shaped by the EU Flood Directive, for the integrated assessment of flood risk at the regional scale for multiple receptors (i.e. people, economic activities, natural and semi-natural systems and cultural heritage) based on the subsequent assessment of hazards, exposure and vulnerability. By means of MCDA and GIS tools, it supports the ranking of the area, sub-areas and hotspots at risk, in order to evaluate the benefits of different risk prevention scenarios.
R. Brázdil, K. Chromá, L. Řezníčková, H. Valášek, L. Dolák, Z. Stachoň, E. Soukalová, and P. Dobrovolný
Hydrol. Earth Syst. Sci., 18, 3873–3889, https://doi.org/10.5194/hess-18-3873-2014, https://doi.org/10.5194/hess-18-3873-2014, 2014
A. Emmer and V. Vilímek
Hydrol. Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, https://doi.org/10.5194/hess-18-3461-2014, 2014
S. T. Harrington and J. R. Harrington
Hydrol. Earth Syst. Sci., 18, 2191–2200, https://doi.org/10.5194/hess-18-2191-2014, https://doi.org/10.5194/hess-18-2191-2014, 2014
J. Dawidek and B. Ferencz
Hydrol. Earth Syst. Sci., 18, 1457–1465, https://doi.org/10.5194/hess-18-1457-2014, https://doi.org/10.5194/hess-18-1457-2014, 2014
J. A. Leach and R. D. Moore
Hydrol. Earth Syst. Sci., 18, 819–838, https://doi.org/10.5194/hess-18-819-2014, https://doi.org/10.5194/hess-18-819-2014, 2014
M. Pan and E. F. Wood
Hydrol. Earth Syst. Sci., 17, 4577–4588, https://doi.org/10.5194/hess-17-4577-2013, https://doi.org/10.5194/hess-17-4577-2013, 2013
T. R. Jackson, R. Haggerty, and S. V. Apte
Hydrol. Earth Syst. Sci., 17, 2747–2779, https://doi.org/10.5194/hess-17-2747-2013, https://doi.org/10.5194/hess-17-2747-2013, 2013
G. Göransson, M. Larson, and D. Bendz
Hydrol. Earth Syst. Sci., 17, 2529–2542, https://doi.org/10.5194/hess-17-2529-2013, https://doi.org/10.5194/hess-17-2529-2013, 2013
F. Gallart, N. Prat, E. M. García-Roger, J. Latron, M. Rieradevall, P. Llorens, G. G. Barberá, D. Brito, A. M. De Girolamo, A. Lo Porto, A. Buffagni, S. Erba, R. Neves, N. P. Nikolaidis, J. L. Perrin, E. P. Querner, J. M. Quiñonero, M. G. Tournoud, O. Tzoraki, N. Skoulikidis, R. Gómez, M. M. Sánchez-Montoya, and J. Froebrich
Hydrol. Earth Syst. Sci., 16, 3165–3182, https://doi.org/10.5194/hess-16-3165-2012, https://doi.org/10.5194/hess-16-3165-2012, 2012
G. Göransson, M. Larson, D. Bendz, and M. Åkesson
Hydrol. Earth Syst. Sci., 16, 1879–1893, https://doi.org/10.5194/hess-16-1879-2012, https://doi.org/10.5194/hess-16-1879-2012, 2012
M. Forsius, T. Saloranta, L. Arvola, S. Salo, M. Verta, P. Ala-Opas, M. Rask, and J. Vuorenmaa
Hydrol. Earth Syst. Sci., 14, 2629–2642, https://doi.org/10.5194/hess-14-2629-2010, https://doi.org/10.5194/hess-14-2629-2010, 2010
D. M. Thompson and C. R. McCarrick
Hydrol. Earth Syst. Sci., 14, 1321–1330, https://doi.org/10.5194/hess-14-1321-2010, https://doi.org/10.5194/hess-14-1321-2010, 2010
Cited articles
Aartolahti, T.: Morphology, vegetation and development of Rokuanvaara, an esker and dune complex in Finland, Soc. Geogr. Fenn., 127, 1–53, 1973.
