Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-5255-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-5255-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Relations between macropore network characteristics and the degree of preferential solute transport
M. Larsbo
CORRESPONDING AUTHOR
Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7014, 750 07 Uppsala, Sweden
J. Koestel
Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7014, 750 07 Uppsala, Sweden
N. Jarvis
Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7014, 750 07 Uppsala, Sweden
Related authors
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
K. Steffens, M. Larsbo, J. Moeys, E. Kjellström, N. Jarvis, and E. Lewan
Hydrol. Earth Syst. Sci., 18, 479–491, https://doi.org/10.5194/hess-18-479-2014, https://doi.org/10.5194/hess-18-479-2014, 2014
Elsa Coucheney, Anke Marianne Herrmann, and Nicholas Jarvis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3883, https://doi.org/10.5194/egusphere-2024-3883, 2024
Short summary
Short summary
Simulation models can be used to evaluate changes in soil organic carbon (SOC) stocks in agricultural soils that are important to soil health and climate change mitigation. We describe a simple model that considers SOC turnover in a soil profile regulated by two processes: physical protection due to aggregation and microbial energy limitation. It accurately reproduces trends in SOC in plots receiving different OC inputs and matches survey data on SOC in the soil profile in one region of Sweden.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023, https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary
Short summary
We collated the Open Tension-disk Infiltrometer Meta-database (OTIM). We analysed topsoil hydraulic conductivities at supply tensions between 0 and 100 mm of 466 data entries. We found indications of different flow mechanisms at saturation and at tensions >20 mm. Climate factors were better correlated with near-saturated hydraulic conductivities than soil properties. Land use, tillage system, soil compaction and experimenter bias significantly influenced K to a similar degree to soil properties.
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023, https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary
Short summary
Adapting agricultural practices to future climatic conditions requires us to synthesize the effects of management practices on soil properties with respect to local soil and climate. We showcase different automated text-processing methods to identify topics, extract metadata for building a database and summarize findings from publication abstracts. While human intervention remains essential, these methods show great potential to support evidence synthesis from large numbers of publications.
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Short summary
Soils are heterogeneous, which results in a nonuniform spatial distribution of substrates and the microorganisms feeding on them. Our results show that the variability in the spatial distribution of substrates and microorganisms at the pore scale is crucial because it affects how fast substrates are used by microorganisms and thus the decomposition rate observed at the soil core scale. This work provides a methodology to include microscale heterogeneity in soil carbon cycling models.
Hannes Keck, Bjarne W. Strobel, Jon Petter Gustafsson, and John Koestel
SOIL, 3, 177–189, https://doi.org/10.5194/soil-3-177-2017, https://doi.org/10.5194/soil-3-177-2017, 2017
Short summary
Short summary
Several studies have shown that the cation adsorption sites in soils are heterogeneously distributed in space. In many soil system models this knowledge is not included yet. In our study we proposed a new method to map the 3-D distribution of cation adsorption sites in undisturbed soils. The method is based on three-dimensional X-ray scanning with a contrast agent and image analysis. We are convinced that this approach will strongly aid the development of more realistic soil system models.
