Articles | Volume 18, issue 6
https://doi.org/10.5194/hess-18-2141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-2141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach
Y. Elshafei
School of Earth & Environment, The University of Western Australia, Crawley WA 6009, Australia
M. Sivapalan
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, N. Mathews Avenue, Urbana, IL 61801, USA
Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Computing Applications Building, Springfield Avenue, Urbana, IL 61801, USA
M. Tonts
School of Earth & Environment, The University of Western Australia, Crawley WA 6009, Australia
M. R. Hipsey
School of Earth & Environment, The University of Western Australia, Crawley WA 6009, Australia
Related authors
No articles found.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Peisheng Huang, Karl Hennig, Jatin Kala, Julia Andrys, and Matthew R. Hipsey
Hydrol. Earth Syst. Sci., 24, 5673–5697, https://doi.org/10.5194/hess-24-5673-2020, https://doi.org/10.5194/hess-24-5673-2020, 2020
Short summary
Short summary
Our results conclude that the climate change in the past decades has a remarkable effect on the hydrology of a large shallow lagoon with the same magnitude as that caused by the opening of an artificial channel, and it also highlighted the complexity of their interactions. We suggested that the consideration of the projected drying trend is essential in designing management plans associated with planning for environmental water provision and setting water quality loading targets.
Benya Wang, Matthew R. Hipsey, and Carolyn Oldham
Geosci. Model Dev., 13, 4253–4270, https://doi.org/10.5194/gmd-13-4253-2020, https://doi.org/10.5194/gmd-13-4253-2020, 2020
Short summary
Short summary
Surface water nutrients are essential to manage water quality, but it is hard to analyse trends. We developed a hybrid model and compared with other models for the prediction of six different nutrients. Our results showed that the hybrid model had significantly higher accuracy and lower prediction uncertainty for almost all nutrient species. The hybrid model provides a flexible method to combine data of varied resolution and quality and is accurate for the prediction of nutrient concentrations.
J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill
Hydrol. Earth Syst. Sci., 24, 717–734, https://doi.org/10.5194/hess-24-717-2020, https://doi.org/10.5194/hess-24-717-2020, 2020
Short summary
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.
Matthew R. Hipsey, Louise C. Bruce, Casper Boon, Brendan Busch, Cayelan C. Carey, David P. Hamilton, Paul C. Hanson, Jordan S. Read, Eduardo de Sousa, Michael Weber, and Luke A. Winslow
Geosci. Model Dev., 12, 473–523, https://doi.org/10.5194/gmd-12-473-2019, https://doi.org/10.5194/gmd-12-473-2019, 2019
Short summary
Short summary
The General Lake Model (GLM) has been developed to undertake simulation of a diverse range of wetlands, lakes, and reservoirs. The model supports the science needs of the Global Lake Ecological Observatory Network (GLEON), a network of lake sensors and researchers attempting to understand lake functioning and address questions about how lakes around the world vary in response to climate and land use change. The paper describes the science basis and application of the model.
Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 22, 1665–1693, https://doi.org/10.5194/hess-22-1665-2018, https://doi.org/10.5194/hess-22-1665-2018, 2018
Short summary
Short summary
The paper presents major milestones in the transformation of hydrologic science over the last 50 years from engineering hydrology to Earth system science. This transformation has involved a transition from a focus on time (empirical) to space (Newtonian mechanics), and to time (Darwinian co-evolution). Hydrology is now well positioned to again return to a focus on space or space–time and a move towards regional process hydrology.
Mahendran Roobavannan, Tim H. M. van Emmerik, Yasmina Elshafei, Jaya Kandasamy, Matthew R. Sanderson, Saravanamuthu Vigneswaran, Saket Pande, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 22, 1337–1349, https://doi.org/10.5194/hess-22-1337-2018, https://doi.org/10.5194/hess-22-1337-2018, 2018
Short summary
Short summary
This paper reviews a relevant social science that links cultural factors to environmental decision-making and assesses how to better incorporate its insights to enhance sociohydrological (SH) models and the knowledge gaps that remain to be filled. The paper concludes with a discussion of challenges and opportunities in terms of generalization of SH models and the use of available data to facilitate future prediction and allow model transfer to ungauged basins.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Guangyao Gao, Jianjun Zhang, Yu Liu, Zheng Ning, Bojie Fu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017, https://doi.org/10.5194/hess-21-4363-2017, 2017
Short summary
Short summary
This study extracted spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield across the Loess Plateau during 1961–2011. The impacts of precipitation on sediment yield declined with time and the precipitation-sediment relationship showed a coherent spatial pattern. The sediment coefficient, representing the effect of LUCC, decreases linearly with fraction of area treated with erosion control measures and the slopes were highly variable among the catchments.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Amar V. V. Nanda, Leah Beesley, Luca Locatelli, Berry Gersonius, Matthew R. Hipsey, and Anas Ghadouani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-307, https://doi.org/10.5194/hess-2017-307, 2017
Revised manuscript not accepted
Short summary
Short summary
When anthropological effects result in changes to wetland hydrology; this often leads to a decline in their ecological integrity. We present a policy oriented approach that assesses the suitability of management when rigorous ecological data are lacking. We link ecological objectives from management authorities to threshold values for water depth defined in policy. Results show insufficient water levels for key ecological objectives and we conclude that current policy is ineffective.
A. M. Carmona, G. Poveda, M. Sivapalan, S. M. Vallejo-Bernal, and E. Bustamante
Hydrol. Earth Syst. Sci., 20, 589–603, https://doi.org/10.5194/hess-20-589-2016, https://doi.org/10.5194/hess-20-589-2016, 2016
Short summary
Short summary
We study a 3-D generalization of Budyko's framework that captures the interdependence among actual and potential evapotranspiration and precipitation. We demonstrate that Budyko-type equations present an inconsistency in humid environments, which we overcome by proposing a physically consistent power law that incorporates the complementary relationship of evapotranspiration into the Budyko curve. Evidence of space-time symmetry and signs of co-evolution of catchments are also found in Amazonia.
