Articles | Volume 17, issue 12
https://doi.org/10.5194/hess-17-5167-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-5167-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An assessment of the ability of Bartlett–Lewis type of rainfall models to reproduce drought statistics
M. T. Pham
Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, 9000 Ghent, Belgium
W. J. Vanhaute
Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, 9000 Ghent, Belgium
S. Vandenberghe
Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, 9000 Ghent, Belgium
B. De Baets
Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, 9000 Ghent, Belgium
N. E. C. Verhoest
Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, 9000 Ghent, Belgium
Related authors
No articles found.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Brecht Martens, Dominik L. Schumacher, Hendrik Wouters, Joaquín Muñoz-Sabater, Niko E. C. Verhoest, and Diego G. Miralles
Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020, https://doi.org/10.5194/gmd-13-4159-2020, 2020
Short summary
Short summary
Climate reanalyses are widely used in different fields and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational centres producing these data sets. In this study, we show the improvements of ECMWF's latest climate reanalysis (ERA5) upon its predecessor (ERA-Interim) in partitioning the available energy at the land surface.
Jorn Van de Velde, Bernard De Baets, Matthias Demuzere, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-83, https://doi.org/10.5194/hess-2020-83, 2020
Revised manuscript not accepted
Short summary
Short summary
Though climate models have different types of biases in comparison to the observations, most research is focused on adjusting the intensity. Yet, variables like precipitation are also biased in the occurrence: there are too many days with rainfall. We compared four methods for adjusting the occurrence, with the goal of improving flood representation. From this comparison, we concluded that more advanced methods do not necessarily add value, especially in multivariate settings.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018, https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global
hydro-climatic biomescorrespond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Minh Tu Pham, Hilde Vernieuwe, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 22, 1263–1283, https://doi.org/10.5194/hess-22-1263-2018, https://doi.org/10.5194/hess-22-1263-2018, 2018
Short summary
Short summary
In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Still, the developed model has great potential for hydrological impact analysis.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682, https://doi.org/10.5194/hess-2017-682, 2018
Revised manuscript not accepted
Short summary
Short summary
Potential evaporation is a key parameter in numerous models used for assessing water use and drought severity. Yet, multiple incompatible methods have been proposed, thus estimates of potential evaporation remain uncertain. Based on the largest available dataset of FLUXNET data, we identify the best method to calculate potential evaporation globally. A simple radiation-driven method calibrated per biome consistently performed best; more complex models did not perform as good.
Dominik Rains, Xujun Han, Hans Lievens, Carsten Montzka, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5929–5951, https://doi.org/10.5194/hess-21-5929-2017, https://doi.org/10.5194/hess-21-5929-2017, 2017
Short summary
Short summary
We have assimilated 6 years of satellite-observed passive microwave data into a state-of-the-art land surface model to improve surface soil moisture as well as root-zone soil moisture simulations. Long-term assimilation effects/biases are identified, and they are especially dependent on model perturbations, applied to simulate model uncertainty. The implications are put into context of using such assimilation-improved data for classifying extremes within hydrological monitoring systems.
Katrien Van Eerdenbrugh, Stijn Van Hoey, Gemma Coxon, Jim Freer, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5315–5337, https://doi.org/10.5194/hess-21-5315-2017, https://doi.org/10.5194/hess-21-5315-2017, 2017
Short summary
Short summary
Consistency in stage–discharge data is investigated using a methodology called Bidirectional Reach (BReach). Various measurement stations in the UK, New Zealand and Belgium are selected based on their historical ratings information and their characteristics related to data consistency. When applying a BReach analysis on them, the methodology provides results that appear consistent with the available knowledge and thus facilitates a reliable assessment of (in)consistency in stage–discharge data.
Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, https://doi.org/10.5194/hess-21-3879-2017, 2017
Short summary
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.
