Articles | Volume 29, issue 5
https://doi.org/10.5194/hess-29-1469-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-1469-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of boundary conditions and aquifer parameters on salinity distribution and mixing-controlled reactions in high-energy beach aquifers
Institute for Biology and Environmental Sciences, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany
Janek Greskowiak
Institute for Biology and Environmental Sciences, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany
Stephan L. Seibert
Institute for Biology and Environmental Sciences, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany
Vincent E. Post
Edinsi Groundwater, Nederhorst den Berg, the Netherlands
Gudrun Massmann
Institute for Biology and Environmental Sciences, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany
Related authors
Janek Greskowiak, Rena Meyer, Jairo Cueto, Nico Skibbe, Anja Reckhardt, Thomas Günther, Stephan Ludger Seibert, Kai Schwalfenberg, Dietmar Pommerin, Mike Müller-Petke, and Gudrun Massmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3132, https://doi.org/10.5194/egusphere-2025-3132, 2025
Short summary
Short summary
Mixing of fresh groundwater and circulating seawater below beaches triggers water-rock chemical reactions and may affect coastal water quality. The subsurface of so-called high-energy beaches that are exposed to high tides, waves and storm floods are understudied as monitoring under these conditions is difficult. For the first time, this study quantifies the subsurface flow and mixing processes of a high-energy beach with the help of computer simulations based on an extensive set of field data.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Janek Greskowiak, Rena Meyer, Jairo Cueto, Nico Skibbe, Anja Reckhardt, Thomas Günther, Stephan Ludger Seibert, Kai Schwalfenberg, Dietmar Pommerin, Mike Müller-Petke, and Gudrun Massmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3132, https://doi.org/10.5194/egusphere-2025-3132, 2025
Short summary
Short summary
Mixing of fresh groundwater and circulating seawater below beaches triggers water-rock chemical reactions and may affect coastal water quality. The subsurface of so-called high-energy beaches that are exposed to high tides, waves and storm floods are understudied as monitoring under these conditions is difficult. For the first time, this study quantifies the subsurface flow and mixing processes of a high-energy beach with the help of computer simulations based on an extensive set of field data.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Cited articles
Abarca, E., Carrera, J., Sánchez-Vila, X., and Dentz, M.: Anisotropic dispersive Henry problem, Adv. Water Resour., 30, 913–926, https://doi.org/10.1016/j.advwatres.2006.08.005, 2007.
Abarca, E., Karam, H., Hemond, H. F., and Harvey, C. F.: Transient groundwater dynamics in a coastal aquifer: The effects of tides, the lunar cycle, and the beach profile, Water Resour. Res., 49, 2473–2488, https://doi.org/10.1002/wrcr.20075, 2013.
Anschutz, P., Smith, T., Mouret, A., Deborde, J., Bujan, S., Poirier, D., and Lecroart, P.: Tidal sands as biogeochemical reactors, Estuar. Coast. Shelf S., 84, 84–90, https://doi.org/10.1016/j.ecss.2009.06.015, 2009.
Anwar, N., Robinson, C., and Barry, D. A.: Influence of tides and waves on the fate of nutrients in a nearshore aquifer: Numerical simulations, Adv. Water Resour., 73, 203–213, https://doi.org/10.1016/j.advwatres.2014.08.015, 2014.
Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model Development Using Python and FloPy, Groundwater, 54, 733–739, https://doi.org/10.1111/gwat.12413, 2016.
Beck, M., Reckhardt, A., Amelsberg, J., Bartholomä, A., Brumsack, H. J., Cypionka, H., Dittmar, T., Engelen, B., Greskowiak, J., Hillebrand, H., Holtappels, M., Neuholz, R., Köster, J., Kuypers, M. M. M., Massmann, G., Meier, D., Niggemann, J., Paffrath, R., Pahnke, K., Rovo, S., Striebel, M., Vandieken, V., Wehrmann, A., and Zielinski, O.: The drivers of biogeochemistry in beach ecosystems: A cross-shore transect from the dunes to the low-water line, Mar. Chem., 190, 35–50, https://doi.org/10.1016/j.marchem.2017.01.001, 2017.
Charette, M. A. and Sholkovitz, E. R.: Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay, Geophys. Res. Lett., 29, 85–1–85-4, https://doi.org/10.1029/2001gl014512, 2002.
Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M., and Pigois, J. P.: Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers, Sci. Rep., 10, 1–33, https://doi.org/10.1038/s41598-020-66516-6, 2020.