K. Steffens, M. Larsbo, J. Moeys, E. Kjellström, N. Jarvis, and E. Lewan
Hydrol. Earth Syst. Sci., 18, 479–491, https://doi.org/10.5194/hess-18-479-2014, https://doi.org/10.5194/hess-18-479-2014, 2014
N. Jarvis, J. Koestel, I. Messing, J. Moeys, and A. Lindahl
Hydrol. Earth Syst. Sci., 17, 5185–5195, https://doi.org/10.5194/hess-17-5185-2013, https://doi.org/10.5194/hess-17-5185-2013, 2013
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Theory development
Snowmelt-mediated isotopic homogenization of shallow till soil
Hydro-pedotransfer functions: a roadmap for future development
The dimensions of deep-layer soil desiccation and its impact on xylem hydraulic conductivity in dryland tree plantations
Prediction of absolute unsaturated hydraulic conductivity – comparison of four different capillary bundle models
Prediction of the absolute hydraulic conductivity function from soil water retention data
Mixed formulation for an easy and robust numerical computation of sorptivity
Signal contribution of distant areas to cosmic-ray neutron sensors – implications for footprint and sensitivity
Technical note: A sigmoidal soil water retention curve without asymptote that is robust when dry-range data are unreliable
Compaction effects on evaporation and salt precipitation in drying porous media
Evaporation front and its motion
Hysteresis in soil hydraulic conductivity as driven by salinity and sodicity – a modeling framework
HESS Opinions: Unsaturated infiltration – the need for a reconsideration of historical misconceptions
Sigmoidal water retention function with improved behaviour in dry and wet soils
The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires
Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices
Beyond Perrault's experiments: repeatability, didactics and complexity
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Energy states of soil water – a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes
Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia
Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone
Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence
Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time
A thermodynamic formulation of root water uptake
Soil–aquifer phenomena affecting groundwater under vertisols: a review
How effective is river restoration in re-establishing groundwater–surface water interactions? – A case study
Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region
Impacts of conservation tillage on the hydrological and agronomic performance of Fanya juus in the upper Blue Nile (Abbay) river basin
Averaged water potentials in soil water and groundwater, and their connection to menisci in soil pores, field-scale flow phenomena, and simple groundwater flows
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 4861–4881, https://doi.org/10.5194/hess-28-4861-2024, https://doi.org/10.5194/hess-28-4861-2024, 2024
Short summary
Short summary
The snowmelt event governs the hydrological cycle of sub-arctic areas. In this study, we conducted a tracer experiment on a forested hilltop in Lapland to identify how high-volume infiltration events modify the soil water storage. We found that a strong tracer signal remained in deeper soil layers after the experiment and over the winter, but it got fully displaced during the snowmelt. We propose a conceptual infiltration model that explains how the snowmelt homogenizes the soil water storage.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Nana He, Xiaodong Gao, Dagang Guo, Yabiao Wu, Dong Ge, Lianhao Zhao, Lei Tian, and Xining Zhao
Hydrol. Earth Syst. Sci., 28, 1897–1914, https://doi.org/10.5194/hess-28-1897-2024, https://doi.org/10.5194/hess-28-1897-2024, 2024
Short summary
Short summary
Deep-layer soil desiccation (DSD) can restrict the sustainability of deep-rooted plantations in water-limited areas. Thus, we explored the extreme effects of DSD based on mass data published and measured on the Loess Plateau and found that the permanent wilting point is a reliable indicator of the moisture limitation of DSD, regardless of tree species, with the corresponding maximum root water uptake depth varying among climatic zones. These dimensions increased the risk of planted trees' death.
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023, https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Short summary
While various expressions for the water retention curve are commonly compared, the capillary conductivity model proposed by Mualem is widely used but seldom compared to alternatives. We compare four different capillary bundle models in terms of their ability to fully predict the hydraulic conductivity. The Mualem model outperformed the three other models in terms of predictive accuracy. Our findings suggest that the widespread use of the Mualem model is justified.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 27, 895–915, https://doi.org/10.5194/hess-27-895-2023, https://doi.org/10.5194/hess-27-895-2023, 2023
Short summary
Short summary
Sorptivity is one of the most important parameters for quantifying water infiltration into soils. In this study, we propose a mixed formulation that avoids numerical issues and allows for the computation of sorptivity for all types of models chosen for describing the soil hydraulic functions and all initial and final conditions. We show the benefits of using the mixed formulation with regard to modeling water infiltration into soils.
Martin Schrön, Markus Köhli, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 27, 723–738, https://doi.org/10.5194/hess-27-723-2023, https://doi.org/10.5194/hess-27-723-2023, 2023
Short summary
Short summary
This paper presents a new analytical concept to answer long-lasting questions of the cosmic-ray neutron sensing community, such as
what is the influence of a distant area or patches of different land use on the measurement signal?or
is the detector sensitive enough to detect a change of soil moisture (e.g. due to irrigation) in a remote field at a certain distance?The concept may support signal interpretation and sensor calibration, particularly in heterogeneous terrain.
Gerrit Huibert de Rooij
Hydrol. Earth Syst. Sci., 26, 5849–5858, https://doi.org/10.5194/hess-26-5849-2022, https://doi.org/10.5194/hess-26-5849-2022, 2022
Short summary
Short summary
The way soils capture infiltrating water affects crops and natural vegetation as well as groundwater recharge. This retention of soil water is captured by a mathematical function that covers all water contents from very dry to water-saturated. Unfortunately, data in the dry range are often absent or unreliable. I modified an earlier function to be more robust in the absence of dry-range data, and present a computer program to estimate the parameters of the new function.