Christa D. Peters-Lidard, Martyn Clark, Luis Samaniego, Niko E. C. Verhoest, Tim van Emmerik, Remko Uijlenhoet, Kevin Achieng, Trenton E. Franz, and Ross Woods
Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, https://doi.org/10.5194/hess-21-3701-2017, 2017
Short summary
Short summary
In this synthesis of hydrologic scaling and similarity, we assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological hypotheses. We call upon the community to develop a focused effort towards a fourth paradigm for hydrology.
Brecht Martens, Diego G. Miralles, Hans Lievens, Robin van der Schalie, Richard A. M. de Jeu, Diego Fernández-Prieto, Hylke E. Beck, Wouter A. Dorigo, and Niko E. C. Verhoest
Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, https://doi.org/10.5194/gmd-10-1903-2017, 2017
Short summary
Short summary
Terrestrial evaporation is a key component of the hydrological cycle and reliable data sets of this variable are of major importance. The Global Land Evaporation Amsterdam Model (GLEAM, www.GLEAM.eu) is a set of algorithms which estimates evaporation based on satellite observations. The third version of GLEAM, presented in this study, includes an improved parameterization of different model components. As a result, the accuracy of the GLEAM data sets has been improved upon previous versions.
Christina Papagiannopoulou, Diego G. Miralles, Stijn Decubber, Matthias Demuzere, Niko E. C. Verhoest, Wouter A. Dorigo, and Willem Waegeman
Geosci. Model Dev., 10, 1945–1960, https://doi.org/10.5194/gmd-10-1945-2017, https://doi.org/10.5194/gmd-10-1945-2017, 2017
Short summary
Short summary
Global satellite observations provide a means to unravel the influence of climate on vegetation. Common statistical methods used to study the relationships between climate and vegetation are often too simplistic to capture the complexity of these relationships. Here, we present a novel causality framework that includes data fusion from various databases, time series decomposition, and machine learning techniques. Results highlight the highly non-linear nature of climate–vegetation interactions.
Benedikt Gräler, Andrea Petroselli, Salvatore Grimaldi, Bernard De Baets, and Niko Verhoest
Proc. IAHS, 373, 175–178, https://doi.org/10.5194/piahs-373-175-2016, https://doi.org/10.5194/piahs-373-175-2016, 2016
Short summary
Short summary
Many hydrological studies are devoted to the identification of events that are expected to occur on average within a certain time span. While this topic is well established in the univariate case, recent advances focus on a multivariate characterization of events based on copulas. Following a previous study, we show how the definition of the survival Kendall return period fits into the set of multivariate return periods.
H. Vernieuwe, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, https://doi.org/10.5194/hess-19-2685-2015, 2015
M. J. van den Berg, L. Delobbe, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 18, 5331–5344, https://doi.org/10.5194/hess-18-5331-2014, https://doi.org/10.5194/hess-18-5331-2014, 2014
M. Dessie, N. E. C. Verhoest, V. R. N. Pauwels, T. Admasu, J. Poesen, E. Adgo, J. Deckers, and J. Nyssen
Hydrol. Earth Syst. Sci., 18, 5149–5167, https://doi.org/10.5194/hess-18-5149-2014, https://doi.org/10.5194/hess-18-5149-2014, 2014
Short summary
Short summary
In this study, topography is considered as a proxy for the variability of most of the catchment characteristics. The model study suggests that classifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics the rainfall–runoff process in the Upper Blue Nile basin well and yields a useful result for operational management of water resources in this data-scarce region.
