Articles | Volume 18, issue 6
https://doi.org/10.5194/hess-18-2141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-2141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach
Y. Elshafei
School of Earth & Environment, The University of Western Australia, Crawley WA 6009, Australia
M. Sivapalan
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, N. Mathews Avenue, Urbana, IL 61801, USA
Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Computing Applications Building, Springfield Avenue, Urbana, IL 61801, USA
M. Tonts
School of Earth & Environment, The University of Western Australia, Crawley WA 6009, Australia
M. R. Hipsey
School of Earth & Environment, The University of Western Australia, Crawley WA 6009, Australia
Related authors
No articles found.
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Preprint under review for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024, https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India. This variability is governed by monsoons, mountainous systems, and geologic gradients. A linkage between these influencing factors and streamflow variability is established using a Wegenerian approach and flow duration curves.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep Mujumdar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-286, https://doi.org/10.5194/hess-2022-286, 2023
Preprint withdrawn
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India – which is governed by monsoons, mountainous systems and geologic gradients. A linkage between these influencers and streamflow variability is established.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Peisheng Huang, Karl Hennig, Jatin Kala, Julia Andrys, and Matthew R. Hipsey
Hydrol. Earth Syst. Sci., 24, 5673–5697, https://doi.org/10.5194/hess-24-5673-2020, https://doi.org/10.5194/hess-24-5673-2020, 2020
Short summary
Short summary
Our results conclude that the climate change in the past decades has a remarkable effect on the hydrology of a large shallow lagoon with the same magnitude as that caused by the opening of an artificial channel, and it also highlighted the complexity of their interactions. We suggested that the consideration of the projected drying trend is essential in designing management plans associated with planning for environmental water provision and setting water quality loading targets.
Benya Wang, Matthew R. Hipsey, and Carolyn Oldham
Geosci. Model Dev., 13, 4253–4270, https://doi.org/10.5194/gmd-13-4253-2020, https://doi.org/10.5194/gmd-13-4253-2020, 2020
Short summary
Short summary
Surface water nutrients are essential to manage water quality, but it is hard to analyse trends. We developed a hybrid model and compared with other models for the prediction of six different nutrients. Our results showed that the hybrid model had significantly higher accuracy and lower prediction uncertainty for almost all nutrient species. The hybrid model provides a flexible method to combine data of varied resolution and quality and is accurate for the prediction of nutrient concentrations.
J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill
Hydrol. Earth Syst. Sci., 24, 717–734, https://doi.org/10.5194/hess-24-717-2020, https://doi.org/10.5194/hess-24-717-2020, 2020
Short summary
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.
Matthew R. Hipsey, Louise C. Bruce, Casper Boon, Brendan Busch, Cayelan C. Carey, David P. Hamilton, Paul C. Hanson, Jordan S. Read, Eduardo de Sousa, Michael Weber, and Luke A. Winslow
Geosci. Model Dev., 12, 473–523, https://doi.org/10.5194/gmd-12-473-2019, https://doi.org/10.5194/gmd-12-473-2019, 2019
Short summary
Short summary
The General Lake Model (GLM) has been developed to undertake simulation of a diverse range of wetlands, lakes, and reservoirs. The model supports the science needs of the Global Lake Ecological Observatory Network (GLEON), a network of lake sensors and researchers attempting to understand lake functioning and address questions about how lakes around the world vary in response to climate and land use change. The paper describes the science basis and application of the model.
Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 22, 1665–1693, https://doi.org/10.5194/hess-22-1665-2018, https://doi.org/10.5194/hess-22-1665-2018, 2018
Short summary
Short summary
The paper presents major milestones in the transformation of hydrologic science over the last 50 years from engineering hydrology to Earth system science. This transformation has involved a transition from a focus on time (empirical) to space (Newtonian mechanics), and to time (Darwinian co-evolution). Hydrology is now well positioned to again return to a focus on space or space–time and a move towards regional process hydrology.
Mahendran Roobavannan, Tim H. M. van Emmerik, Yasmina Elshafei, Jaya Kandasamy, Matthew R. Sanderson, Saravanamuthu Vigneswaran, Saket Pande, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 22, 1337–1349, https://doi.org/10.5194/hess-22-1337-2018, https://doi.org/10.5194/hess-22-1337-2018, 2018
Short summary
Short summary
This paper reviews a relevant social science that links cultural factors to environmental decision-making and assesses how to better incorporate its insights to enhance sociohydrological (SH) models and the knowledge gaps that remain to be filled. The paper concludes with a discussion of challenges and opportunities in terms of generalization of SH models and the use of available data to facilitate future prediction and allow model transfer to ungauged basins.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Guangyao Gao, Jianjun Zhang, Yu Liu, Zheng Ning, Bojie Fu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 21, 4363–4378, https://doi.org/10.5194/hess-21-4363-2017, https://doi.org/10.5194/hess-21-4363-2017, 2017
Short summary
Short summary
This study extracted spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield across the Loess Plateau during 1961–2011. The impacts of precipitation on sediment yield declined with time and the precipitation-sediment relationship showed a coherent spatial pattern. The sediment coefficient, representing the effect of LUCC, decreases linearly with fraction of area treated with erosion control measures and the slopes were highly variable among the catchments.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Amar V. V. Nanda, Leah Beesley, Luca Locatelli, Berry Gersonius, Matthew R. Hipsey, and Anas Ghadouani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-307, https://doi.org/10.5194/hess-2017-307, 2017
Revised manuscript not accepted
Short summary
Short summary
When anthropological effects result in changes to wetland hydrology; this often leads to a decline in their ecological integrity. We present a policy oriented approach that assesses the suitability of management when rigorous ecological data are lacking. We link ecological objectives from management authorities to threshold values for water depth defined in policy. Results show insufficient water levels for key ecological objectives and we conclude that current policy is ineffective.