Nurit Goldberg-Yehuda, Shmuel Assouline, Yair Mau, and Uri Nachshon
Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022, https://doi.org/10.5194/hess-26-2499-2022, 2022
Short summary
Short summary
In this work the interactions between soil compaction, evaporation, and salt accumulation at the vadose zone are discussed. Changes at the micro and macro scales of the soil physical and hydraulic properties were studied using high-resolution imagining techniques, alongside column experiments, aiming to characterize water flow and evaporation processes at natural, compacted, and tilled soil conditions. In addition, salt accumulation at the soil profile was examined for these setups.
Jiří Mls
Hydrol. Earth Syst. Sci., 26, 397–406, https://doi.org/10.5194/hess-26-397-2022, https://doi.org/10.5194/hess-26-397-2022, 2022
Short summary
Short summary
In the paper the evaporation front is considered the interface that separates the wet part of a porous medium from its dry surroundings, and its exact definition in time and space is given. Subsequently, the law of the front's motion is derived. The general problem governing completely the front's motion is formulated and, for a special case, solved numerically. It is shown that the solution makes it possible to locate the rate of vaporization in time and space.
Isaac Kramer, Yuval Bayer, Taiwo Adeyemo, and Yair Mau
Hydrol. Earth Syst. Sci., 25, 1993–2008, https://doi.org/10.5194/hess-25-1993-2021, https://doi.org/10.5194/hess-25-1993-2021, 2021
Short summary
Short summary
Salinity and sodicity can cause irreversible degradation to soil, threatening agricultural production and food security. To date, very little is known about the degree to which soil degradation can be reversible. We introduce a model for describing this partial reversibility (hysteresis) and lay out the experimental procedures necessary for characterizing the soil in this regard. We must shift our focus from degradation measurements to reversal measurements so that we can maintain healthy soils.
Peter F. Germann
Hydrol. Earth Syst. Sci., 25, 1097–1101, https://doi.org/10.5194/hess-25-1097-2021, https://doi.org/10.5194/hess-25-1097-2021, 2021
Short summary
Short summary
This is the last paper submitted by Peter Germann before he died in December 2020. Peter reviews the development of capillary flow theory since the work of Briggs (1897) and Richards (1931), who raised capillary flow to a soil hydrological dogma. Attempts to correct the dogma led to concepts of non-equilibrium flow, macropore flow, and preferential flow during infiltration. Viscous film flow is proposed as an alternative approach to capillarity-driven flow during unsaturated infiltration.
Gerrit Huibert de Rooij, Juliane Mai, and Raneem Madi
Hydrol. Earth Syst. Sci., 25, 983–1007, https://doi.org/10.5194/hess-25-983-2021, https://doi.org/10.5194/hess-25-983-2021, 2021
Short summary
Short summary
The way soils capture infiltrating water affects crops and natural vegetation and groundwater recharge. This retention of soil water is described by a mathematical function that covers all water contents from very dry to water saturated. We combined two existing lines of research to improve the behaviour of a popular function for very dry and very wet conditions. Our new function could handle a wider range of conditions than earlier curves. We provide fits to a wide range of soils.
William J. Massman
Hydrol. Earth Syst. Sci., 25, 685–709, https://doi.org/10.5194/hess-25-685-2021, https://doi.org/10.5194/hess-25-685-2021, 2021
Short summary
Short summary
Increasing fire frequency and severity now poses a threat to most of the world's wildlands and forested ecosystems and their benefits. The HMV (Heat–Moisture–Vapor) model is a tool to manage fuels to help mitigate the consequences of fire and promote soil and vegetation recovery after fire. The model's performance is surprisingly good, but it also provides insights into the existence of previously unobserved feedbacks and other physical processes that occur during fire.