J. Minet, N. E. C. Verhoest, S. Lambot, and M. Vanclooster
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-4063-2013, https://doi.org/10.5194/hessd-10-4063-2013, 2013
Revised manuscript has not been submitted
B. Gräler, M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 1281–1296, https://doi.org/10.5194/hess-17-1281-2013, https://doi.org/10.5194/hess-17-1281-2013, 2013
L. Loosvelt, H. Vernieuwe, V. R. N. Pauwels, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 461–478, https://doi.org/10.5194/hess-17-461-2013, https://doi.org/10.5194/hess-17-461-2013, 2013
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
A systematic review of climate change science relevant to Australian design flood estimation
Technical Note: Resolution enhancement of flood inundation grids
Floods and droughts: a multivariate perspective
Technical note: Statistical generation of climate-perturbed flow duration curves
Deep learning methods for flood mapping: a review of existing applications and future research directions
Extreme floods in Europe: going beyond observations using reforecast ensemble pooling
Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach
Technical note: The beneficial role of a natural permeable layer in slope stabilization by drainage trenches
Assessing the impacts of reservoirs on downstream flood frequency by coupling the effect of scheduling-related multivariate rainfall with an indicator of reservoir effects
Observation operators for assimilation of satellite observations in fluvial inundation forecasting
Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River
Inundation mapping based on reach-scale effective geometry
Effects of variability in probable maximum precipitation patterns on flood losses
The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data
A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction
Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset
Technical note: Design flood under hydrological uncertainty
Topography- and nightlight-based national flood risk assessment in Canada
Regime shifts in annual maximum rainfall across Australia – implications for intensity–frequency–duration (IFD) relationships
Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs
A continuous rainfall model based on vine copulas
Estimates of global dew collection potential on artificial surfaces
Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes
Modeling root reinforcement using a root-failure Weibull survival function
Socio-hydrology: conceptualising human-flood interactions
Application of a model-based rainfall-runoff database as efficient tool for flood risk management
Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis
HydroViz: design and evaluation of a Web-based tool for improving hydrology education
Web 2.0 collaboration tool to support student research in hydrology – an opinion
SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach
Discharge estimation combining flow routing and occasional measurements of velocity
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
Comment on "A praxis-oriented perspective of streamflow inference from stage observations – the method of Dottori et al. (2009) and the alternative of the Jones Formula, with the kinematic wave celerity computed on the looped rating curve" by Koussis (2009)
An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023, https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Short summary
I discuss different types of multivariate hydrological extremes and their dependencies, including regional extremes affecting multiple locations, such as spatially connected flood events; consecutive extremes occurring in close temporal succession, such as successive droughts; extremes characterized by multiple characteristics, such as floods with jointly high peak discharge and flood volume; and transitions between different types of extremes, such as drought-to-flood transitions.
Veysel Yildiz, Robert Milton, Solomon Brown, and Charles Rougé
Hydrol. Earth Syst. Sci., 27, 2499–2507, https://doi.org/10.5194/hess-27-2499-2023, https://doi.org/10.5194/hess-27-2499-2023, 2023
Short summary
Short summary
The proposed approach is based on the parameterisation of flow duration curves (FDCs) to generate hypothetical streamflow futures. (1) We sample a broad range of future climates with modified values of three key streamflow statistics. (2) We generate an FDC for each hydro-climate future. (3) The resulting ensemble is ready to support robustness assessments in a changing climate. Our approach seamlessly represents a large range of futures with increased frequencies of both high and low flows.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci., 25, 2721–2738, https://doi.org/10.5194/hess-25-2721-2021, https://doi.org/10.5194/hess-25-2721-2021, 2021
Short summary
Short summary
How can we effectively train PhD candidates both (i) across different knowledge domains in water science and engineering and (ii) in computer science? To address this issue, the Water Informatics in Science and Engineering Centre for Doctoral Training (WISE CDT) offers a postgraduate programme that fosters enhanced levels of innovation and collaboration by training a cohort of engineers and scientists at the boundary of water informatics, science and engineering.
Onno Bokhove, Tiffany Hicks, Wout Zweers, and Thomas Kent
Hydrol. Earth Syst. Sci., 24, 2483–2503, https://doi.org/10.5194/hess-24-2483-2020, https://doi.org/10.5194/hess-24-2483-2020, 2020
Short summary
Short summary
Wetropolis is a
table-topdemonstration model with extreme rainfall and flooding, including random rainfall, river flow, flood plains, an upland reservoir, a porous moor, and a city which can flood. It lets the viewer experience extreme rainfall and flood events in a physical model on reduced spatial and temporal scales with an event return period of 6.06 min rather than, say, 200 years. We disseminate its mathematical design and how it has been shown most prominently to over 500 flood victims.