Ala-aho, P., Rossi, P. M. and Kløve, B.: Interaction of esker groundwater with headwater lakes and streams, J. Hydrol., 500, 144–156, https://doi.org/10.1016/j.jhydrol.2013.07.014, 2013.
Ala-aho, P., Rossi, P. M., Isokangas, E., and Kløve, B.: Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging, J. Hydrol., 522, 391–406, https://doi.org/10.1016/j.jhydrol.2014.12.054, 2015.
Anttila, E.-L. and Heikkinen, M.-L.: Rokuan pinta- ja pohjavesien vedenkorkeudet ja niissä tapahtuneet muutokset, in Rokuan alueen järvet ja lammet, North Ostrobothnia Regional Environment Centre Reports 5-2007, edited by M.-L. Heikkinen and T. Väisänen, North Ostrobothnia Regional Environment Centre, Oulu, Finland, 12–25, 2007.
Bañuelos-Ruedas, F., Angeles-Camacho, C., and Rios-Marcuello, S.: Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights, Renew. Sustain. Energy Rev., 14, 2383–2391, https://doi.org/10.1016/j.rser.2010.05.001, 2010.
Belanger, T. V., Mikutel, D. F., and Churchill, P. A.: Groundwater seepage nutrient loading in a Florida Lake, Water Res., 19, 773–781, 1985.
Brock, T. D., Lee, D. R., Janes, D., and Winek, D.: Groundwater seepage as a nutrient source to a drainage lake; Lake Mendota, Wisconsin, Water Res., 16, 1255–1263, 1982.
Clark, I. D. and Fritz, P.: Environmental isotopes in hydrogeology, Lewis Publishers, New York, USA, 328 pp., 1997.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961.
Craig, H. and Gordon, L. I.: Deuterium and Oxygen-18 Variations in the Ocean and the Marine Atmosphere, in: Stable Isotopes in Oceanographic Studies and Paleotemperatures, edited by: Tongiorgi, E., Laboratorio di geologia nucleare, Pisa, Italy, 9–130, 1965.
Darling, W. G., Bath, A. H., Gibson, J. J. and Rozanski, K.: Isotopes in water, in: Isotopes in palaeoenvironmental research, edited by: Leng, M. J., Springer, Dordrecht, the Netherlands, 1–66, 2005.
Dinçer, T.: The use of oxygen 18 and deuterium concentrations in the water balance of lakes, Water Resour. Res., 4, 1289–1306, https://doi.org/10.1029/WR004i006p01289, 1968.
Dingman, S. L.: Physical Hydrology, 2. ed., Waveland press, Long Grove, IL, USA, 646 pp., 2008.
EC: Directive 2006/118/EC of the European Parliament and of the Council on the protection of groundwater against pollution and deterioration, Official Journal of the European Union, Brussels, Belgium, 13 pp., 2006.
ESRI: Applying a spline interpolation, available at: http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Applying_a_spline_interpolation, last access: 28 February, 2014.
Finnish Environmental Institute: Environmental information system (Hertta), available at: https://wwwp2.ymparisto.fi/scripts/oiva.asp, last access: 11 November. 2013.
Finnish Meteorological Institute: Climate data from Vaala-Pelso meteorological station, available at: http://catalog.fmi.fi/geonetwork/srv/en/main.home, last access: 28 January, 2014.
Froehlich, K., Gonfiantini, R., and Rozanski, K.: Isotopes in lake studies: A historical perspective, in: Isotopes in the Water Cycle. Past, Present and Future of a Developing Science, edited by: Aggarwal, P. K., Gat, J. R., and Froehlich, K. F. O., Springer, Dordrecht, the Netherlands, 139–151, 2005.
Gat, J. R.: Stable isotopes of fresh and saline lakes, in: Physics and Chemistry of Lakes, edited by: Lerman, A., Imboden, D. M., and Gat, J. R., Springer-Verlag, Berlin, 139–165, 1995.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Pl. Sc., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Gat, J. R.: Isotope Hydrology: a Study of the Water Cycle, Imperial College Press, London, 189 pp., 2010.