A. M. Carmona, G. Poveda, M. Sivapalan, S. M. Vallejo-Bernal, and E. Bustamante
Hydrol. Earth Syst. Sci., 20, 589–603, https://doi.org/10.5194/hess-20-589-2016, https://doi.org/10.5194/hess-20-589-2016, 2016
Short summary
Short summary
We study a 3-D generalization of Budyko's framework that captures the interdependence among actual and potential evapotranspiration and precipitation. We demonstrate that Budyko-type equations present an inconsistency in humid environments, which we overcome by proposing a physically consistent power law that incorporates the complementary relationship of evapotranspiration into the Budyko curve. Evidence of space-time symmetry and signs of co-evolution of catchments are also found in Amazonia.
D. Liu, F. Tian, M. Lin, and M. Sivapalan
Hydrol. Earth Syst. Sci., 19, 1035–1054, https://doi.org/10.5194/hess-19-1035-2015, https://doi.org/10.5194/hess-19-1035-2015, 2015
Short summary
Short summary
A simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of a co-evolutionary model. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. The hydrological equation focusing on water balance is coupled to the evolutionary equations of the other three sub-systems.
T. H. M. van Emmerik, Z. Li, M. Sivapalan, S. Pande, J. Kandasamy, H. H. G. Savenije, A. Chanan, and S. Vigneswaran
Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, https://doi.org/10.5194/hess-18-4239-2014, 2014
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
S. Pande, M. Ertsen, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3239–3258, https://doi.org/10.5194/hess-18-3239-2014, https://doi.org/10.5194/hess-18-3239-2014, 2014
E. J. Coopersmith, B. S. Minsker, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3095–3107, https://doi.org/10.5194/hess-18-3095-2014, https://doi.org/10.5194/hess-18-3095-2014, 2014
Y. Li, G. Gal, V. Makler-Pick, A. M. Waite, L. C. Bruce, and M. R. Hipsey
Biogeosciences, 11, 2939–2960, https://doi.org/10.5194/bg-11-2939-2014, https://doi.org/10.5194/bg-11-2939-2014, 2014
L. C. Bruce, P. L. M. Cook, I. Teakle, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 1397–1411, https://doi.org/10.5194/hess-18-1397-2014, https://doi.org/10.5194/hess-18-1397-2014, 2014
Y. Liu, F. Tian, H. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, https://doi.org/10.5194/hess-18-1289-2014, 2014
J. Kandasamy, D. Sounthararajah, P. Sivabalan, A. Chanan, S. Vigneswaran, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1027–1041, https://doi.org/10.5194/hess-18-1027-2014, https://doi.org/10.5194/hess-18-1027-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
K. A. Sawicz, C. Kelleher, T. Wagener, P. Troch, M. Sivapalan, and G. Carrillo
Hydrol. Earth Syst. Sci., 18, 273–285, https://doi.org/10.5194/hess-18-273-2014, https://doi.org/10.5194/hess-18-273-2014, 2014
S. E. Thompson, M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 5013–5039, https://doi.org/10.5194/hess-17-5013-2013, https://doi.org/10.5194/hess-17-5013-2013, 2013
M. A. Yaeger, M. Sivapalan, G. F. McIsaac, and X. Cai
Hydrol. Earth Syst. Sci., 17, 4607–4623, https://doi.org/10.5194/hess-17-4607-2013, https://doi.org/10.5194/hess-17-4607-2013, 2013
A. L. Ruibal-Conti, R. Summers, D. Weaver, and M. R. Hipsey
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11035-2013, https://doi.org/10.5194/hessd-10-11035-2013, 2013
Revised manuscript not accepted
J. L. Salinas, G. Laaha, M. Rogger, J. Parajka, A. Viglione, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2637–2652, https://doi.org/10.5194/hess-17-2637-2013, https://doi.org/10.5194/hess-17-2637-2013, 2013
A. Viglione, J. Parajka, M. Rogger, J. L. Salinas, G. Laaha, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 2263–2279, https://doi.org/10.5194/hess-17-2263-2013, https://doi.org/10.5194/hess-17-2263-2013, 2013
P. A. Troch, G. Carrillo, M. Sivapalan, T. Wagener, and K. Sawicz
Hydrol. Earth Syst. Sci., 17, 2209–2217, https://doi.org/10.5194/hess-17-2209-2013, https://doi.org/10.5194/hess-17-2209-2013, 2013
J. Parajka, A. Viglione, M. Rogger, J. L. Salinas, M. Sivapalan, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 1783–1795, https://doi.org/10.5194/hess-17-1783-2013, https://doi.org/10.5194/hess-17-1783-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Heavy-tailed flood peak distributions: What is the effect of the spatial variability of rainfall and runoff generation?