Gianfranco Urciuoli, Luca Comegna, Marianna Pirone, and Luciano Picarelli
Hydrol. Earth Syst. Sci., 24, 1669–1676, https://doi.org/10.5194/hess-24-1669-2020, https://doi.org/10.5194/hess-24-1669-2020, 2020
Short summary
Short summary
The aim of this paper is to demonstrate, through a numerical approach, that the presence of soil layers of higher permeability, a not unlikely condition in some deep landslides in clay, may be exploited to improve the efficiency of systems of drainage trenches for slope stabilization. The problem has been examined for the case that a unique pervious layer, parallel to the ground surface, is present at an elevation higher than the bottom of the trenches.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Elizabeth S. Cooper, Sarah L. Dance, Javier García-Pintado, Nancy K. Nichols, and Polly J. Smith
Hydrol. Earth Syst. Sci., 23, 2541–2559, https://doi.org/10.5194/hess-23-2541-2019, https://doi.org/10.5194/hess-23-2541-2019, 2019
Short summary
Short summary
Flooding from rivers is a huge and costly problem worldwide. Computer simulations can help to warn people if and when they are likely to be affected by river floodwater, but such predictions are not always accurate or reliable. Information about flood extent from satellites can help to keep these forecasts on track. Here we investigate different ways of using information from satellite images and look at the effect on computer predictions. This will help to develop flood warning systems.
Bart van Osnabrugge, Remko Uijlenhoet, and Albrecht Weerts
Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019, https://doi.org/10.5194/hess-23-1453-2019, 2019
Short summary
Short summary
A correct estimate of the amount of future precipitation is the most important factor in making a good streamflow forecast, but evaporation is also an important component that determines the discharge of a river. However, in this study for the Rhine River we found that evaporation forecasts only give an almost negligible improvement compared to methods that use statistical information on climatology for a 10-day streamflow forecast. This is important to guide research on low flow forecasts.
Cédric Rebolho, Vazken Andréassian, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 22, 5967–5985, https://doi.org/10.5194/hess-22-5967-2018, https://doi.org/10.5194/hess-22-5967-2018, 2018
Short summary
Short summary
Inundation models are useful for hazard management and prevention. They are traditionally based on hydraulic partial differential equations (with satisfying results but large data and computational requirements). This study presents a simplified approach combining reach-scale geometric properties with steady uniform flow equations. The model shows promising results overall, although difficulties persist in the most complex urbanised reaches.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Guillaume Le Bihan, Olivier Payrastre, Eric Gaume, David Moncoulon, and Frédéric Pons
Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, https://doi.org/10.5194/hess-21-5911-2017, 2017
Short summary
Short summary
This paper illustrates how an integrated flash flood monitoring (or forecasting) system may be designed to directly provide information on possibly flooded areas and associated impacts on a very detailed river network and over large territories. The approach is extensively tested in the regions of Alès and Draguignan, located in south-eastern France. Validation results are presented in terms of accuracy of the estimated flood extents and related impacts (based on insurance claim data).
Ashley Wright, Jeffrey P. Walker, David E. Robertson, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci., 21, 3827–3838, https://doi.org/10.5194/hess-21-3827-2017, https://doi.org/10.5194/hess-21-3827-2017, 2017
Short summary
Short summary
The accurate reduction of hydrologic model input data is an impediment towards understanding input uncertainty and model structural errors. This paper compares the ability of two transforms to reduce rainfall input data. The resultant transforms are compressed to varying extents and reconstructed before being evaluated with standard simulation performance summary metrics and descriptive statistics. It is concluded the discrete wavelet transform is most capable of preserving rainfall time series.