Gat, J. R. and Bowser, C.: The heavy isotope enrichment of water in coupled evaporative systems, in: Stable Isotope Geochemistry: a Tribute to Samuel Epstein, Special Publication No. 3, edited by: Levinson, A. A., The Geochemical Society, Calgary, Canada, 159–169, 1991.
Gibson, J. J.: Short-term evaporation and water budget comparisons in shallow Arctic lakes using non-steady isotope mass balance, J. Hydrol., 264, 242–261, https://doi.org/10.1016/S0022-1694(02)00091-4, 2002.
Gibson, J. J. and Edwards, T. W. D.: Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada, Global Biogeochem. Cy., 16, 10-1–10-14, https://doi.org/10.1029/2001GB001839, 2002.
Gibson, J. J., Edwards, T. W. D., Bursey, G. G., and Prowse, T. D.: Estimating evaporation using stable isotopes: quantitative results and sensitivity analysis for two catchments in northern Canada, Nord. Hydrol., 24, 79–94, 1993.
Gonfiantini, R.: Environmental isotopes in lake studies, in: Handbook of Environmental Isotope Geochemistry, Vol. 2, The Terrestrial Environment, edited by: Fritz, B. P. and Fontes, J. C., Elsevier, Amsterdam, the Netherlands, 113–168, 1986.
Harbeck, G. E. J.: A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory, US Geol. Surv. Prof. Pap. 272-E, US Geological Survey, Washington, USA, 101–105, 1962.
Horita, J. and Wesolowski, D.: Liquid-vapour fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature, Geochim. Cosmochim. Acta, 58, 3425–3437, https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Horita, J., Rozanski, K., and Cohen, S.: Isotope effects in the evaporation of water: a status report of the Craig-Gordon model., Isotopes Environ. Health Stud., 44, 23–49, https://doi.org/10.1080/10256010801887174, 2008.
Jacob, H. and Sonntag, C.: An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation in Heidelberg, Germany, Tellus B, B, 291–300, https://doi.org/10.1034/j.1600-0889.1991.t01-2-00003.x, 1991.
Jobson, H. E.: Effect of using averaged data on the computed evaporation, Water Resour. Res., 8, 513–518, 1972.
Jonsson, C. E., Leng, M. J., Rosqvist, G. C., Seibert, J., and Arrowsmith, C.: Stable oxygen and hydrogen isotopes in sub-Arctic lake waters from northern Sweden, J. Hydrol., 376, 143–151, https://doi.org/10.1016/j.jhydrol.2009.07.021, 2009.
Justus, C. G. and Mikhail, A.: Height variation of wind speed and distribution statistics, Geophys. Res. Lett., 3, 261–264, https://doi.org/10.1029/GL003i005p00261, 1976.
Kidmose, J., Nilsson, B., Engesgaard, P., Frandsen, M., Karan, S., Landkildehus, F., Søndergaard, M., and Jeppesen, E.: Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration, Hydrogeol. J., 21, 1787–1802, https://doi.org/10.1007/s10040-013-1043-7, 2013.
Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kv\oe rner, J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V., and Widerlund, A.: Groundwater dependent ecosystems –Part I: Hydroecological status and trends, Environ. Sci. Policy, 14, 770–781, https://doi.org/10.1016/j.envsci.2011.04.002, 2011.
Krabbenhoft, D. P., Bowser, C. J., Anderson, M. P., and Valley, J. W.: Estimating Groundwater Exchange With Lakes 1: The Stable Isotope Mass Balance Method, Water Resour. Res., 26, 2445–2453, 1990.
Pajunen, H.: Holocene accumulation of peat in the area of an esker and dune complex, Rokuanvaara, central Finland, Geol. Surv. Finland, Spec. Pap., 20, 125–133, 1995.
Rosenberry, D. O., Labaugh, J. W., and Hunt, R. J.: Use of monitoring wells, portable piezometers, and seepage meters to quantify flow between surface water and ground water, in: Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water, edited by: Rosenberry, D. O. and LaBaugh, J. W., US Geological Survey, Reston, Virginia, USA, 43–70, 2008.
Rosenberry, D. O., Sheibley, R. W., Cox, S. E., Simonds, F. W., and Naftz, D. L.: Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface, Water Resour. Res., 49, 2975–2986, https://doi.org/10.1002/wrcr.20198, 2013.