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
Stefano Barontini and Matteo Settura
Hydrol. Earth Syst. Sci., 24, 1907–1926, https://doi.org/10.5194/hess-24-1907-2020, https://doi.org/10.5194/hess-24-1907-2020, 2020
Short summary
Short summary
More than 300 years after its first appearance, Perrault's De l'origine des fontaines provokes intriguing stimuli and suggestions. We discuss its epistemological relevance through the lens of the repeatability of the experiments, of the didactic aspects which arise for modern teaching of hydrology, and of the author's attitude in facing the complexity of the hydrological processes. The analysis shows that the birth of modern hydrology and the scientific revolution were closely entwined.
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary
Short summary
We find that the stable isotopic compositions of mobile and matrix bound soil water are continuously different over 8 months. Long-term data further show that these isotopic differences result from the refilling of small soil pores by isotopically depleted rains during low soil moisture conditions. Thus, subsurface water is not well mixed, but flow velocities and storage in soils are highly variable; this has important implications for ecohydrological studies and soil hydrological modeling.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Kashif Mahmud, Gregoire Mariethoz, Andy Baker, and Pauline C. Treble
Hydrol. Earth Syst. Sci., 22, 977–988, https://doi.org/10.5194/hess-22-977-2018, https://doi.org/10.5194/hess-22-977-2018, 2018
Short summary
Short summary
This study explores the relationship between drip water and rainfall in a SW Australian karst, where both intra- and interannual hydrological variations are strongly controlled by seasonal variations in recharge. The hydrological behavior of cave drips is examined at daily resolution with respect to mean discharge and the flow variation. We demonstrate that the analysis of the time series produced by cave drip loggers generates useful hydrogeological information that can be applied generally.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
Yonggang Yang and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1757–1767, https://doi.org/10.5194/hess-21-1757-2017, https://doi.org/10.5194/hess-21-1757-2017, 2017
Short summary
Short summary
This paper investigates soil water migration processes in the Loess Plateau using isotopes. The soil water migration is dominated by piston-type flow, but rarely preferential flow. Soil water from the soil lay (20–40 cm) contributed to 6–12% of plant xylem water, while soil water at the depth of 40–60 cm is the largest component (range from 60 to 66 %), soil water below 60 cm depth contributed 8–14 % to plant xylem water, and only 5–8 % is derived from precipitation.
M. Levent Kavvas, Ali Ercan, and James Polsinelli
Hydrol. Earth Syst. Sci., 21, 1547–1557, https://doi.org/10.5194/hess-21-1547-2017, https://doi.org/10.5194/hess-21-1547-2017, 2017
Short summary
Short summary
In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. By the introduction of the Brooks–Corey constitutive relationships, an explicit form of the equations is obtained. The developed governing equations, in their fractional time but integer space forms, show behavior consistent with the previous experimental observations.
Anke Hildebrandt, Axel Kleidon, and Marcel Bechmann
Hydrol. Earth Syst. Sci., 20, 3441–3454, https://doi.org/10.5194/hess-20-3441-2016, https://doi.org/10.5194/hess-20-3441-2016, 2016
Short summary
Short summary
This theoretical paper describes the energy fluxes and dissipation along the flow paths involved in root water uptake, an approach that is rarely taken. We show that this provides useful additional insights for understanding the biotic and abiotic impediments to root water uptake. This approach shall be applied to explore efficient water uptake strategies and help locate the limiting processes in the complex soil–plant–atmosphere system.
D. Kurtzman, S. Baram, and O. Dahan
Hydrol. Earth Syst. Sci., 20, 1–12, https://doi.org/10.5194/hess-20-1-2016, https://doi.org/10.5194/hess-20-1-2016, 2016
Short summary
Short summary
Vertisols are cracking clayey, arable soils that often overlay groundwater reservoirs. The soil cracks enable flow that bypasses soil blocks, which results in both relatively fresh recharge of the underlying groundwater and contamination with reactive contaminants. These special phenomena, as well as unique mechanism of salinization after cultivation and relative resilience to contamination by nitrate typical to groundwater under vertisols, are reviewed in this study.
A.-M. Kurth, C. Weber, and M. Schirmer
Hydrol. Earth Syst. Sci., 19, 2663–2672, https://doi.org/10.5194/hess-19-2663-2015, https://doi.org/10.5194/hess-19-2663-2015, 2015
Short summary
Short summary
This study investigates the effects of river restoration on groundwater–surface water interactions in a losing urban stream. Investigations were performed using Distributed Temperature Sensing (DTS). The results indicate that the highest surface water downwelling occurred at the tip of a gravel island newly installed during river restoration, leading to the conclusion that in this specific setting, river restoration was effective in locally enhancing groundwater–surface water interactions.