Ricardo Zubieta, Augusto Getirana, Jhan Carlo Espinoza, Waldo Lavado-Casimiro, and Luis Aragon
Hydrol. Earth Syst. Sci., 21, 3543–3555, https://doi.org/10.5194/hess-21-3543-2017, https://doi.org/10.5194/hess-21-3543-2017, 2017
Short summary
Short summary
This paper indicates that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, in comparison to observed rainfall (by 11.1 % and 15.7 %, respectively). Statistical analysis indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets for estimating observed streamflows in Andean–Amazonian regions (Ucayali Basin, southern regions of the Amazon Basin of Peru and Ecuador).
Anna Botto, Daniele Ganora, Pierluigi Claps, and Francesco Laio
Hydrol. Earth Syst. Sci., 21, 3353–3358, https://doi.org/10.5194/hess-21-3353-2017, https://doi.org/10.5194/hess-21-3353-2017, 2017
Short summary
Short summary
The paper provides an easy-to-use implementation of the UNCODE framework, which allows one to estimate the design flood value by directly accounting for sample uncertainty. Other than a design tool, this methodology is also a practical way to quantify the value of data in the design process.
Amin Elshorbagy, Raja Bharath, Anchit Lakhanpal, Serena Ceola, Alberto Montanari, and Karl-Erich Lindenschmidt
Hydrol. Earth Syst. Sci., 21, 2219–2232, https://doi.org/10.5194/hess-21-2219-2017, https://doi.org/10.5194/hess-21-2219-2017, 2017
Short summary
Short summary
Flood mapping is one of Canada's major national interests. This work presents a simple and effective method for large-scale flood hazard and risk mapping, applied in this study to Canada. Readily available data, such as remote sensing night-light data, topography, and stream network were used to create the maps.
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 19, 4735–4746, https://doi.org/10.5194/hess-19-4735-2015, https://doi.org/10.5194/hess-19-4735-2015, 2015
Short summary
Short summary
Rainfall intensity-frequency-duration (IFD) relationships are required for the design and planning of water supply and management systems around the world. Currently IFD information is based on the "stationary climate assumption". However, this paper provides evidence of regime shifts in annual maxima rainfall time series using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Importantly, current IFD relationships may under- or overestimate the design rainfall.
P. A. Marker, N. Foged, X. He, A. V. Christiansen, J. C. Refsgaard, E. Auken, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 19, 3875–3890, https://doi.org/10.5194/hess-19-3875-2015, https://doi.org/10.5194/hess-19-3875-2015, 2015
H. Vernieuwe, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, https://doi.org/10.5194/hess-19-2685-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
D. E. Mora, L. Campozano, F. Cisneros, G. Wyseure, and P. Willems
Hydrol. Earth Syst. Sci., 18, 631–648, https://doi.org/10.5194/hess-18-631-2014, https://doi.org/10.5194/hess-18-631-2014, 2014
M. Schwarz, F. Giadrossich, and D. Cohen
Hydrol. Earth Syst. Sci., 17, 4367–4377, https://doi.org/10.5194/hess-17-4367-2013, https://doi.org/10.5194/hess-17-4367-2013, 2013
G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, https://doi.org/10.5194/hess-17-3295-2013, 2013
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013, https://doi.org/10.5194/hess-17-3159-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
E. Habib, Y. Ma, D. Williams, H. O. Sharif, and F. Hossain
Hydrol. Earth Syst. Sci., 16, 3767–3781, https://doi.org/10.5194/hess-16-3767-2012, https://doi.org/10.5194/hess-16-3767-2012, 2012