D. Liu, F. Tian, M. Lin, and M. Sivapalan
Hydrol. Earth Syst. Sci., 19, 1035–1054, https://doi.org/10.5194/hess-19-1035-2015, https://doi.org/10.5194/hess-19-1035-2015, 2015
Short summary
Short summary
A simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of a co-evolutionary model. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. The hydrological equation focusing on water balance is coupled to the evolutionary equations of the other three sub-systems.
T. H. M. van Emmerik, Z. Li, M. Sivapalan, S. Pande, J. Kandasamy, H. H. G. Savenije, A. Chanan, and S. Vigneswaran
Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, https://doi.org/10.5194/hess-18-4239-2014, 2014
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
S. Pande, M. Ertsen, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3239–3258, https://doi.org/10.5194/hess-18-3239-2014, https://doi.org/10.5194/hess-18-3239-2014, 2014
E. J. Coopersmith, B. S. Minsker, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3095–3107, https://doi.org/10.5194/hess-18-3095-2014, https://doi.org/10.5194/hess-18-3095-2014, 2014
Y. Li, G. Gal, V. Makler-Pick, A. M. Waite, L. C. Bruce, and M. R. Hipsey
Biogeosciences, 11, 2939–2960, https://doi.org/10.5194/bg-11-2939-2014, https://doi.org/10.5194/bg-11-2939-2014, 2014
L. C. Bruce, P. L. M. Cook, I. Teakle, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 1397–1411, https://doi.org/10.5194/hess-18-1397-2014, https://doi.org/10.5194/hess-18-1397-2014, 2014
Y. Liu, F. Tian, H. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, https://doi.org/10.5194/hess-18-1289-2014, 2014
J. Kandasamy, D. Sounthararajah, P. Sivabalan, A. Chanan, S. Vigneswaran, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1027–1041, https://doi.org/10.5194/hess-18-1027-2014, https://doi.org/10.5194/hess-18-1027-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
K. A. Sawicz, C. Kelleher, T. Wagener, P. Troch, M. Sivapalan, and G. Carrillo
Hydrol. Earth Syst. Sci., 18, 273–285, https://doi.org/10.5194/hess-18-273-2014, https://doi.org/10.5194/hess-18-273-2014, 2014
S. E. Thompson, M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 5013–5039, https://doi.org/10.5194/hess-17-5013-2013, https://doi.org/10.5194/hess-17-5013-2013, 2013
M. A. Yaeger, M. Sivapalan, G. F. McIsaac, and X. Cai
Hydrol. Earth Syst. Sci., 17, 4607–4623, https://doi.org/10.5194/hess-17-4607-2013, https://doi.org/10.5194/hess-17-4607-2013, 2013
A. L. Ruibal-Conti, R. Summers, D. Weaver, and M. R. Hipsey
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11035-2013, https://doi.org/10.5194/hessd-10-11035-2013, 2013
Revised manuscript not accepted
J. L. Salinas, G. Laaha, M. Rogger, J. Parajka, A. Viglione, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2637–2652, https://doi.org/10.5194/hess-17-2637-2013, https://doi.org/10.5194/hess-17-2637-2013, 2013
A. Viglione, J. Parajka, M. Rogger, J. L. Salinas, G. Laaha, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013, https://doi.org/10.5194/hess-17-2263-2013, 2013
P. A. Troch, G. Carrillo, M. Sivapalan, T. Wagener, and K. Sawicz
Hydrol. Earth Syst. Sci., 17, 2209–2217, https://doi.org/10.5194/hess-17-2209-2013, https://doi.org/10.5194/hess-17-2209-2013, 2013
J. Parajka, A. Viglione, M. Rogger, J. L. Salinas, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 1783–1795, https://doi.org/10.5194/hess-17-1783-2013, https://doi.org/10.5194/hess-17-1783-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
River hydraulic modeling with ICESat-2 land and water surface elevation
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Technical note: How physically based is hydrograph separation by recursive digital filtering?
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Disentangling scatter in long-term concentration–discharge relationships: the role of event types
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
A time-varying distributed unit hydrograph method considering soil moisture
Hydrological response to climate change and human activities in the Three-River Source Region
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Improving hydrologic models for predictions and process understanding using neural ODEs
Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Development of a national 7-day ensemble streamflow forecasting service for Australia
Future snow changes and their impact on the upstream runoff in Salween
Technical note: Do different projections matter for the Budyko framework?
Representation of seasonal land use dynamics in SWAT+ for improved assessment of blue and green water consumption
Large-sample assessment of varying spatial resolution on the streamflow estimates of the wflow_sbm hydrological model
An algorithm for deriving the topology of belowground urban stormwater networks
Assessing the influence of water sampling strategy on the performance of tracer-aided hydrological modeling in a mountainous basin on the Tibetan Plateau
Flood forecasting with machine learning models in an operational framework
Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
High-resolution satellite products improve hydrological modeling in northern Italy
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Spatial extrapolation of stream thermal peaks using heterogeneous time series at a national scale
Revisiting parameter sensitivities in the variable infiltration capacity model across a hydroclimatic gradient
Deep learning rainfall–runoff predictions of extreme events
Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling does
Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise
Effects of spatial and temporal variability in surface water inputs on streamflow generation and cessation in the rain–snow transition zone
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation
Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör
Impact of spatial distribution information of rainfall in runoff simulation using deep learning method
Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses
Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro Catchment
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023, https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
Short summary
This study examines, for the first time, the potential of various machine learning models in streamflow prediction over the Sutlej River basin (rainfall-dominated zone) in western Himalaya during the period 2041–2070 (2050s) and 2071–2100 (2080s) and its relationship to climate variability. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between the 2050s and 2080s by 0.79 to 1.43 % for SSP585 and by 0.87 to 1.10 % for SSP245.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023, https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Short summary
Daily and hourly rainfall observations were inputted to a Soil and Water Assessment Tool (SWAT) hydrological model to investigate the impacts of rainfall temporal resolution on a discharge simulation. Results indicated that groundwater flow parameters were more sensitive to daily time intervals, and channel routing parameters were more influential for hourly time intervals. This study suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin.