F. Ries, J. Lange, S. Schmidt, H. Puhlmann, and M. Sauter
Hydrol. Earth Syst. Sci., 19, 1439–1456, https://doi.org/10.5194/hess-19-1439-2015, https://doi.org/10.5194/hess-19-1439-2015, 2015
Short summary
Short summary
Soil moisture was observed along a strong semi-arid climatic gradient in a Mediterranean karst area. Soil moisture data and soil hydraulic modelling with Hydrus-1D revealed a strong dependency of percolation fluxes with rainfall amounts and intensity during heavy rainfall events. Spatial and temporal extrapolation of the model illustrated the high variability of seasonal percolation amounts among single years and showed strong correlations between soil depth and potential groundwater recharge.
M. Temesgen, S. Uhlenbrook, B. Simane, P. van der Zaag, Y. Mohamed, J. Wenninger, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 16, 4725–4735, https://doi.org/10.5194/hess-16-4725-2012, https://doi.org/10.5194/hess-16-4725-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 15, 1601–1614, https://doi.org/10.5194/hess-15-1601-2011, https://doi.org/10.5194/hess-15-1601-2011, 2011
Cited articles
Abramoff, D., Magalhaes, P. J., and Ram, S. J.: Image processing with ImageJ, Biophotonics Int., 11, 36–42, 2004.
Beven, K. J., Henderson, D. E., and Reeves, A. D.: Dispersion parameters for undisturbed partially saturated soil, J. Hydrol., 143, 19–43, 1993.
Berkowitz, B. and Balberg, I.: Percolation theory and its application to groundwater hydrology, Water Resour. Res., 29, 775–794, 1993.
Bianchi, M., Zheng, C., Wilson, C., Tick, G. R., Liu, G., and Gorelick, S. M.: Spatial connectivity in a highly heterogeneous aquifer: from cores to preferential flow paths, Water Resour. Res., 47, W05524, https://doi.org/10.1029/2009WR008966, 2011.
Bolte, S. and Cordelières, F. P.: A guided tour into subcellular colocalization analysis in light microscopy, J. Microscopy, 224, 213–232, 2006.
Brusseau, M. L. and Rao, P. S. C.: Modeling solute transport in structured soils – a review, Geoderma, 46, 169–192, 1990.
CRC Handbook of Chemistry and Physics, 70th Edition, edited by: Weast, R. C., CRC Press, Boca Raton, FL, USA, p. D-221, 1989.
Dal Ferro, N., Charrier, P., and Morari, F.: Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment, Geoderma, 204, 84–93, 2013.
Doube, M., Klosowski, M. M., Arganda-Carreras, I., Cordelieres, F. P., Dougherty, R. P., Jackson, J. S., Schmid, B., Hutchinson, J. R., and Shefelbine, S. J.: BoneJ Free and extensible bone image analysis in ImageJ, Bone, 47, 1076–1079, 2010.
Dyson, J. S. and White, R. E.: The effect of irrigation rate on solute transport in soil during steady water flow, J. Hydrol., 107, 19–29, 1989.
Gerke, H. H. and van Genuchten, M. T.: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media, Water Resour. Res., 29, 305–319, 1993.
Ghafoor, A., Koestel, J., Larsbo, M., Moeys, J., and Jarvis, N.: Soil properties and susceptibility to preferential solute transport in tilled topsoil at the catchment scale, J. Hydrol., 492, 190–199, 2013.
Haws, N. W., Das, B. S., and Rao, P. S. C.: Dual-domain solute transfer and transport processes: evaluation in batch and transport experiments, J. Contam. Hydrol., 75, 257–280, 2004.
Holland, J. E., White, R. E., and Edis, R.: The relation between soil structure and solute transport under raised bed cropping and conventional cultivation in south-western Victoria, Austral., J. Soil Res., 45, 577–585, 2007.
Horn, R., Taubner, H., Wuttke, M., and Baumgartl, T.: Soil physical properties related to soil structure, Soil Till. Res., 30, 187–216, 1994.