Geng, X. and Michael, H. A.: Along-Shore Movement of Groundwater and Its Effects on Seawater-Groundwater Interactions in Heterogeneous Coastal Aquifers, Water Resour. Res., 57, 1–16, https://doi.org/10.1029/2021WR031056, 2021.
Geng, X., Michael, H. A., Boufadel, M. C., Molz, F. J., Gerges, F., and Lee, K.: Heterogeneity Affects Intertidal Flow Topology in Coastal Beach Aquifers, Geophys. Res. Lett., 47, 1–12, https://doi.org/10.1029/2020GL089612, 2020.
Geng, X., Heiss, J. W., Michael, H. A., Li, H., Raubenheimer, B., and Boufadel, M. C.: Geochemical fluxes in sandy beach aquifers: Modulation due to major physical stressors, geologic heterogeneity, and nearshore morphology, Earth-Sci. Rev., 221, 103800, https://doi.org/10.1016/j.earscirev.2021.103800, 2021.
Greskowiak, J. and Massmann, G.: The impact of morphodynamics and storm floods on pore water flow and transport in the subterranean estuary, Hydrol. Process., 35, 1–5, https://doi.org/10.1002/hyp.14050, 2021.
Greskowiak, J., Seibert, S. L., Post, V. E. A., and Massmann, G.: Redox-zoning in high-energy subterranean estuaries as a function of storm floods, temperatures, seasonal groundwater recharge and morphodynamics, Estuar. Coast. Shelf S., 290, 108418, https://doi.org/10.1016/j.ecss.2023.108418, 2023.
Grünenbaum, N., Ahrens, J., Beck, M., Gilfedder, B. S., Greskowiak, J., Kossack, M., and Massmann, G.: A Multi-Method Approach for Quantification of In- and Exfiltration Rates from the Subterranean Estuary of a High Energy Beach, Front. Earth Sci., 8, 1–15, https://doi.org/10.3389/feart.2020.571310, 2020a.
Grünenbaum, N., Greskowiak, J., Sültenfuß, J., and Massmann, G.: Groundwater flow and residence times below a meso-tidal high-energy beach: A model-based analyses of salinity patterns and 3H-3He groundwater ages, J. Hydrol., 587, 124948, https://doi.org/10.1016/j.jhydrol.2020.124948, 2020b.
Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.: MODFLOW-2000, The U. S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, USGS Open-File Rep. 00-92, USGS, Reston, Virginia, 2000.
Hayes, M. O.: Barrier island morphology as a function of tidal and wave regime, in: Barrier Islands – From the Gulf of St. Lawrence to the Gulf of Mexico, Academic Press, New York, ISBN 0-12-440260-7, pp. 1–71, 1979.
Heiss, J. W., Post, V. E. A., Laattoe, T., Russoniello, C. J., and Michael, H. A.: Physical Controls on Biogeochemical Processes in Intertidal Zones of Beach Aquifers, Water Resour. Res., 53, 9225–9244, https://doi.org/10.1002/2017WR021110, 2017.
Herrling, G. and Winter, C.: Tidally- and wind-driven residual circulation at the multiple-inlet system East Frisian Wadden Sea, Cont. Shelf Res., 106, 45–59, https://doi.org/10.1016/j.csr.2015.06.001, 2015.
Holt, T., Greskowiak, J., Seibert, S. L., and Massmann, G.: Modeling the Evolution of a Freshwater Lens under Highly Dynamic Conditions on a Currently Developing Barrier Island, Geofluids, 2019, 9484657, https://doi.org/10.1155/2019/9484657, 2019.
Karunarathna, H., Brown, J., Chatzirodou, A., Dissanayake, P., and Wisse, P.: Multi-timescale morphological modelling of a dune-fronted sandy beach, Coast. Eng., 136, 161–171, https://doi.org/10.1016/j.coastaleng.2018.03.005, 2018.
Knight, A. C., Irvine, D. J., and Werner, A. D.: Alongshore freshwater circulation in offshore aquifers, J. Hydrol., 593, 125915, https://doi.org/10.1016/j.jhydrol.2020.125915, 2021.
Langevin, C. D., Thorne Jr., D. T., Dausman, A. M., Sukop, M. C., and Guo, W.: SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport, U.S. Geol. Surv. Tech. Methods B., 6, Chapter A2, 39, 2007.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S.: The State of the World's Beaches, Sci. Rep., 8, 1–11, https://doi.org/10.1038/s41598-018-24630-6, 2018.