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023, https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
Short summary
An important hydrological issue is to identify components of streamflow that react to precipitation with different degrees of attenuation and delay. From the multitude of methods that have been developed for this so-called hydrograph separation, a specific, frequently used one is singled out here. It is shown to be derived from plausible physical principles. This increases confidence in its results.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022, https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
Short summary
When designing flood forecasting models, it is necessary to use all available data to achieve the most accurate predictions possible. This manuscript explores two basic ways of ingesting near-real-time streamflow data into machine learning streamflow models. The point we want to make is that when working in the context of machine learning (instead of traditional hydrology models that are based on
bio-geophysics), it is not necessary to use complex statistical methods for injecting sparse data.
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022, https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-355, https://doi.org/10.5194/hess-2022-355, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Three-River Source Region (TRSR) plays an extremely important role in water resources security and ecological and environmental protection in China and even all of Southeast Asia. This study used the variable infiltration capacity (VIC) land surface hydrologic model linked with the degree-day factor algorithm to simulate the runoff change in the TRSR. These results will help to guide current and future regulation and management of water resources in the TRSR.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022, https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Chenhao Chai, Lei Wang, Deliang Chen, Jing Zhou, Hu Liu, Jingtian Zhang, Yuanwei Wang, Tao Chen, and Ruishun Liu
Hydrol. Earth Syst. Sci., 26, 4657–4683, https://doi.org/10.5194/hess-26-4657-2022, https://doi.org/10.5194/hess-26-4657-2022, 2022
Short summary
Short summary
This work quantifies future snow changes and their impacts on hydrology in the upper Salween River (USR) under SSP126 and SSP585 using a cryosphere–hydrology model. Future warm–wet climate is not conducive to the development of snow. The rain–snow-dominated pattern of runoff will shift to a rain-dominated pattern after the 2040s under SSP585 but is unchanged under SSP126. The findings improve our understanding of cryosphere–hydrology processes and can assist water resource management in the USR.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022, https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for the estimation of the long-term mean annual evaporation and runoff. The Budyko curve can be defined as a function of a wetness index or a dryness index. We found that differences can occur and that there is an uncertainty due to the different formulations.
Anna Msigwa, Celray James Chawanda, Hans C. Komakech, Albert Nkwasa, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 4447–4468, https://doi.org/10.5194/hess-26-4447-2022, https://doi.org/10.5194/hess-26-4447-2022, 2022
Short summary
Short summary
Studies using agro-hydrological models, like the Soil and Water Assessment Tool (SWAT), to map evapotranspiration (ET) do not account for cropping seasons. A comparison between the default SWAT+ set-up (with static land use representation) and a dynamic SWAT+ model set-up (with seasonal land use representation) is made by spatial mapping of the ET. The results show that ET with seasonal representation is closer to remote sensing estimates, giving better performance than ET with static land use.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Taher Chegini and Hong-Yi Li
Hydrol. Earth Syst. Sci., 26, 4279–4300, https://doi.org/10.5194/hess-26-4279-2022, https://doi.org/10.5194/hess-26-4279-2022, 2022
Short summary
Short summary
Belowground urban stormwater networks (BUSNs) play a critical and irreplaceable role in preventing or mitigating urban floods. However, they are often not available for urban flood modeling at regional or larger scales. We develop a novel algorithm to estimate existing BUSNs using ubiquitously available aboveground data at large scales based on graph theory. The algorithm has been validated in different urban areas; thus, it is well transferable.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning (ML) models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses ML models for forecasting river stage and flood inundation maps and discusses the models' performances. In 2021, more than 100 million flood alerts were sent to people near rivers over an area of 470 000 km2.
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022, https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Short summary
Our catchment-scale transit time modeling study shows that including stable isotope data on evapotranspiration in addition to the commonly used stream water isotopes helps constrain the model parametrization and reveals that the water taken up by plants has resided longer in the catchment storage than the water leaving the catchment as stream discharge. This finding is important for our understanding of how water is stored and released, which impacts the water availability for plants and humans.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022, https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary
Short summary
In this work, we introduce a methodology for devising reliable future high streamflow scenarios from climate change simulations. The calibration of a hydrological model is carried out to maximize the probability that the modeled and observed high flow extremes belong to the same statistical population. Application to the Adige River catchment (southeastern Alps, Italy) showed that this procedure produces reliable quantiles of the annual maximum streamflow for use in assessment studies.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shalev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, https://doi.org/10.5194/hess-26-3377-2022, 2022
Short summary
Short summary
The most accurate rainfall–runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared with traditional models, even when extreme events were not included in the training set.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Wouter J. M. Knoben and Diana Spieler
Hydrol. Earth Syst. Sci., 26, 3299–3314, https://doi.org/10.5194/hess-26-3299-2022, https://doi.org/10.5194/hess-26-3299-2022, 2022
Short summary
Short summary
This paper introduces educational materials that can be used to teach students about model structure uncertainty in hydrological modelling. There are many different hydrological models and differences between these models impact their usefulness in different places. Such models are often used to support decision making about water resources and to perform hydrological science, and it is thus important for students to understand that model choice matters.
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci., 26, 2779–2796, https://doi.org/10.5194/hess-26-2779-2022, https://doi.org/10.5194/hess-26-2779-2022, 2022
Short summary
Short summary
Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how variations in rainfall and snowmelt affect discharge. We found that annual discharge and stream cessation depended on the magnitude and timing of rainfall and snowmelt and on the snowpack melt-out date. This highlights the importance of precipitation timing and emphasizes the need for spatiotemporally distributed simulations of snowpack and rainfall dynamics.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022, https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Short summary
A large part of the water cycle takes place underground. In many places, the soil stores water during the wet periods and can release it all year long, which is particularly visible when the river level is low. Modelling tools that are used to simulate and forecast the behaviour of the river struggle to represent this. We improved an existing model to take underground water into account using measurements of the soil water content. Results allow us make recommendations for model users.