Hunt, A. G.: Applications of percolation theory to porous media with distributed local conductances, Adv. Water Resour., 24, 279–307, 2001.
Iassonov, P. and Tuller, M.: Application of segmentation for correction of intensity bias in X-Ray computed tomography images, Vadose Zone J., 9, 187–191, 2010.
Jarvis, N. J.: A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality, Eur. J. Soil Sci., 58, 523–546, 2007.
Jarvis, N. J., Bergström, L., and Dik, P. E.: Modelling water and solute transport in macroporous soil. II. Chloride breakthrough under non-steady flow, J. Soil Sci., 42, 71–81, 1991.
Jarvis, N. J., Etana, A., and Stagnitti, F.: Water repellency, near-saturated infiltration and preferential solute transport in a macroporous clay soil, Geoderma, 143, 223–230, 2008.
Jarvis, N. J., Moeys, J., Koestel, J., and Hollis, J. M.: Preferential flow in a pedological perspective. In: Hydropedology: synergistic integration of soil science and hydrology, edited by: Lin, H., Academic Press, Elsevier B.V., Amsterdam, 75–120, 2012.
Jarvis, N., Koestel, J., Messing, I., Moeys, J., and Lindahl, A.: Influence of soil, land use and climatic factors on the hydraulic conductivity of soil, Hydrol. Earth Syst. Sci., 17, 5185–5195, https://doi.org/10.5194/hess-17-5185-2013, 2013.
Jury, W. A. and Roth, K.: Transfer functions and solute movement through soil: theory and applications. Birkhauser Verlag AG, Basel Switzerland, 226 pp., 1990.
Kamra, S. K. and Lennartz, B.: Quantitative indices to characterize the extent of preferential flow in soils, Environ. Modell. Softw., 20, 903–915, 2005.
Kim, H., Anderson, S. H., Motavalli, P. P., and Gantzer, C. J.: Compaction effects on soil macropore geometry and related parameters for an arable field, Geoderma, 160, 244–251, 2010.
Knudby, C. and Carrera, J.: On the relationship between indicators of geostatistical, flow and transport connectivity, Adv. Water Resour., 28, 405–421, 2005.
Koch, S. and Flühler, H.: Solute transport in aggregated porous media: comparing model independent and dependent parameter estimation, Water Air Soil Poll., 68, 275–289, 1993.
Koestel, J. and Jorda, H.: What determines the strength of preferential transport in undisturbed soil under steady-state flow?, Geoderma, 217, 144–160, 2014.
Koestel, J. and Larsbo, M.: Imaging and quantification of preferential solute transport in soil macropores, Water Resour. Res., 50, 4357–4378, 2014.
Koestel, J. K., Moeys, J., and Jarvis, N. J.: Evaluation of nonparametric shape measures for solute breakthrough curves, Vadose Zone J., 10, 1261–1275, 2011.
Koestel, J. K., Moeys, J., and Jarvis, N. J.: Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport, Hydrol. Earth Syst. Sci., 16, 1647–1665, https://doi.org/10.5194/hess-16-1647-2012, 2012.
Koestel, J. K., Norgaard, T., Luong, N. M., Vendelboe, A. L., Moldrup, P., Jarvis, N. J., Lamande, M., Iversen, B. V., and de Jonge, L. W.: Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale, Water Resour. Res., 49, 790–807, 2013.
Langner, H. W., Gaber, H. M., Wraith, J. M., Huwe, B., and Inskeep, W. P.: Preferential flow through intact soil cores: Effects of matric head, Soil Sci. Soc. Am. J., 63, 1591–1598, 1999.
Larsbo, M., Stenström, J., Etana, A., Börjesson, E., and Jarvis, N.J.: Herbicide sorption, degradation, and leaching in three Swedish soils under long-term conventional and reduced tillage, Soil Till. Res., 105, 200–208, 2009.
Liu, J., Aronsson, H., Ulén, B., and Bergström, L.: Potential phosphorus leaching from sandy topsoils with different fertilizer histories before and after application of pig slurry, Soil Use Manage., 28, 457–467, 2012.
Luo, L. and Lin, H.: Lacunarity and fractal analyses of soil macropores and preferential transport using micro-X-ray computed tomography, Vadose Zone J., 8, 233–241, 2009.