Massmann, G., Abarike, G., Amoako, K., Auer, F., Badewien, T. H., Berkenbrink, C., Böttcher, M. E., Brick, S., Valeria, I., Cordova, M., Cueto, J., Dittmar, T., Engelen, B., Freund, H., Greskowiak, J., Günther, T., Herbst, G., Holtappels, M., Marchant, H. K., Meyer, R., Müller-petke, M., Niggemann, J., Pahnke, K., Pommerin, D., Post, V., Reckhardt, A., Siebert, C., Skibbe, N., and Waska, H.: The DynaDeep observatory – a unique approach to study high-energy subterranean estuaries, Front. Mar. Sci., 10, 1–24, https://doi.org/10.3389/fmars.2023.1189281, 2023.
Meyer, R., Engesgaard, P., Hinsby, K., Piotrowski, J. A., and Sonnenborg, T. O.: Estimation of effective porosity in large-scale groundwater models by combining particle tracking, auto-calibration and 14C dating, Hydrol. Earth Syst. Sci., 22, 4843–4865, https://doi.org/10.5194/hess-22-4843-2018, 2018a.
Meyer, R., Engesgaard, P., Høyer, A.-S., Jørgensen, F., Vignoli, G., and Sonnenborg, T. O.: Regional flow in a complex coastal aquifer system: Combining voxel geological modelling with regularized calibration, J. Hydrol., 562, 544–563, https://doi.org/10.1016/j.jhydrol.2018.05.020, 2018b.
Meyer, R., Engesgaard, P., and Sonnenborg, T. O.: Origin and dynamics of saltwater intrusions in regional aquifers; combining 3D saltwater modelling with geophysical and geochemical data, Water Resour. Res., 55, 1792–1813, https://doi.org/10.1029/2018WR023624, 2019.
Michael, H. A., Scott, K. C., Koneshloo, M., Yu, X., Khan, M. R., and Li, K.: Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf, Geophys. Res. Lett., 43, 10,782-10,791, https://doi.org/10.1002/2016GL070863, 2016.
Montaño, J., Blossier, B., Osorio, A. F., and Winter, C.: The role of frequency spread on swash dynamics, Geo-Mar. Lett., 40, 243–254, https://doi.org/10.1007/s00367-019-00591-1, 2020.
Moore, W. S.: The subterranean estuary: A reaction zone of ground water and sea water, Mar. Chem., 65, 111–125, https://doi.org/10.1016/S0304-4203(99)00014-6, 1999.
Müller, S., Jessen, S., Sonnenborg, T. O., Meyer, R., and Engesgaard, P.: Simulation of Density and Flow Dynamics in a Lagoon Aquifer Environment and Implications for Nutrient Delivery From Land to Sea, Front. Water, 3, 773859, https://doi.org/10.3389/frwa.2021.773859, 2021.
Mulligan, A. E., Evans, R. L., and Lizarralde, D.: The role of paleochannels in groundwater/seawater exchange, J. Hydrol., 335, 313–329, https://doi.org/10.1016/j.jhydrol.2006.11.025, 2007.
Paldor, A., Stark, N., Florence, M., Raubenheimer, B., Elgar, S., Housego, R., Frederiks, R. S., and Michael, H. A.: Coastal topography and hydrogeology control critical groundwater gradients and potential beach surface instability during storm surges, Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022, 2022.
Parkhurst, D. L. and Appelo, C. A. J.: User's guide to PHREEQC-A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations, US Geol. Surv. Water-Resources Investig. Rep., 99, 4259, USGS, Denver Colorado, 1999.
Pegelonline: Pegel Stammdaten Wangerooge Nord, Gen. Wasserstraßen und Schifffahrt, https://www.pegelonline.wsv.de/gast/stammdaten?pegelnr=9420030 (last access: 5 March 2024), 2022.
Perez, L. J., Puyguiraud, A., Hidalgo, J. J., Jiménez-Martínez, J., Parashar, R., and Dentz, M.: Upscaling Mixing-Controlled Reactions in Unsaturated Porous Media, Transport Porous Med., 146, 177–196, https://doi.org/10.1007/s11242-021-01710-2, 2023.
Prommer, H. and Post, V.: PHT3D: A Reactive Multicomponent Transport Model, User Man. v2.10, http://www.pht3d.org (last access: 5 March 2024), 2010.