A. Pathirana, B. Gersonius, and M. Radhakrishnan
Hydrol. Earth Syst. Sci., 16, 2499–2509, https://doi.org/10.5194/hess-16-2499-2012, https://doi.org/10.5194/hess-16-2499-2012, 2012
K. X. Soulis and J. D. Valiantzas
Hydrol. Earth Syst. Sci., 16, 1001–1015, https://doi.org/10.5194/hess-16-1001-2012, https://doi.org/10.5194/hess-16-1001-2012, 2012
G. Corato, T. Moramarco, and T. Tucciarelli
Hydrol. Earth Syst. Sci., 15, 2979–2994, https://doi.org/10.5194/hess-15-2979-2011, https://doi.org/10.5194/hess-15-2979-2011, 2011
A. Elshorbagy, G. Corzo, S. Srinivasulu, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 14, 1943–1961, https://doi.org/10.5194/hess-14-1943-2010, https://doi.org/10.5194/hess-14-1943-2010, 2010
A. D. Koussis
Hydrol. Earth Syst. Sci., 14, 1093–1097, https://doi.org/10.5194/hess-14-1093-2010, https://doi.org/10.5194/hess-14-1093-2010, 2010
J. A. Velázquez, T. Petit, A. Lavoie, M.-A. Boucher, R. Turcotte, V. Fortin, and F. Anctil
Hydrol. Earth Syst. Sci., 13, 2221–2231, https://doi.org/10.5194/hess-13-2221-2009, https://doi.org/10.5194/hess-13-2221-2009, 2009
Cited articles
Anderson, T. W. and Darling, D. A.: A test of goodness of fit, J. Am. Stat. Assoc., 49, 765–769, 1954.
Bhalme, H. N. and Mooley, D. A.: Large-scale droughts/floods and monsoon circulation, Mon. Weather Rev., 108, 1197–1211, 1980.
Burton, A., Kilsby, C. G., Fowler, H. J., Cowpertwait, P. S. P., and O'Connell, P. E.: RainSim: a spatial–temporal stochastic rainfall modelling system, Environ. Model. Softw., 23, 1356–1369, 2008.
Byun, H.-R. and Wilhite, D. A.: Objective quantification of drought severity and duration, J. Climate, 12, 2747–2756, 1999.
Byun, H.-R., Sun-Ju, L., Saeid, M., Ki-Seon, C., Sang-Min, L., and Do-Woo, K.: Study on the periodicities of droughts in Korea, Asia-Pac. J. Atmos. Sci., 44, 417–441, 2008.
Cameron, D., Beven, K., and Tawn, J.: An evaluation of three stochastic rainfall models, J. Hydrol., 228, 130–149, 2000.
Cameron, D., Beven, K., and Tawn, J.: Modelling extreme rainfalls using a modified random pulse Bartlett–Lewis stochastic rainfall model (with uncertainty), Adv. Water Resour., 24, 203–211, 2001.
Cowpertwait, P., Isham, V., and Onof, C.: Point process models of rainfall: developments for fine-scale structure, P. Roy. Soc. A, 463, 2569–2587, 2007.
De Jongh, I. L. M., Verhoest, N. E. C., and De Troch, F. P.: Analysis of a 105-year time series of precipitation observed at Uccle, Belgium, Int. J. Climatol., 26, 2023–2039, 2006.
Démarée, G. R.: Le pluviographe centenaire du plateau d'Uccle: son histoire, ses données et ses applications (The centennial recording raingauge of the Uccle Plateau: its history, its data and its applications), La Houille Blanche, 4, 95–102, 2003.
Dogan, S., Berktay, A., and Singh, V. P.: Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey, J. Hydrol., 470–471, 255–268, 2012.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, 1994.
Genest, C. and Favre, A.: Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., 12, 347–368, 2007.
Genest, C. and Rivest, L.-P.: On the multivariate probability integral transformation, Stat. Probabil. Lett., 53, 391–399, 2001.
Genest, C., Quessy, J.-F., and Rémillard, B.: Goodness-of-fit procedures for copula models based on the probability integral transformation, Scand. J. Stat., 33, 337–366, 2006.
Gommes, R. A. and Petrassi, F.: Rainfall variability and drought in sub-Saharan Africa since 1960, Technical Report, Food and Agriculture Organization of the United Nations, Research and Technology Development Division, Agrometeorology Group, Rome, Italy, 1994.