Chaogui Lei, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 26, 2561–2582, https://doi.org/10.5194/hess-26-2561-2022, https://doi.org/10.5194/hess-26-2561-2022, 2022
Short summary
Short summary
We presented an integrated approach to hydrologic modeling and partial least squares regression quantifying land use change impacts on water and nutrient balance over 3 decades. Results highlight that most variations (70 %–80 %) in water quantity and quality variables are explained by changes in land use class-specific areas and landscape metrics. Arable land influences water quantity and quality the most. The study provides insights on water resources management in rural lowland catchments.
Yang Wang and Hassan A. Karimi
Hydrol. Earth Syst. Sci., 26, 2387–2403, https://doi.org/10.5194/hess-26-2387-2022, https://doi.org/10.5194/hess-26-2387-2022, 2022
Short summary
Short summary
We found that rainfall data with spatial information can improve the model's performance, especially when simulating the future multi-day discharges. We did not observe that regional LSTM as a regional model achieved better results than LSTM as individual model. This conclusion applies to both one-day and multi-day simulations. However, we found that using spatially distributed rainfall data can reduce the difference between individual LSTM and regional LSTM.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci., 26, 2093–2111, https://doi.org/10.5194/hess-26-2093-2022, https://doi.org/10.5194/hess-26-2093-2022, 2022
Short summary
Short summary
Rainfall estimates are usually obtained from rain gauges, weather radars, or satellites. An alternative is the measurement of the signal loss induced by rainfall on commercial microwave links (CMLs). In this work, we assess the hydrologic response of Lambro Basin when CML-retrieved rainfall is used as model input. CML estimates agree with rain gauge data. CML-driven discharge simulations show performance comparable to that from rain gauges if a CML-based calibration of the model is undertaken.
Cited articles
Adger, W. N.: Social and ecological resilience: are they related?, Prog. Hum. Geog., 24, 347–364, 2000.
Ajzen, I.: From intentions to actions: A theory of planned behavior, in: Action control: from cognition to behaviour, edited by: Kuhl, J. and Backmann, J., Springer, Berlin, 11–39, 1985.
Allan, J. A.: Policy responses to the closure of water resources: Regional and global issues, in: Water policy: Allocation and management in practice, edited by: Howsam, P. and Carter, R. C., CRC Press, London, UK, 228–234, 1996.
Allison, H. E. and Hobbs, R. J.: Resilience, adaptive capacity, and the "lock-in trap" of the Western Australian agricultural region, Ecol. Soc., 9, 3–28, 2004.
Amundsen, H.: Illusions of Resilience? An Analysis of Community Responses to Change in Northern Norway, Ecol. Soc., 17, 46–59, 2012.
Anderies, J. M. and Janssen, M. A.: The fragility of robust social-ecological systems, Global Environ. Chang., 21, 1153–1156, 2011.
Anderies, J. M., Janssen, M. A., and Ostrom, E.: A Framework to Analyze the Robustness of Social-ecological Systems from an Institutional Perspective, Ecol. Soc., 9, 18–34, 2004.
Anderies, J. M., Ryan, P., and Walker, B. H.: Loss of resilience, crisis, and institutional change: Lessons from an intensive agricultural system in southeastern Australia, Ecosystems, 9, 865–878, 2006a.
Anderies, J. M., Walker, B. H., and Kinzig, A. P.: Fifteen weddings and a funeral: Case studies and resilience-based management, Ecol. Soc., 11, 21–32, 2006b.
Anderies, J. M., Janssen, M. A., Lee, A., and Wasserman, H.: Environmental variability and collective action: Experimental insights from an irrigation game, Ecol. Econ., 93, 166–176, 2013.
Annin, P.: The Great Lakes water wars, Island Press, Washington DC, 2006.
Armitage, C. and Christian, J.: From attitudes to behaviour: Basic and applied research on the theory of planned behaviour, Curr. Psychol., 22, 187–195, 2003.
Arthington, A. H. and Pusey, B. J.: Flow restoration and protection in Australian rivers, River Res. Appl., 19, 377–395, 2003.
Baldassare, M. and Katz, C.: The personal threat of environmental problems as predictor of environmental practices, Environ. Behav., 24, 602–616, 1992.
Barbier, E. B.: Explaining agricultural land expansion and deforestation in developing countries, Am. J. Agr. Econ., 86, 1347–1353, 2004.
Barlow, M.: Blue covenant: The global water crisis and the coming battle for the right to water, McClelland and Stewart, Toronto, Canada, 2007.
Bengston, D. N.: Changing Forest Values and Ecosystem Management, Soc. Natur. Resour., 7, 515–533, 2008.
Berkes, F. and Folke, C.: Linking social and ecological systems: Management practices and social mechanisms for building resilience, Cambridge University Press, Cambridge, 1998.
Berkes, F. and Jolly, D.: Adapting to climate change: social-ecological resilience in a Canadian western Arctic community, Conserv. Ecol., 5, 18–32, 2002.
Berkes, F., Colding, J., and Folke, C.: Navigating social-ecological systems: building resilience for complexity and change, Cambridge University Press, Cambridge, 2003.
Bezemer, D. and Headey, D.: Agriculture, development, and urban bias, World Dev., 36, 1342–1364, 2008.
Biswas, A. K.: History of hydrology, North-Holland Publishing Company, Amsterdam, London, 1970.
Biswas, A. K.: Water development and the environment, Int. J. Water Resour. D., 13, 141–168, 1997.
Biswas, A. K.: Water crisis: Current perceptions and future realities, Water Int., 24, 363–367, 1999.
Biswas, A. K.: Dams: cornucopia or disaster?, Int. J. Water Resour. D., 20, 3–14, 2004.
Biswas, A. K. and Tortajada, C.: Development and large dams: A global perspective, Int. J. Water Resour. D., 17, 9–21, 2001.
Biswas, A. K. and Tortajada, C.: Water quality management: An introductory framework, Int. J. Water Resour. D., 27, 5–11, 2011.
Briguglio, L., Cordina, G., Farrugia, N., and Vella, S.: Economic vulnerability and resilience: Concepts and measurements, Oxford Dev. Stud., 37, 229–247, 2009.