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
State updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Simulating the Tone River Eastward Diversion Project in Japan Carried Out Four Centuries Ago
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-211, https://doi.org/10.5194/hess-2024-211, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping better prepare for and respond to floods.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Joško Trošelj and Naota Hanasaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-595, https://doi.org/10.5194/egusphere-2024-595, 2024
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms the claims raised by historians that the Eastward Diversion Project of the Tone River in Japan was conducted four centuries ago to increase low flows and subsequent travelling possibilities surrounding the Capitol Edo (Tokyo) using inland navigation. We reconstructed six historical river maps and indirectly validated the historical simulations with reachable ancient river ports via increased low-flow water levels.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Cited articles
Adger, W. N.: Social and ecological resilience: are they related?, Prog. Hum. Geog., 24, 347–364, 2000.
Ajzen, I.: From intentions to actions: A theory of planned behavior, in: Action control: from cognition to behaviour, edited by: Kuhl, J. and Backmann, J., Springer, Berlin, 11–39, 1985.
Allan, J. A.: Policy responses to the closure of water resources: Regional and global issues, in: Water policy: Allocation and management in practice, edited by: Howsam, P. and Carter, R. C., CRC Press, London, UK, 228–234, 1996.
Allison, H. E. and Hobbs, R. J.: Resilience, adaptive capacity, and the "lock-in trap" of the Western Australian agricultural region, Ecol. Soc., 9, 3–28, 2004.
Amundsen, H.: Illusions of Resilience? An Analysis of Community Responses to Change in Northern Norway, Ecol. Soc., 17, 46–59, 2012.
Anderies, J. M. and Janssen, M. A.: The fragility of robust social-ecological systems, Global Environ. Chang., 21, 1153–1156, 2011.
Anderies, J. M., Janssen, M. A., and Ostrom, E.: A Framework to Analyze the Robustness of Social-ecological Systems from an Institutional Perspective, Ecol. Soc., 9, 18–34, 2004.
Anderies, J. M., Ryan, P., and Walker, B. H.: Loss of resilience, crisis, and institutional change: Lessons from an intensive agricultural system in southeastern Australia, Ecosystems, 9, 865–878, 2006a.
Anderies, J. M., Walker, B. H., and Kinzig, A. P.: Fifteen weddings and a funeral: Case studies and resilience-based management, Ecol. Soc., 11, 21–32, 2006b.
Anderies, J. M., Janssen, M. A., Lee, A., and Wasserman, H.: Environmental variability and collective action: Experimental insights from an irrigation game, Ecol. Econ., 93, 166–176, 2013.
Annin, P.: The Great Lakes water wars, Island Press, Washington DC, 2006.
Armitage, C. and Christian, J.: From attitudes to behaviour: Basic and applied research on the theory of planned behaviour, Curr. Psychol., 22, 187–195, 2003.
Arthington, A. H. and Pusey, B. J.: Flow restoration and protection in Australian rivers, River Res. Appl., 19, 377–395, 2003.
Baldassare, M. and Katz, C.: The personal threat of environmental problems as predictor of environmental practices, Environ. Behav., 24, 602–616, 1992.
Barbier, E. B.: Explaining agricultural land expansion and deforestation in developing countries, Am. J. Agr. Econ., 86, 1347–1353, 2004.
Barlow, M.: Blue covenant: The global water crisis and the coming battle for the right to water, McClelland and Stewart, Toronto, Canada, 2007.
Bengston, D. N.: Changing Forest Values and Ecosystem Management, Soc. Natur. Resour., 7, 515–533, 2008.
Berkes, F. and Folke, C.: Linking social and ecological systems: Management practices and social mechanisms for building resilience, Cambridge University Press, Cambridge, 1998.
Berkes, F. and Jolly, D.: Adapting to climate change: social-ecological resilience in a Canadian western Arctic community, Conserv. Ecol., 5, 18–32, 2002.
Berkes, F., Colding, J., and Folke, C.: Navigating social-ecological systems: building resilience for complexity and change, Cambridge University Press, Cambridge, 2003.
Bezemer, D. and Headey, D.: Agriculture, development, and urban bias, World Dev., 36, 1342–1364, 2008.
Biswas, A. K.: History of hydrology, North-Holland Publishing Company, Amsterdam, London, 1970.
Biswas, A. K.: Water development and the environment, Int. J. Water Resour. D., 13, 141–168, 1997.
Biswas, A. K.: Water crisis: Current perceptions and future realities, Water Int., 24, 363–367, 1999.