Reckhardt, A., Beck, M., Greskowiak, J., Waska, H., Ahrens, J., Grünenbaum, N., Massmann, G., and Brumsack, H.-J.: Zone-specific longshore sampling as a strategy to reduce uncertainties of SGD-driven solute fluxes from high-energy beaches, Estuar. Coast. Shelf S., 301, 108733, https://doi.org/10.1016/j.ecss.2024.108733, 2024.
Robinson, C., Gibbes, B., and Li, L.: Driving mechanisms for groundwater flow and salt transport in a subterranean estuary, Geophys. Res. Lett., 33, 3–6, https://doi.org/10.1029/2005GL025247, 2006.
Robinson, C., Brovelli, A., Barry, D. A., and Li, L.: Tidal influence on BTEX biodegradation in sandy coastal aquifers, Adv. Water Resour., 32, 16–28, https://doi.org/10.1016/j.advwatres.2008.09.008, 2009.
Robinson, C. E., Xin, P., Santos, I. R., Charette, M. A., Li, L., and Barry, D. A.: Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean, Adv. Water Resour., 115, 315–331, https://doi.org/10.1016/j.advwatres.2017.10.041, 2018.
Röper, T., Kröger, K. F., Meyer, H., Sültenfuss, J., Greskowiak, J., and Massmann, G.: Groundwater ages, recharge conditions and hydrochemical evolution of a barrier island freshwater lens (Spiekeroog, Northern Germany), J. Hydrol., 454–455, 173–186, https://doi.org/10.1016/j.jhydrol.2012.06.011, 2012.
Short, A. D. and Jackson, D.: Beach morphodynamics, in: Treatise on Geomorphology, 10, 106–129, Academic Press, San Diego, ISBN 9780123747396, 2013.
Spiteri, C., Slomp, C. P., Tuncay, K., and Meile, C.: Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients, Water Resour. Res., 44, 1–18, https://doi.org/10.1029/2007WR006071, 2008.
Streif, H.: Das ostfriesische Küstengebiet – Nordsee, Inseln, Watten und Marschen, Sammlung geologischer Führer 57, edited by: Gwinner, M. P., Gebrüder Bornträger, Berlin-Stuttgart, 1990.
Ullman, W. J., Chang, B., Miller, D. C., and Madsen, J. A.: Groundwater mixing, nutrient diagenesis, and discharges across a sandy beachface, Cape Henlopen, Delaware (USA), Estuar. Coast. Shelf S., 57, 539–552, https://doi.org/10.1016/S0272-7714(02)00398-0, 2003.
USGS: FloPy: Python Package for Creating, Running, and Post-Processing MODFLOW-Based Models, 2021.
Valocchi, A. J., Bolster, D., and Werth, C. J.: Mixing-Limited Reactions in Porous Media, Transport Porous Med., 130, 157–182, https://doi.org/10.1007/s11242-018-1204-1, 2019.
Vandenbohede, A. and Lebbe, L.: Effects of tides on a sloping shore: Groundwater dynamics and propagation of the tidal wave, Hydrogeol. J., 15, 645–658, https://doi.org/10.1007/s10040-006-0128-y, 2007.
Waska, H., Greskowiak, J., Ahrens, J., Beck, M., Ahmerkamp, S., Böning, P., Brumsack, H. J., Degenhardt, J., Ehlert, C., Engelen, B., Grünenbaum, N., Holtappels, M., Pahnke, K., Marchant, H. K., Massmann, G., Meier, D., Schnetger, B., Schwalfenberg, K., Simon, H., Vandieken, V., Zielinski, O., and Dittmar, T.: Spatial and temporal patterns of pore water chemistry in the inter-tidal zone of a high energy beach, Front. Mar. Sci., 6, 1–16, https://doi.org/10.3389/fmars.2019.00154, 2019.
Zheng, C. and Wang, P.: A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: Documentation and user’s guide, Contract Rep. SERDP-99-1 U.S. Army Eng. Res. Dev, 1999.
Short summary
The subsurface of sandy beaches under high-energy conditions where tides, waves, and storms constantly reshape the beach surface is globally common and relevant for the alteration of solute fluxes across the land–sea continuum. Our generic modelling study highlights the relevance of dynamic boundary conditions paired with aquifer properties for groundwater flow, salt transport, and mixing reactions in coastal aquifers that are exposed to strong natural forces.
The subsurface of sandy beaches under high-energy conditions where tides, waves, and storms...