Broderick, K.: Getting a handle on social-ecological systems in catchments: the nature and importance of environmental perception, Aust. Geogr., 38, 297–308, 2007.
Buikstra, E., Ross, H., King, C. A., Baker, P. G., Hegney, D., McLachlan, K., and Rogers-Clark, C.: The components of resilience–Perceptions of an Australian rural community, J. Community Psychol., 38, 975–991, 2010.
Bunch, M. J., Morrison, K. E., Parkes, M. W., and Venema, H. D.: Promoting Health and Well-Being by Managing for Social-Ecological Resilience: the potential of integrating ecohealth and water resources management Approaches, Ecol. Soc., 16, 6–23, 2011.
Bunn, S. E. and Arthington, A. H.: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity, Environ. Manage., 30, 492–507, 2002.
Byerlee, D., Diao, X., and Jackson, C.: Agriculture, rural development, and pro-poor growth country experiences in the post-reform era, Agriculture and Rural Development Discussion Paper 21, The World Bank, Washington DC, 2005.
Carpenter, S. R., Stanley, E. H., and Vander Zanden, M. J.: State of the world's freshwater ecosystems: Physical, chemical, and biological changes, Annu. Rev. Env. Resour., 36, 75–99, 2011.
Carey, M., Baraer, M., Mark, B. G., French, A., Bury, J., Young, K. R., and McKenzie, J. M.: Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru), J. Hydrol., https://doi.org/10.1016/j.jhydrol.2013.11.006, in press, 2014.
Chaskin, R.: Resilience, Community, and Resilient Communities: Conditioning Contexts and Collective Action, Child Care in Practice, 14, 65–74, 2008.
Conacher, A.: Dryland agriculture and secondary salinity, in: Man and the Australian Environment, McGraw-Hill, Sydney, 113–125, 1986.
Cosgrove, W. and Rijsberman, F.: World water vision: Making water everybody's business, World Water Council, Earthscan, London, UK, 2000.
Cullen, P. and Lake, P.: Water resources and biodiversity: past, present and future problems and solutions, in: Conserving Biodiversity: Threats and Solutions, edited by: Bradstock, R. A., Auld, T. D., Keith, D. A., Kingsford, R. T., Lumey, D., and Siversten, D. P., Surrey Beatty & Sons, Sydney, 115–125, 1995.
Cumming, G., Barnes, G., Perz, S., Schmink, M., Sieving, K., Southworth, J., Binford, M., Holt, R., Stickler, C., and Holt, T.: An Exploratory Framework for the Empirical Measurement of Resilience, Ecosystems, 8, 975–987, 2005.
Daily, G. C.: Nature's services: societal dependence on natural ecosystems, Island Press, Washington DC, 1997.
Dale, A., Ling, C., and Newman, L.: Community Vitality: The Role of Community-Level Resilience Adaptation and Innovation in Sustainable Development, Sustainability, 2, 215–231, 2010.
Di Baldassarre, G., Kooy, M., Kemerink, J. S., and Brandimarte, L.: Towards understanding the dynamic behaviour of floodplains as human-water systems, Hydrol. Earth Syst. Sci., 17, 3235–3244, https://doi.org/10.5194/hess-17-3235-2013, 2013a.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013b.
Epstein, G., Vogt, J. M., Mincey, S. K., Cox, M., and Fischer, B.: Missing ecology: integrating ecological perspectives with the social-ecological system framework, Int. J. Commons, 7, 432–453, 2013.
Falkenmark, M.: Main problems of water use and transfer of technology, GeoJournal, 3, 435–443, 1979.
Falkenmark, M.: Society's interaction with the water cycle: a conceptual framework for a more holistic approach, Hydrolog. Sci. J., 42, 451–466, 1997.
Falkenmark, M.: Forward to the future: a conceptual framework for water dependence, Ambio, 28, 356–361, 1999.
Falkenmark, M.: The greatest water problem: the inability to link environmental security, water security and food security, Int. J. Water Resour. D., 17, 539–554, 2001.
Falkenmark, M.: Freshwater as Shared between Society and Ecosystems: From Divided Approaches to Integrated Challenges, Philos. T. R. Soc. B., 358, 2037–2049, 2003.
Farmer, D., Sivapalan, M., and Jothityangkoon, C.: Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis, Water Resour. Res., 39, 1035, https://doi.org/10.1029/2001WR000328, 2003.
Fishman, C.: The Big Thirst: The secret life and turbulent future of water, Simon and Schuster, New York, 2011.
Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J.: Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study, Global Environ. Change, 23, 144–156, 2013.
Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder P. K., and DeFries, R.: Global consequences of land use, Science, 309, 570–574, 2005.
Folke, C.: Ecosystem approaches to the management and allocation of critical resources, in: Successes, limitations and frontiers in ecosystem science, edited by: Pace, M. and Groffman, P., Springer Verlag, New York, 313–345, 1998.
Folke, C.: Freshwater for Resilience: A Shift in Thinking, Philos. T. R. Soc. B., 358, 2027–2036, 2003.
Folke, C.: Resilience: The emergence of a perspective for social–ecological systems analyses, Global Environ. Chang., 16, 253–267, 2006.
Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., and Rockström, J.: Resilience thinking: integrating resilience, adaptability and transformability, Ecol. Soc., 15, 20–28, 2010.
Forbes, B. C., Fresco, N., Shvidenko, A., Danell, K., and Chapin, F. S.: Geographic variations in anthropogenic drivers that influence the vulnerability and resilience of social–ecological systems, Ambio, 33, 377–382, 2004.
Forbes, B. C., Stammler, F., Kumpula, T., Meschtyb, N., Pajunen, A., and Kaarlejärvi, E.: High resilience in the Yamal-Nenets social–ecological system, West Siberian Arctic, Russia, Proc. Natl. Acad. Sci. USA, 106, 22041–22048, 2009.
Fouberg, E. H., Murphy, A. B., and de Blij, H. J.: Human geography: people, place, and culture, John Wiley & Sons, Inc, Wiley. com, New Jersey, USA, 2010.