Biswas, A. K.: Dams: cornucopia or disaster?, Int. J. Water Resour. D., 20, 3–14, 2004.
Biswas, A. K. and Tortajada, C.: Development and large dams: A global perspective, Int. J. Water Resour. D., 17, 9–21, 2001.
Biswas, A. K. and Tortajada, C.: Water quality management: An introductory framework, Int. J. Water Resour. D., 27, 5–11, 2011.
Briguglio, L., Cordina, G., Farrugia, N., and Vella, S.: Economic vulnerability and resilience: Concepts and measurements, Oxford Dev. Stud., 37, 229–247, 2009.
Broderick, K.: Getting a handle on social-ecological systems in catchments: the nature and importance of environmental perception, Aust. Geogr., 38, 297–308, 2007.
Buikstra, E., Ross, H., King, C. A., Baker, P. G., Hegney, D., McLachlan, K., and Rogers-Clark, C.: The components of resilience–Perceptions of an Australian rural community, J. Community Psychol., 38, 975–991, 2010.
Bunch, M. J., Morrison, K. E., Parkes, M. W., and Venema, H. D.: Promoting Health and Well-Being by Managing for Social-Ecological Resilience: the potential of integrating ecohealth and water resources management Approaches, Ecol. Soc., 16, 6–23, 2011.
Bunn, S. E. and Arthington, A. H.: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity, Environ. Manage., 30, 492–507, 2002.
Byerlee, D., Diao, X., and Jackson, C.: Agriculture, rural development, and pro-poor growth country experiences in the post-reform era, Agriculture and Rural Development Discussion Paper 21, The World Bank, Washington DC, 2005.
Carpenter, S. R., Stanley, E. H., and Vander Zanden, M. J.: State of the world's freshwater ecosystems: Physical, chemical, and biological changes, Annu. Rev. Env. Resour., 36, 75–99, 2011.
Carey, M., Baraer, M., Mark, B. G., French, A., Bury, J., Young, K. R., and McKenzie, J. M.: Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru), J. Hydrol., https://doi.org/10.1016/j.jhydrol.2013.11.006, in press, 2014.
Chaskin, R.: Resilience, Community, and Resilient Communities: Conditioning Contexts and Collective Action, Child Care in Practice, 14, 65–74, 2008.
Conacher, A.: Dryland agriculture and secondary salinity, in: Man and the Australian Environment, McGraw-Hill, Sydney, 113–125, 1986.
Cosgrove, W. and Rijsberman, F.: World water vision: Making water everybody's business, World Water Council, Earthscan, London, UK, 2000.
Cullen, P. and Lake, P.: Water resources and biodiversity: past, present and future problems and solutions, in: Conserving Biodiversity: Threats and Solutions, edited by: Bradstock, R. A., Auld, T. D., Keith, D. A., Kingsford, R. T., Lumey, D., and Siversten, D. P., Surrey Beatty & Sons, Sydney, 115–125, 1995.
Cumming, G., Barnes, G., Perz, S., Schmink, M., Sieving, K., Southworth, J., Binford, M., Holt, R., Stickler, C., and Holt, T.: An Exploratory Framework for the Empirical Measurement of Resilience, Ecosystems, 8, 975–987, 2005.
Daily, G. C.: Nature's services: societal dependence on natural ecosystems, Island Press, Washington DC, 1997.
Dale, A., Ling, C., and Newman, L.: Community Vitality: The Role of Community-Level Resilience Adaptation and Innovation in Sustainable Development, Sustainability, 2, 215–231, 2010.
Di Baldassarre, G., Kooy, M., Kemerink, J. S., and Brandimarte, L.: Towards understanding the dynamic behaviour of floodplains as human-water systems, Hydrol. Earth Syst. Sci., 17, 3235–3244, https://doi.org/10.5194/hess-17-3235-2013, 2013a.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013b.
Epstein, G., Vogt, J. M., Mincey, S. K., Cox, M., and Fischer, B.: Missing ecology: integrating ecological perspectives with the social-ecological system framework, Int. J. Commons, 7, 432–453, 2013.
Falkenmark, M.: Main problems of water use and transfer of technology, GeoJournal, 3, 435–443, 1979.
Falkenmark, M.: Society's interaction with the water cycle: a conceptual framework for a more holistic approach, Hydrolog. Sci. J., 42, 451–466, 1997.
Falkenmark, M.: Forward to the future: a conceptual framework for water dependence, Ambio, 28, 356–361, 1999.
Falkenmark, M.: The greatest water problem: the inability to link environmental security, water security and food security, Int. J. Water Resour. D., 17, 539–554, 2001.
Falkenmark, M.: Freshwater as Shared between Society and Ecosystems: From Divided Approaches to Integrated Challenges, Philos. T. R. Soc. B., 358, 2037–2049, 2003.
Farmer, D., Sivapalan, M., and Jothityangkoon, C.: Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis, Water Resour. Res., 39, 1035, https://doi.org/10.1029/2001WR000328, 2003.