González, J. and Valdés, J. B.: New drought frequency index: definition and comparative performance analysis, Water Resour. Res., 42, W11421, https://doi.org/10.1029/2005WR004308, 2006.
Gräler, B., van den Berg, M. J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., and Verhoest, N. E. C.: Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation, Hydrol. Earth Syst. Sci., 17, 1281–1296, https://doi.org/10.5194/hess-17-1281-2013, 2013.
Jesus, J. and Chandler, R. E.: Estimating functions and the generalized method of moments, Interface Focus, 1, 871–885, 2011.
Kaczmarska, J.: Further development of Bartlett–Lewis models for fine-resolution rainfall, Technical Report, Department of Statistical Science, University College London, London, 011.
Kendall, D. and Dracup, J.: On the generation of drought events using an alternating renewal-reward model, Stoch. Hydrol. Hydraul., 6, 55–68, 1992.
Kim, D.-W., Byun, H.-R., and Choi, K.-S.: Evaluation, modification, and application of the Effective Drought Index to 200-year drought climatology of Seoul, Korea, J. Hydrol., 378, 1–12, 2009.
Kim, T.-W., Valdés, J. B., and Aparicio, J.: Spatial characterization of droughts in the Conchos river basin based on bivariate frequency analysis, Water Int., 31, 50–58, 2006a.
Kim, T.-W., Valdés, J. B., and Yoo, C.: Nonparametric approach for bivariate drought characterization using palmer drought index, J. Hydrol. Eng., 11, 134–143, 2006b.
Li, N., Liu, X., Xie, W., Wu, J., and Zhang, P.: The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution, Comput. Stud., 33, 134–145, 2012.
Mathier, L., Perreault, L., Bobée, B., and Ashkar, F.: The use of geometric and gamma-related distributions for frequency analysis of water deficit, Stoch. Hydrol. Hydraul., 6, 239–254, 1992.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, California, USA, 179–184, 1993.
Morid, S., Smakhtin, V., and Moghaddasi, M.: Comparison of seven meteorological indices for drought monitoring in Iran, Int. J. Climatol., 26, 971–985, 2006.
Morid, S., Smakhtin, V., and Bagherzadeh, K.: Drought forecasting using artificial neural networks and time series of drought indices, Int. J. Climatol., 27, 2103–2111, 2007.
Nelsen, R. B.: An Introduction to Copulas, Springer, New York, 2006.
Onof, C. and Wheater, H. S.: Improvements to the modelling of British rainfall using a modified random parameter Bartlett–Lewis rectangular pulse model, J. Hydrol., 157, 177–195, 1994.
Onof, C., Meca-Figueras, T., Kaczmarska, J., Chandler, R., and Hege, L.: Modelling rainfall with a Bartlett–Lewis process: third-order moments, proportion dry, and a truncated random parameter version, Technical Report, Department of Civil and Environmental Engineering, Imperial College London, London, 2013.
Pandey, R. P., Dash, B. B., Mishra, S. K., and Singh, R.: Study of indices for drought characterization in KBK districts in Orissa (India), Hydrol. Process., 22, 1895–1907, 2008.
Rodriguez-Iturbe, I., Cox, D. R., and Isham, V.: Some models for rainfall based on stochastic point processes, P. Roy. Soc. Lond. A, 410, 269–288, 1987a.
Rodriguez-Iturbe, I., De Power, B. F., and Valdes, J. B.: Rectangular pulses point process models for rainfall: analysis of empirical data, J. Geophys. Res., 92, 9645–9656, 1987b.
Rodriguez-Iturbe, I., Cox, D. R., and Isham, V.: A point process model for rainfall: further developments, P. Roy. Soc. Lond. A, 417, 283–298, 1988.
Rooy, M. P. V.: A rainfall anomaly index (RAI) independent of time and space, Notos, 14, 43–48, 1965.
Salvadori, G.: Bivariate return periods via 2-copulas, Stat. Methodol., 1, 129–144, 2004.