George, R., Dogramaci, S., Wyland, J., and Lacey, P.: Protecting stranded biodiversity using groundwater pumps and surface water engineering at Lake Toolibin, Western Australia, Aust. J. Water Resour., 9, 119–127, 2005.
Giddens, A.: The constitution of society: Introduction of the theory of structuration, Polity Press, Malden, MA, 1984.
Gleick, P. H.: Water and conflict: Fresh water resources and international security, Int. Security, 18, 79–112, 1993.
Gober, P. and Wheater, H. S.: Socio-hydrology and the science-policy interface: a case study of the Saskatchewan River Basin, Hydrol. Earth Syst. Sci., 18, 1413–1422, https://doi.org/10.5194/hess-18-1413-2014, 2014.
Gooch, M. and Rigano, D.: Enhancing Community-scale Social Resilience: what is the connection between healthy communities and healthy waterways?, Aust. Geogr., 41, 507–520, 2010.
Gordon, L. J., Finlayson, C. M., and Falkenmark, M.: Managing water in agriculture for food production and other ecosystem services, Agr. Water Manage., 97, 512–519, 2010.
Gregory, K. J.: The human role in changing river channels, Geomorphology, 79, 172–191, 2006.
Guimarães, M. H. E., Mascarenhas, A., Sousa, C., Boski, T., and Dentinho, T. P.: The impact of water quality changes on the socio-economic system of the Guadiana Estuary: an assessment of management options, Ecol. Soc., 17, 38–51, 2012.
Gunderson, L. H. and Holling, C. S.: Panarchy, Island Press, Washington D.C., 2002.
Hardin, G.: The tragedy of the commons, Science, 162, 1243–1248, 1968.
Hatton, T. J., Ruprecht, J., and George, R. J.: Preclearing hyrdology of the Western Australian wheatbelt: Target for the future, Plant Soil, 257, 341–356, 2003.
Heemskerk, M., Wilson, K., and Pavao-Zuckerman, M.: Conceptual Models as Tools for Communication Across Disciplines, Ecol. Soc., 7, 8–20, 2003.
Holling, C. S.: Resilience and stability of ecological systems, Annu. Rev. Ecol. Syst., 4, 1–23, 1973.
Horne, J.: Economic approaches to water management in Australia, Int. J. Water Resour. D., 29, 1–13, 2012.
Imberger, J., Mamouni, E. A. D., Anderson, J., Ng, M. L., Nicol, S., and Veale, A.: The Index of Sustainable Functionality: A new adaptive, multicriteria measurement of sustainability – Application to Western Australia, Int. J. Environ. Sust. Dev., 6, 323–355, 2007.
Johnston, B. F. and Mellor, J. W.: The role of agriculture in economic development, Am. Econ. Rev., 51, 566–593, 1961.
Jones, A.: Human geography: The basics, Routledge: Taylor and Francis, tandfonline.com, New York, NY, 2012.
Jones, N. A., Ross, H., Lynam, T., Perez, P., and Leitch, A.: Mental Models: An Interdisciplinary Synthesis of Theory and Methods, Ecol. Soc., 16, 46–58, 2011.
Kandasamy, J., Sounthararajah, D., Sivabalan, P., Chanan, A., Vigneswaran, S., and Sivapalan, M.: Socio-hydrologic drivers of the pendulum swing between agriculture development and environmental health: a case study from Murrumbidgee River Basin, Australia, Hydrol. Earth Syst. Sci., 18, 1027–1041, https://doi.org/10.5194/hess-18-1027-2014, 2014.
Kates, R. and Clark, W.: Our common journey, Washington DC, National Academy Press, 1999.
Kinzig, A. P.: Bridging Disciplinary Divides to Address Environmental and Intellectual Challenges, Ecosystems, 4, 709–715, 2001.
Kinzig, A. P., Ryan, P., Etienne, M., Allison, H., Elmqvist, T., and Walker, B. H.: Resilience and regime shifts: assessing cascading effects, Ecol. Soc., 11, 20–42, 2006.
Kinzig, A. P., Ehrlich, P. R., Alston, L. J., Arrow, K., Barrett, S., Buchman, T. G., Daily, G. C., Levin, B., Levin, S., and Oppenheimer, M.: Social norms and global environmental challenges: The complex interaction of behaviors, values, and policy, BioScience, 63, 164–175, 2013.
Kollmuss, A. and Agyeman, J.: Mind the Gap: Why Do People Act Environmentally and What Are the Barriers to Pro-Environmental Behavior?, Environ. Educ. Res., 8, 239–260, 2002.
Lade, S. J., Tavoni, A., Levin, S. A., and Schlüter, M.: Regime shifts in a social-ecological system, Theor. Ecol., 6, 359–372, 2013.
Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., and Folke, C.: The causes of land-use and land-cover change: moving beyond the myths, Global Environ. Change, 11, 261–269, 2001.
Leichenko, R. M. and O'Brien, K. L.: The dynamics of rural vulnerability to global change: the case of southern Africa, Mitig. Adapt. Strateg. Glob. Change, 7, 1–18, 2002.
Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor, W. W., Ouyang, Z., Deadman, P., Kratz T., and Provencher, W.: Coupled human and natural systems, Ambio, 36, 639–649, 2007a.
Liu, J. G., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H., and Taylor, W. W.: Complexity of coupled human and natural systems, Science, 317, 1513–1516, 2007b.
Liu, Y., Gupta, H., Springer, E., and Wagener, T.: Linking science with environmental decision making: experiences from an integrated modeling approach to supporting sustainable water resources management, Environ. Modell. Softw., 23, 846–858, 2008.
Liu, Y., Tian, F., Hu, H., and Sivapalan, M.: Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River Basin, Western China: the Taiji–Tire Model, Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, 2014.
Low, B., Costanza, R., Ostrom, E., Wilson, J., and Simon, C. P.: Human – ecosystem interactions: a dynamic integrated model, Ecol. Econ., 31, 227–242, 1999.
Luthar, S. S., Cicchetti, D., and Becker, B.: The construct of resilience: A critical evaluation and guidelines for future work, Child Dev., 71, 543–562, 2000.