Fishman, C.: The Big Thirst: The secret life and turbulent future of water, Simon and Schuster, New York, 2011.
Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J.: Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study, Global Environ. Change, 23, 144–156, 2013.
Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder P. K., and DeFries, R.: Global consequences of land use, Science, 309, 570–574, 2005.
Folke, C.: Ecosystem approaches to the management and allocation of critical resources, in: Successes, limitations and frontiers in ecosystem science, edited by: Pace, M. and Groffman, P., Springer Verlag, New York, 313–345, 1998.
Folke, C.: Freshwater for Resilience: A Shift in Thinking, Philos. T. R. Soc. B., 358, 2027–2036, 2003.
Folke, C.: Resilience: The emergence of a perspective for social–ecological systems analyses, Global Environ. Chang., 16, 253–267, 2006.
Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., and Rockström, J.: Resilience thinking: integrating resilience, adaptability and transformability, Ecol. Soc., 15, 20–28, 2010.
Forbes, B. C., Fresco, N., Shvidenko, A., Danell, K., and Chapin, F. S.: Geographic variations in anthropogenic drivers that influence the vulnerability and resilience of social–ecological systems, Ambio, 33, 377–382, 2004.
Forbes, B. C., Stammler, F., Kumpula, T., Meschtyb, N., Pajunen, A., and Kaarlejärvi, E.: High resilience in the Yamal-Nenets social–ecological system, West Siberian Arctic, Russia, Proc. Natl. Acad. Sci. USA, 106, 22041–22048, 2009.
Fouberg, E. H., Murphy, A. B., and de Blij, H. J.: Human geography: people, place, and culture, John Wiley & Sons, Inc, Wiley. com, New Jersey, USA, 2010.
George, R., Dogramaci, S., Wyland, J., and Lacey, P.: Protecting stranded biodiversity using groundwater pumps and surface water engineering at Lake Toolibin, Western Australia, Aust. J. Water Resour., 9, 119–127, 2005.
Giddens, A.: The constitution of society: Introduction of the theory of structuration, Polity Press, Malden, MA, 1984.
Gleick, P. H.: Water and conflict: Fresh water resources and international security, Int. Security, 18, 79–112, 1993.
Gober, P. and Wheater, H. S.: Socio-hydrology and the science-policy interface: a case study of the Saskatchewan River Basin, Hydrol. Earth Syst. Sci., 18, 1413–1422, https://doi.org/10.5194/hess-18-1413-2014, 2014.
Gooch, M. and Rigano, D.: Enhancing Community-scale Social Resilience: what is the connection between healthy communities and healthy waterways?, Aust. Geogr., 41, 507–520, 2010.
Gordon, L. J., Finlayson, C. M., and Falkenmark, M.: Managing water in agriculture for food production and other ecosystem services, Agr. Water Manage., 97, 512–519, 2010.
Gregory, K. J.: The human role in changing river channels, Geomorphology, 79, 172–191, 2006.
Guimarães, M. H. E., Mascarenhas, A., Sousa, C., Boski, T., and Dentinho, T. P.: The impact of water quality changes on the socio-economic system of the Guadiana Estuary: an assessment of management options, Ecol. Soc., 17, 38–51, 2012.
Gunderson, L. H. and Holling, C. S.: Panarchy, Island Press, Washington D.C., 2002.
Hardin, G.: The tragedy of the commons, Science, 162, 1243–1248, 1968.
Hatton, T. J., Ruprecht, J., and George, R. J.: Preclearing hyrdology of the Western Australian wheatbelt: Target for the future, Plant Soil, 257, 341–356, 2003.
Heemskerk, M., Wilson, K., and Pavao-Zuckerman, M.: Conceptual Models as Tools for Communication Across Disciplines, Ecol. Soc., 7, 8–20, 2003.
Holling, C. S.: Resilience and stability of ecological systems, Annu. Rev. Ecol. Syst., 4, 1–23, 1973.
Horne, J.: Economic approaches to water management in Australia, Int. J. Water Resour. D., 29, 1–13, 2012.
Imberger, J., Mamouni, E. A. D., Anderson, J., Ng, M. L., Nicol, S., and Veale, A.: The Index of Sustainable Functionality: A new adaptive, multicriteria measurement of sustainability – Application to Western Australia, Int. J. Environ. Sust. Dev., 6, 323–355, 2007.
Johnston, B. F. and Mellor, J. W.: The role of agriculture in economic development, Am. Econ. Rev., 51, 566–593, 1961.
Jones, A.: Human geography: The basics, Routledge: Taylor and Francis, tandfonline.com, New York, NY, 2012.
Jones, N. A., Ross, H., Lynam, T., Perez, P., and Leitch, A.: Mental Models: An Interdisciplinary Synthesis of Theory and Methods, Ecol. Soc., 16, 46–58, 2011.