Luo, L., Lin, H., and Schmidt, J.: Quantitative relationships between soil macropore characteristics and preferential flow and transport, Soil Sci. Soc. Am. J., 74, 1929–1937, 2010.
Naveed, M., Moldrup, P., Arthur, E., Wildenschild, D., Eden, M., Lamandé, M., Vogel, H.-J., and de Jonge, L. W.: Revealing soil structure and functional macroporosity along a clay gradient using X-ray computed tomography, Soil Sci. Soc. Am. J., 77, 403–411, 2013.
Otsu, N.: Threshold selection method from grey-level histograms, IEEE T. Sys. Man. Cyb., 9, 62–66, 1979.
Perret, J. S., Prasher, S. O., and Kacimov, A. R.: Mass fractal dimension of soil macropores using computed tomography: from the box-counting to the cube-counting algorithm, Eur. J. Soil Sci., 54, 569–579, 2003.
Peyton, R. L., Gantzer, C. J., Anderson, S. H., Haeffner, B. A., and Pfeifer, P.: Fractal dimension to describe soil macropore structure using X-ray computed tomography, Water Resour. Res., 30, 691–700, 1994.
Pot, V., Simunek, J., Benoit, P., Coquet, Y., Yra, A., and Martinez-Cordon, M. J.: Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores, J. Contam. Hydrol., 81, 63–88, 2005.
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org/ (last access: 1 July 2014), 2012.
Renard, P. and Allard, D.: Connectivity metrics for subsurface flow and transport, Adv. Water Resour., 51, 168–196, 2013.
Seyfried, M. S. and Rao, P. S. C.: Solute transport in undisturbed columns of an aggregated tropical soil: preferential flow effects, Soil Sci. Soc. Am. J., 51, 1434–1444, 1987.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.: Fiji: an open-source platform for biological image analysis, Nat. Methods, 9, 676–682, 2012.
Schlüter, S., Sheppard, A., Brown, K., and Wildenschild, D.: Image processing of multiphase images obtained via X-ray microtomography: A review, Water Resour. Res., 50, 3615–3639, 2014.
Schulin, R., Wierenga, P. J., Fluhler, H., and Leuenberger, J.: Solute transport through a stony soil, Soil Sci. Soc. Am. J., 51, 36–42, 1987.
Thomas, G. W., and Phillips, R. E.: Consequences of water-movement in macropores, J. Environ. Qual., 8, 149–152, 1979.
Vanderborght, J., Vanclooster, M., Timmerman, A., Seuntjens, P., Mallants, D., Kim, D. J., Jacques, D., Hubrechts, L., Gonzalez, C., Feyen, J., Diels, J., and Deckers, J.: Overview of inert tracer experiments in key Belgian soil types: Relation between transport and soil morphological and hydraulic properties, Water Resour. Res., 37, 2873–2888, 2001.
Vanderborght, J., Gahwiller, P., and Fluhler, H.: Identification of transport processes in soil cores using fluorescent tracers, Soil Sci. Soc. Am. J., 66, 774–787, 2002.
Vervoort, R. W., Radcliffe, D. E., and West L. T.: Soil structure development and preferential solute flow, Water Resour. Res., 35, 913–928, 1999.
Vogel, H.-J. and Kretzschmar, A.: Topological characterization of pore space in soil – sample preparation and digital image-processing, Geoderma, 73, 23–38, 1996.
Vogel, H.-J., Weller, U., and Schlüter, S.: Quantification of soil structure based on Minkowski functions, Comput. Geosci., 36, 1236–1245, 2010.
Wildenschild, D. and Sheppard, A. P.:, X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Adv. Water Resour., 51, 217–246, 2013.
Yu, Z. B., Dong, W. Q., Young, M. H., Li, Y. P., and Yan, T.: On evaluating characteristics of the solute transport in the arid vadose zone, Ground Water, 52, 50–62, 2014.
Short summary
The characteristics of the macropore network determine the potential for fast transport of solutes through soil. Such characteristics computed from 3-dimensional X-ray tomography images were combined with measured solute breakthrough curves and near-saturated hydraulic conductivities. At a given flow rate, smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities resulted in a greater degree of preferential transport.
The characteristics of the macropore network determine the potential for fast transport of...