Rossi, P. M., Ala-aho, P., Ronkanen, A. K., and Kløve, B.: Groundwater-surface water interaction between an esker aquifer and a drained fen, J. Hydrol., 432–433, 52–60, https://doi.org/10.1016/j.jhydrol.2012.02.026, 2012.
Rossi, P. M., Ala-aho, P., Doherty, J., and Kløve, B.: Impact of peatland drainage and restoration on esker groundwater resources: modeling future scenarios for management, Hydrogeol. J., 22, 1131–1145, https://doi.org/10.1007/s10040-014-1127-z, 2014.
Rozanski, K., Froehlich, K., and Mook, W.: Surface water, in: Environmental Isotopes in the Hydrological Cycle, Principals and Applications, Volume III, IHP-V, Technical Documents in Hydrology, Vol. 111, edited by: Mook, W. G., UNESCO/IAEA, Paris, France, 1–117, 2001.
Schoch-Fischer, H., Rozanski, K., Jacob, H., Sonntag, C., Jouzel, J., Östlund, G., and Geyh, M. A.: Hydrometeorological factors controlling the time variation of D, 18O and 3H in atmospheric water vapour and precipitation in the westwind belt, in: Isotope Hydrology, International Atomic Energy Agency, Vienna, Austria, 3–31, 1984.
Shaw, G. D., White, E. S., and Gammons, C. H.: Characterizing groundwater–lake interactions and its impact on lake water quality, J. Hydrol., 492, 69–78, https://doi.org/10.1016/j.jhydrol.2013.04.018, 2013.
Showstack, R.: Discussion of challenges facing water management in the 21st century, EOS T. Am. Geophys. Un., 85, 58, https://doi.org/10.1029/2004EO060002, 2004.
Stets, E. G., Winter, T. C., Rosenberry, D. O., and Striegl, R. G.: Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model, Water Resour. Res., 46, 1–16, https://doi.org/10.1029/2009WR007793, 2010.
Stichler, W., Maloszewski, P., Bertleff, B., and Watzel, R.: Use of environmental isotopes to define the capture zone of a drinking water supply situated near a dredge lake, J. Hydrol., 362, 220–233, https://doi.org/10.1016/j.jhydrol.2008.08.024, 2008.
Tikkanen, M.: The changing landforms of Finland, Fennia, 180, 21–30, 2002.
Turner, K. W., Wolfe, B. B., and Edwards, T. W. D.: Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers, J. Hydrol., 386, 103–117, https://doi.org/10.1016/j.jhydrol.2010.03.012, 2010.
Vogt, H. J.: Isotopentrennung bei der Verdunstung von Wasser, Staatsexamensarbeit, Institut für Umweltphysik, Heidelberg, Germany, 1976.
Winter, T. C. and Carr, M. R.: Hydrologic setting of wetlands in the Cottonwood lake area, Stutsman County, North Dakota, USGS Water-resources investigations report, USGS, Denver, USA, 80–99, 1980.
Yehdegho, B., Rozanski, K., Zojer, H., and Stichler, W.: Interaction of dredging lakes with the adjacent groundwater field: and isotope study, J. Hydrol., 192, 247–270, 1997.
Yi, Y., Brock, B. E., Falcone, M. D., Wolfe, B. B., and Edwards, T. W. D.: A coupled isotope tracer method to characterize input water to lakes, J. Hydrol., 350, 1–13, https://doi.org/10.1016/j.jhydrol.2007.11.008, 2008.
Zimmerman, U.: Determination by stable isotopes of underground inflow and outflow and evaporation of young artificial groundwater lakes, in: Isotopes in lake studies, International Atomic Energy Agency, Vienna, Austria, 87–95, 1979.
Zuber, A.: On the environmental isotope method for determining the water balance components of some lakes, J. Hydrol., 61, 409–427, 1983.
Short summary
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67 kettle lakes and ponds. A quantitative measure for the dependence of a lake on groundwater (G index) introduced in this study revealed generally large groundwater dependency among the lakes. The isotope mass balance approach proved to be especially useful when the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions needs to be determined.
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67...