Kandasamy, J., Sounthararajah, D., Sivabalan, P., Chanan, A., Vigneswaran, S., and Sivapalan, M.: Socio-hydrologic drivers of the pendulum swing between agriculture development and environmental health: a case study from Murrumbidgee River Basin, Australia, Hydrol. Earth Syst. Sci., 18, 1027–1041, https://doi.org/10.5194/hess-18-1027-2014, 2014.
Kates, R. and Clark, W.: Our common journey, Washington DC, National Academy Press, 1999.
Kinzig, A. P.: Bridging Disciplinary Divides to Address Environmental and Intellectual Challenges, Ecosystems, 4, 709–715, 2001.
Kinzig, A. P., Ryan, P., Etienne, M., Allison, H., Elmqvist, T., and Walker, B. H.: Resilience and regime shifts: assessing cascading effects, Ecol. Soc., 11, 20–42, 2006.
Kinzig, A. P., Ehrlich, P. R., Alston, L. J., Arrow, K., Barrett, S., Buchman, T. G., Daily, G. C., Levin, B., Levin, S., and Oppenheimer, M.: Social norms and global environmental challenges: The complex interaction of behaviors, values, and policy, BioScience, 63, 164–175, 2013.
Kollmuss, A. and Agyeman, J.: Mind the Gap: Why Do People Act Environmentally and What Are the Barriers to Pro-Environmental Behavior?, Environ. Educ. Res., 8, 239–260, 2002.
Lade, S. J., Tavoni, A., Levin, S. A., and Schlüter, M.: Regime shifts in a social-ecological system, Theor. Ecol., 6, 359–372, 2013.
Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., and Folke, C.: The causes of land-use and land-cover change: moving beyond the myths, Global Environ. Change, 11, 261–269, 2001.
Leichenko, R. M. and O'Brien, K. L.: The dynamics of rural vulnerability to global change: the case of southern Africa, Mitig. Adapt. Strateg. Glob. Change, 7, 1–18, 2002.
Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor, W. W., Ouyang, Z., Deadman, P., Kratz T., and Provencher, W.: Coupled human and natural systems, Ambio, 36, 639–649, 2007a.
Liu, J. G., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H., and Taylor, W. W.: Complexity of coupled human and natural systems, Science, 317, 1513–1516, 2007b.
Liu, Y., Gupta, H., Springer, E., and Wagener, T.: Linking science with environmental decision making: experiences from an integrated modeling approach to supporting sustainable water resources management, Environ. Modell. Softw., 23, 846–858, 2008.
Liu, Y., Tian, F., Hu, H., and Sivapalan, M.: Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River Basin, Western China: the Taiji–Tire Model, Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, 2014.
Low, B., Costanza, R., Ostrom, E., Wilson, J., and Simon, C. P.: Human – ecosystem interactions: a dynamic integrated model, Ecol. Econ., 31, 227–242, 1999.
Luthar, S. S., Cicchetti, D., and Becker, B.: The construct of resilience: A critical evaluation and guidelines for future work, Child Dev., 71, 543–562, 2000.
Lynam, T. and Brown, K.: Mental Models in Human-Environment Interactions: Theory, Policy Implications, and Methodological Explorations, Ecol. Soc., 17, 24–26, 2012.
Mankad, A.: Decentralised water systems: Emotional influences on resource decision making, Environ. Int., 44, 128–140, 2012.
Mankad, A. and Tapsuwan, S.: Review of socio-economic drivers of community acceptance and adoption of decentralised water systems, J. Environ. Manage., 92, 380–391, 2011.
Marsh, G. P.: Man and Nature, Belknap Press of Harvard University Press, Cambridge, MA, 1864.
Masten, A. S., Best, K. M., and Garmezy, N.: Resilience and development: Contributions from the study of children who overcome adversity, Dev. Psychopathol., 2, 425–444, 1990.
McDonnell, M. J. and Pickett, S. T.: Humans as components of ecosystems: the ecology of subtle human effects and populated areas, Springer-Verlag, New York, 1993.
Molden, D., Sakthivadivel, R., and Samad, M.: Accounting for changes in water use and the need for institutional adaptation, in: Intersectoral management of river basins: Proceedings of an international workshop on Integrated Water Management in Water-Stressed River Basins in Developing Countries: Strategies for Poverty Alleviation and Agricultural Growth, Loskop Dam, South Africa, 16–21 October 2000, 2001.
Molle, F.: Historical benchmarks and reflections on small tanks and their utilization, Mossoro, Brazil: Collection Mossoroense, 1991.
Molle, F.: Development trajectories of river basins: a conceptual framework, Research Report, International Water Management Institute, 72, Colombo, Sri Lanka, 2003.
Montanari, A., Young, G., Savenije, H., Hughes, D., Wagener, T., Ren, L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., M. Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pangad, Z., and Belyaev, V.: "Panta Rhei–Everything Flows": Change in hydrology and society – The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58, 1256–1275, 2013.
Munro, J. K. and Moore, S. A.: Using landholder perspectives to evaluate and improve recovery planning for Toolibin Lake in the West Australian wheatbelt, Ecol. Manage. Restor., 4, 111–117, 2005.