Lynam, T. and Brown, K.: Mental Models in Human-Environment Interactions: Theory, Policy Implications, and Methodological Explorations, Ecol. Soc., 17, 24–26, 2012.
Mankad, A.: Decentralised water systems: Emotional influences on resource decision making, Environ. Int., 44, 128–140, 2012.
Mankad, A. and Tapsuwan, S.: Review of socio-economic drivers of community acceptance and adoption of decentralised water systems, J. Environ. Manage., 92, 380–391, 2011.
Marsh, G. P.: Man and Nature, Belknap Press of Harvard University Press, Cambridge, MA, 1864.
Masten, A. S., Best, K. M., and Garmezy, N.: Resilience and development: Contributions from the study of children who overcome adversity, Dev. Psychopathol., 2, 425–444, 1990.
McDonnell, M. J. and Pickett, S. T.: Humans as components of ecosystems: the ecology of subtle human effects and populated areas, Springer-Verlag, New York, 1993.
Molden, D., Sakthivadivel, R., and Samad, M.: Accounting for changes in water use and the need for institutional adaptation, in: Intersectoral management of river basins: Proceedings of an international workshop on Integrated Water Management in Water-Stressed River Basins in Developing Countries: Strategies for Poverty Alleviation and Agricultural Growth, Loskop Dam, South Africa, 16–21 October 2000, 2001.
Molle, F.: Historical benchmarks and reflections on small tanks and their utilization, Mossoro, Brazil: Collection Mossoroense, 1991.
Molle, F.: Development trajectories of river basins: a conceptual framework, Research Report, International Water Management Institute, 72, Colombo, Sri Lanka, 2003.
Montanari, A., Young, G., Savenije, H., Hughes, D., Wagener, T., Ren, L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., M. Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pangad, Z., and Belyaev, V.: "Panta Rhei–Everything Flows": Change in hydrology and society – The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58, 1256–1275, 2013.
Munro, J. K. and Moore, S. A.: Using landholder perspectives to evaluate and improve recovery planning for Toolibin Lake in the West Australian wheatbelt, Ecol. Manage. Restor., 4, 111–117, 2005.
Myrdal, G.: The Principle of Circular and Cumulative Causation, in: Economic theory and under-developed regions, edited by: Myrdal, G., Methuen and Co. Ltd., London, 11–22, 1957.
Norgaard, R. B., Kallis, G., and Kiparsky, M.: Collectively engaging complex socio-ecological systems: re-envisioning science, governance, and the California Delta, Environ. Sci. Policy, 12, 644–652, 2009.
Odum, E. P.: Ecology and our endangered life-support systems, Sinauer Associates, Massachusetts, 1989.
Ostrom, E.: A general framework for analysing sustainability of social-ecological systems, Science, 325, 419–422, 2009.
Ostrom, E., Dietz, T., Dolsak, N., Stern, P., Stonich, S., and Weber, E. (Eds.): The drama of the commons, Committee on the Human Dimensions of Global Change, National Academies Press, Washington, DC, 2002.
Pande, S., Ertsen, M., and Sivapalan, M.: Endogenous technological and population change under increasing water scarcity, Hydrol. Earth Syst. Sci. Discuss., 10, 13505–13537, https://doi.org/10.5194/hessd-10-13505-2013, 2013.
Pearce, F.: When the Rivers Run Dry: Water – The Defining Crisis of the Twenty-first Century, Beacon Press, Boston, Massachussets, 2007.
Postel, S. L.: Securing water for people, crops, and ecosystems: New mindset and new priorities, Nat. Resour. Forum, 27, 89–98. 2003.
Ribeiro Neto, A., Scott, C. A., Lima, E. A., Montenegro, S. M. G. L., and Cirilo, J. A.: Infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the urbanizing Capibaribe River Basin – Brazil, Hydrol. Earth Syst. Sci. Discuss., 11, 2795–2824, https://doi.org/10.5194/hessd-11-2795-2014, 2014.
Rockström, J., Lannerstad, M., and Falkenmark, M.: Assessing the water challenge of a new green revolution in developing countries, Proc. Natl. Acad. Sci. USA, 104, 6253–6260, 2007.
Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., and Gerten, D.: Future water availability for global food production: the potential of green water for increasing resilience to global change, Water Resour. Res., 45, W00A12, https://doi.org/10.1029/2007WR006767, 2009.
Rogers, R. W.: A Protection Motivation Theory of Fear Appeals and Attitude Change1, J. Psychol., 91, 93–114, 1975.
Rolfe, J., Donaghy, P., Alam, K., O'Dea, G., and Miles, R.: Considering the economic and social impacts of protecting environmental values in specific Moreton Bay/SEQ, Mary River Basin/Great Sandy Strait Region and Douglas Shire waters, Report prepared for the Environmental Protection Agency, Queensland Government, Rockhampton, Australia, 2005.
Savenije, H., Hoekstra, A., and van der Zaag, P.: Evolving water science in the Anthropocene, Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, 2014.
Scheffer, M.: Critical transitions in nature and society, Princeton University Press, Princeton, New Jersey, 2009.
Scheffer, M. and Westley, F. R.: The evolutionary basis of rigidity: locks in cells, minds, and society, Ecol. Soc., 12, 36–48, 2007.
Schlüter, M. and Herrfahrdt-Pähle, E.: Exploring resilience and transformability of a river basin in the face of socio-economic and ecological crisis: An example from the Amudarya River Basin, central Asia, Ecol. Soc., 16, 1–19, 2011.
Schlüter, M. and Pahl-Wostl, C.: Mechanisms of resilience in common-pool resource management systems: an agent-based model of water use in a river basin, Ecol. Soc., 12, 4–26, 2007.
Schlüter, M., Leslie, H., and Levin, S.: Managing water-use trade-offs in a semi-arid river delta to sustain multiple ecosystem services: a modeling approach, Ecol. Res., 24, 491–503, 2009.
Schlüter, M., McAllister, R. R. J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hoelker, F., Milner-Gulland, E. J., Müller, B., Nicholson, E., Quaas, K., and Stöven, M.: New horizons for managing the environment: A review of coupled social-ecological systems modeling, Nat. Resour. Model., 25, 219–272, 2012.