Salvadori, G. and De Michele, C.: Frequency analysis via copulas: theoretical aspects and applications to hydrological events, Water Resour. Res., 40, W12511, https://doi.org/10.1029/2004WR003133, 2004.
Salvadori, G. and De Michele, C.: Statistical characterization of temporal structure of storms, Adv. Water Resour., 29, 827–842, 2006.
Salvadori, G. and De Michele, C.: On the use of copulas in hydrology: theory and practice, J. Hydrol. Eng., 12, 369–380, 2007.
Salvadori, G. and De Michele, C.: Multivariate multiparameter extreme value models and return periods: a copula approach, Water Resour. Res., 46, W10501, https://doi.org/10.1029/2009WR009040, 2010.
Salvadori, G., Michele, C. D., Kottegoda, N., and Rosso, R.: Extremes in Nature: an Approach Using Copulas, Springer, New York, 2007.
Shiau, J. T.: Return period of bivariate distributed extreme hydrological events, Stoch. Env. Res. Risk A., 17, 42–57, 2003.
Shiau, J. T.: Fitting drought duration and severity with two-dimensional copulas, Int. Ser. Prog. Wat. Res., 20, 795–815, 2006.
Shiau, J. T. and Modarres, R.: Copula-based drought severity-duration-frequency analysis in Iran, Meteorol. Appl., 16, 481–489, 2009.
Shiau, J. T. and Shen, H. W.: Recurrence analysis of hydrologic droughts of differing severity, J. Water Res. Pl.-ASCE, 127, 30–40, 2001.
Sklar, A.: Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8, 229–231, 1959.
Vandenberghe, S.: Copula-based Models for Generating Design Rainfall, PhD dissertation, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium, 2012.
Vandenberghe, S., Verhoest, N. E. C., Onof, C., and De Baets, B.: A comparative copula-based bivariate frequency analysis of observed and simulated storm events: a case study on Bartlett–Lewis modeled rainfall, Water Resour. Res., 47, W07529, https://doi.org/10.1029/2009WR008388, 2011.
Vanhaute, W. J., Vandenberghe, S., Scheerlinck, K., De Baets, B., and Verhoest, N. E. C.: Calibration of the modified Bartlett–Lewis model using global optimization techniques and alternative objective functions, Hydrol. Earth Syst. Sci., 16, 873–891, https://doi.org/10.5194/hess-16-873-2012, 2012.
Verhoest, N., Troch, P. A., and De Troch, F. P.: On the applicability of Bartlett–Lewis rectangular pulses models in the modeling of design storms at a point, J. Hydrol., 202, 108–120, 1997.
Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-Figueras, T., and Jameleddine, S.: Are stochastic point rainfall models able to preserve extreme flood statistics?, Hydrol. Process., 24, 3439–3445, 2010.
Wheater, H. S., Chandler, R. E., Onof, C. J., Isham, V. S., Bellone, E., Yang, C., Lekkas, D., Lourmas, G., and Segond, M. L.: Spatial-temporal rainfall modelling for flood risk estimation, Stoch. Env. Res. Risk A., 19, 403–416, 2005.
Wilby, R. L. and Wigley, T. M. L.: Precipitation predictors for downscaling: observed and general circulation model relationships, Int. J. Climatol., 20, 641–661, 2000.
Wilhite, D., Svoboda, M., and Hayes, M.: Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness, Int. Ser. Prog. Wat. Res., 21, 763–774, 2007.
Wong, G., Lambert, M. F., Leonard, M., and Metcalfe, A. V.: Drought analysis using trivariate copulas conditional on climatic states, J. Hydrol. Eng., 15, 129–141, 2010.
Yu-Won, K. I. M. and Hi-Ryong, B.: On the cause of summer droughts in Korea and their return to normal, Asia-Pac. J. Atmos. Sci., 42, 237–251, 2006.
Zelenhasi, E. and Salvai, A.: A method of streamflow drought analysis, Water Resour. Res., 23, 156–168, 1987.