Myrdal, G.: The Principle of Circular and Cumulative Causation, in: Economic theory and under-developed regions, edited by: Myrdal, G., Methuen and Co. Ltd., London, 11–22, 1957.
Norgaard, R. B., Kallis, G., and Kiparsky, M.: Collectively engaging complex socio-ecological systems: re-envisioning science, governance, and the California Delta, Environ. Sci. Policy, 12, 644–652, 2009.
Odum, E. P.: Ecology and our endangered life-support systems, Sinauer Associates, Massachusetts, 1989.
Ostrom, E.: A general framework for analysing sustainability of social-ecological systems, Science, 325, 419–422, 2009.
Ostrom, E., Dietz, T., Dolsak, N., Stern, P., Stonich, S., and Weber, E. (Eds.): The drama of the commons, Committee on the Human Dimensions of Global Change, National Academies Press, Washington, DC, 2002.
Pande, S., Ertsen, M., and Sivapalan, M.: Endogenous technological and population change under increasing water scarcity, Hydrol. Earth Syst. Sci. Discuss., 10, 13505–13537, https://doi.org/10.5194/hessd-10-13505-2013, 2013.
Pearce, F.: When the Rivers Run Dry: Water – The Defining Crisis of the Twenty-first Century, Beacon Press, Boston, Massachussets, 2007.
Postel, S. L.: Securing water for people, crops, and ecosystems: New mindset and new priorities, Nat. Resour. Forum, 27, 89–98. 2003.
Ribeiro Neto, A., Scott, C. A., Lima, E. A., Montenegro, S. M. G. L., and Cirilo, J. A.: Infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the urbanizing Capibaribe River Basin – Brazil, Hydrol. Earth Syst. Sci. Discuss., 11, 2795–2824, https://doi.org/10.5194/hessd-11-2795-2014, 2014.
Rockström, J., Lannerstad, M., and Falkenmark, M.: Assessing the water challenge of a new green revolution in developing countries, Proc. Natl. Acad. Sci. USA, 104, 6253–6260, 2007.
Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., and Gerten, D.: Future water availability for global food production: the potential of green water for increasing resilience to global change, Water Resour. Res., 45, W00A12, https://doi.org/10.1029/2007WR006767, 2009.
Rogers, R. W.: A Protection Motivation Theory of Fear Appeals and Attitude Change1, J. Psychol., 91, 93–114, 1975.
Rolfe, J., Donaghy, P., Alam, K., O'Dea, G., and Miles, R.: Considering the economic and social impacts of protecting environmental values in specific Moreton Bay/SEQ, Mary River Basin/Great Sandy Strait Region and Douglas Shire waters, Report prepared for the Environmental Protection Agency, Queensland Government, Rockhampton, Australia, 2005.
Savenije, H., Hoekstra, A., and van der Zaag, P.: Evolving water science in the Anthropocene, Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, 2014.
Scheffer, M.: Critical transitions in nature and society, Princeton University Press, Princeton, New Jersey, 2009.
Scheffer, M. and Westley, F. R.: The evolutionary basis of rigidity: locks in cells, minds, and society, Ecol. Soc., 12, 36–48, 2007.
Schlüter, M. and Herrfahrdt-Pähle, E.: Exploring resilience and transformability of a river basin in the face of socio-economic and ecological crisis: An example from the Amudarya River Basin, central Asia, Ecol. Soc., 16, 1–19, 2011.
Schlüter, M. and Pahl-Wostl, C.: Mechanisms of resilience in common-pool resource management systems: an agent-based model of water use in a river basin, Ecol. Soc., 12, 4–26, 2007.
Schlüter, M., Leslie, H., and Levin, S.: Managing water-use trade-offs in a semi-arid river delta to sustain multiple ecosystem services: a modeling approach, Ecol. Res., 24, 491–503, 2009.
Schlüter, M., McAllister, R. R. J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hoelker, F., Milner-Gulland, E. J., Müller, B., Nicholson, E., Quaas, K., and Stöven, M.: New horizons for managing the environment: A review of coupled social-ecological systems modeling, Nat. Resour. Model., 25, 219–272, 2012.
Schlüter, M., Müller, B., and Frank, K.: How to use models to improve analysis and governance of social-ecological systems – the reference frame MORE, Working Paper, 5 April 2013, https://doi.org/10.2139/ssrn.2037723, 2013.
Schwarz, N. and Ernst, A.: Agent-based modeling of the diffusion of environmental innovations – An empirical approach, Technol. Forecast. Soc., 76, 497–511, 2009.
Seymour, E., Curtis, A., Pannell, D., Allan, C., and Roberts, A.: Understanding the role of assigned values in natural resource management, Australas. J. Environ., 17, 142–153, 2010.
Sherrieb, K., Norris, F. H., and Galea, S.: Measuring Capacities for Community Resilience, Soc. Indic. Res., 99, 227–247, 2010.
Simane, B., Zaitchik, B. F., and Mesfin, D.: Building Climate Resilience in the Blue Nile/Abay Highlands: A Framework for Action, Int. J. Environ. Res. Public Health, 9, 435–461, 2012.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A new science of people and water, Hydrol. Process., 26, 1270–1276, 2012.