Schlüter, M., Müller, B., and Frank, K.: How to use models to improve analysis and governance of social-ecological systems – the reference frame MORE, Working Paper, 5 April 2013, https://doi.org/10.2139/ssrn.2037723, 2013.
Schwarz, N. and Ernst, A.: Agent-based modeling of the diffusion of environmental innovations – An empirical approach, Technol. Forecast. Soc., 76, 497–511, 2009.
Seymour, E., Curtis, A., Pannell, D., Allan, C., and Roberts, A.: Understanding the role of assigned values in natural resource management, Australas. J. Environ., 17, 142–153, 2010.
Sherrieb, K., Norris, F. H., and Galea, S.: Measuring Capacities for Community Resilience, Soc. Indic. Res., 99, 227–247, 2010.
Simane, B., Zaitchik, B. F., and Mesfin, D.: Building Climate Resilience in the Blue Nile/Abay Highlands: A Framework for Action, Int. J. Environ. Res. Public Health, 9, 435–461, 2012.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A new science of people and water, Hydrol. Process., 26, 1270–1276, 2012.
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., Wescoat, J. L., and Rodríguez-Iturbe, I.: Socio-hydrology: Use inspired water sustainability science for the Anthropocene, Earth's Future, 2, 225–230, https://doi.org/10.1002/eft2.26, 2014.
Smith, J., Moore, R., Anderson, D., and Siderelis, C.: Community Resilience in Southern Appalachia: A Theoretical Framework and Three Case Studies, Hum. Ecol., 40, 341–353, 2012.
Srinivasan, V.: Coevolution of water security in a developing city, Hydrol. Earth Syst. Sci. Discuss., 10, 13265–13291, https://doi.org/10.5194/hessd-10-13265-2013, 2013.
Srinivasan, V., Seto, K. C., Emerson, R., and Gorelick, S. M.: The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India, Global Environ. Change, 23, 229–239, 2013.
Steffen, W., Grinevald, J., Crutzen, P., and McNeill, J.: The Anthropocene: conceptual and historical perspectives, Philos. T. R. Soc. A, 369, 842–867, 2011.
Stein, T. V., Anderson, D. H., and Kelly, T.: Using stakeholders' values to apply ecosystem management in an upper Midwest landscape, Environ. Manage., 24, 399–413, 1999.
Tavoni, A., Schlüter, M., and Levin, S.: The survival of the conformist: social pressure and renewable resource management, J. Theor. Biol., 299, 152–161, 2012.
Thomas Jr., W. L.: Man's Role in Changing the Face of the Earth, University of Chicago Press, Chicago, USA, 1956.
Thompson, S. E., Sivapalan, M., Harman, C. J., Srinivasan, V., Hipsey, M. R., Reed, P., Montanari, A., and Blöschl, G.: Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene, Hydrol. Earth Syst. Sci., 17, 5013–5039, https://doi.org/10.5194/hess-17-5013-2013, 2013.
Tolun, L. G., Ergenekon, S., Hocaoglu, S. M., Donertas, A. S., Cokacar, T., Husrevoglu, S., Beken, C. P., and Baban, A.: Socioeconomic Response to Water Quality: a First Experience in Science and Policy Integration for the Izmit Bay Coastal System, Ecol. Soc., 17, 40–53, 2012.
Transparency International: The Corruption Perceptions Index, Transparency International, Berlin, 2012.
Turner, B. L.: Vulnerability and resilience: Coalescing or paralleling approaches for sustainability science?, Global Environ. Change, 20, 570–576, 2010.
Turner, B. L., Clark, W., Kates, R., Richards, J., Matthews, J., and Meyer, W. B.: The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years, Cambridge University Press Archive, Cambridge, UK, 1990.
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., and Schiller, A.: A framework for vulnerability analysis in sustainability science, Proc. Natl. Acad. Sci. USA, 100, 8074–8079, 2003.
Turral, H.: Hydro-Logic?: Reform in Water Resources Management in Developed Countries with Major Agricultural Water Use: Lessons for Developing Nations, Overseas Development Institute, London, 1998.
UNDP: Human Development Report 1990, United Nations Development Programme, New York, 1990.
UNEP: World atlas of desertification, United Nations Environment Programme, London, 1997.
van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G., Chanan, A., and Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River Basin, Australia, Hydrol. Earth Syst. Sci. Discuss., 11, 3387–3435, https://doi.org/10.5194/hessd-11-3387-2014, 2014.
Vanclay, F.: The social side of natural resource management, W.A. BankWest Landcare Conference: Where Community Counts, Esperance, W.A., September, 29–39, 1999.
Vanclay, F.: Social principles for agricultural extension to assist in the promotion of natural resource management, Animal Production Science, 44, 213–222, 2004.
Varis, O.: Poverty, economic growth, deprivation, and water: the cases of Cambodia and Vietnam, Ambio, 37, 225–231, 2008.
Vaske, J. J. and Donnelly, M. P.: A value-attitude-behavior model predicting wildland preservation voting intentions, Soc. Natur Resour., 12, 523–537, 1999.
Vörösmarty, C. J., Leveque, C., and Revenga, C. (Convening Lead Authors) (with Bos, R., Caudill, C., Chilton, J., Douglas, E. M., Meybeck, M., Prager, D., Balvanera, P., Barker, S., Maas, M., Nilsson, C., Oki, T., Reidy, C. A.): Chapter 7: Fresh Water, in: Millennium Ecosystem Assessment, Volume 1: Conditions and Trends Working Group Report, Island Press, Washington DC, 165–207, 2005.
Walker, K. and Thoms, M.: Environmental effects of flow regulation on the lower River Murray, Australia, Regul. River, 8, 103–119, 1993.
Zilberman, D., Dinar, A., MacDougall, N., Khanna, M., Brown, C., and Castillo, F.: Individual and institutional responses to the drought: the case of California agriculture, J. Contemp. Water Res. Educ., 121, 17–23, 2011.