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., Wescoat, J. L., and Rodríguez-Iturbe, I.: Socio-hydrology: Use inspired water sustainability science for the Anthropocene, Earth's Future, 2, 225–230, https://doi.org/10.1002/eft2.26, 2014.
Smith, J., Moore, R., Anderson, D., and Siderelis, C.: Community Resilience in Southern Appalachia: A Theoretical Framework and Three Case Studies, Hum. Ecol., 40, 341–353, 2012.
Srinivasan, V.: Coevolution of water security in a developing city, Hydrol. Earth Syst. Sci. Discuss., 10, 13265–13291, https://doi.org/10.5194/hessd-10-13265-2013, 2013.
Srinivasan, V., Seto, K. C., Emerson, R., and Gorelick, S. M.: The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India, Global Environ. Change, 23, 229–239, 2013.
Steffen, W., Grinevald, J., Crutzen, P., and McNeill, J.: The Anthropocene: conceptual and historical perspectives, Philos. T. R. Soc. A, 369, 842–867, 2011.
Stein, T. V., Anderson, D. H., and Kelly, T.: Using stakeholders' values to apply ecosystem management in an upper Midwest landscape, Environ. Manage., 24, 399–413, 1999.
Tavoni, A., Schlüter, M., and Levin, S.: The survival of the conformist: social pressure and renewable resource management, J. Theor. Biol., 299, 152–161, 2012.
Thomas Jr., W. L.: Man's Role in Changing the Face of the Earth, University of Chicago Press, Chicago, USA, 1956.
Thompson, S. E., Sivapalan, M., Harman, C. J., Srinivasan, V., Hipsey, M. R., Reed, P., Montanari, A., and Blöschl, G.: Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene, Hydrol. Earth Syst. Sci., 17, 5013–5039, https://doi.org/10.5194/hess-17-5013-2013, 2013.
Tolun, L. G., Ergenekon, S., Hocaoglu, S. M., Donertas, A. S., Cokacar, T., Husrevoglu, S., Beken, C. P., and Baban, A.: Socioeconomic Response to Water Quality: a First Experience in Science and Policy Integration for the Izmit Bay Coastal System, Ecol. Soc., 17, 40–53, 2012.
Transparency International: The Corruption Perceptions Index, Transparency International, Berlin, 2012.
Turner, B. L.: Vulnerability and resilience: Coalescing or paralleling approaches for sustainability science?, Global Environ. Change, 20, 570–576, 2010.
Turner, B. L., Clark, W., Kates, R., Richards, J., Matthews, J., and Meyer, W. B.: The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years, Cambridge University Press Archive, Cambridge, UK, 1990.
Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., and Schiller, A.: A framework for vulnerability analysis in sustainability science, Proc. Natl. Acad. Sci. USA, 100, 8074–8079, 2003.
Turral, H.: Hydro-Logic?: Reform in Water Resources Management in Developed Countries with Major Agricultural Water Use: Lessons for Developing Nations, Overseas Development Institute, London, 1998.
UNDP: Human Development Report 1990, United Nations Development Programme, New York, 1990.
UNEP: World atlas of desertification, United Nations Environment Programme, London, 1997.
van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G., Chanan, A., and Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River Basin, Australia, Hydrol. Earth Syst. Sci. Discuss., 11, 3387–3435, https://doi.org/10.5194/hessd-11-3387-2014, 2014.
Vanclay, F.: The social side of natural resource management, W.A. BankWest Landcare Conference: Where Community Counts, Esperance, W.A., September, 29–39, 1999.
Vanclay, F.: Social principles for agricultural extension to assist in the promotion of natural resource management, Animal Production Science, 44, 213–222, 2004.
Varis, O.: Poverty, economic growth, deprivation, and water: the cases of Cambodia and Vietnam, Ambio, 37, 225–231, 2008.
Vaske, J. J. and Donnelly, M. P.: A value-attitude-behavior model predicting wildland preservation voting intentions, Soc. Natur Resour., 12, 523–537, 1999.
Vörösmarty, C. J., Leveque, C., and Revenga, C. (Convening Lead Authors) (with Bos, R., Caudill, C., Chilton, J., Douglas, E. M., Meybeck, M., Prager, D., Balvanera, P., Barker, S., Maas, M., Nilsson, C., Oki, T., Reidy, C. A.): Chapter 7: Fresh Water, in: Millennium Ecosystem Assessment, Volume 1: Conditions and Trends Working Group Report, Island Press, Washington DC, 165–207, 2005.
Walker, K. and Thoms, M.: Environmental effects of flow regulation on the lower River Murray, Australia, Regul. River, 8, 103–119, 1993.
Zilberman, D., Dinar, A., MacDougall, N., Khanna, M., Brown, C., and Castillo, F.: Individual and institutional responses to the drought: the case of California agriculture, J. Contemp. Water Res. Educ., 121, 17–23, 2011.