Articles | Volume 28, issue 19
https://doi.org/10.5194/hess-28-4501-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4501-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Actionable human–water system modelling under uncertainty
Laura Gil-García
CORRESPONDING AUTHOR
IME, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Department of Economic and Economic History, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Nazaret M. Montilla-López
WEARE Research Group, Universidad de Córdoba, Córdoba, Spain
Carlos Gutiérrez-Martín
WEARE Research Group, Universidad de Córdoba, Córdoba, Spain
Ángel Sánchez-Daniel
Department of Economic and Economic History, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Pablo Saiz-Santiago
Douro River Basin Authority, C/ Muro, 5, Valladolid, Spain
Josué M. Polanco-Martínez
IME, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Department of Statistics, Faculty of Sciences, Universidad de Salamanca, Plaza Merced, s/n, 37008, Salamanca, Spain
Julio Pindado
IME, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Business Administration Department, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Carlos Dionisio Pérez-Blanco
IME, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Department of Economic and Economic History, Universidad de Salamanca, Francisco Tomás y Valiente, s/n, 37007, Salamanca, Spain
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Uncertainty analysis
Robust multi-objective optimization under multiple uncertainties using the CM-ROPAR approach: case study of water resources allocation in the Huaihe River basin
Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System
Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions
Disentangling sources of future uncertainties for water management in sub-Saharan river basins
Possibilistic response surfaces: incorporating fuzzy thresholds into bottom-up flood vulnerability analysis
Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment
Evaluation of impacts of future climate change and water use scenarios on regional hydrology
Planning for climate change impacts on hydropower in the Far North
Describing the interannual variability of precipitation with the derived distribution approach: effects of record length and resolution
Dissolved oxygen prediction using a possibility theory based fuzzy neural network
Projected changes in US rainfall erosivity
Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data
Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation
Robust global sensitivity analysis of a river management model to assess nonlinear and interaction effects
Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin
Irrigation efficiency and water-policy implications for river basin resilience
On an improved sub-regional water resources management representation for integration into earth system models
Statistical analysis of error propagation from radar rainfall to hydrological models
The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin
Prioritization of water management under climate change and urbanization using multi-criteria decision making methods
Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications
Jitao Zhang, Dimitri Solomatine, and Zengchuan Dong
Hydrol. Earth Syst. Sci., 28, 3739–3753, https://doi.org/10.5194/hess-28-3739-2024, https://doi.org/10.5194/hess-28-3739-2024, 2024
Short summary
Short summary
Faced with the problem of uncertainty in the field of water resources management, this paper proposes the Copula Multi-objective Robust Optimization and Probabilistic Analysis of Robustness (CM-ROPAR) approach to obtain robust water allocation schemes based on the uncertainty of drought and wet encounters and the uncertainty of inflow. We believe that this research article not only highlights the significance of the CM-ROPAR approach but also provides a new concept for uncertainty analysis.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022, https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Short summary
Sensitivity analysis can be harnessed to evaluate effects of model uncertainties on planning outcomes. This study explores how observation and parameter uncertainty propagate through a hydrogeologic model to influence the ranking of decision alternatives. Using global sensitivity analysis and evaluation of aquifer management objectives, we evaluate how physical properties of the model and choice of observations for calibration can lead to variations in decision-relevant model outputs.
Alessandro Amaranto, Dinis Juizo, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 26, 245–263, https://doi.org/10.5194/hess-26-245-2022, https://doi.org/10.5194/hess-26-245-2022, 2022
Short summary
Short summary
This study aims at designing water supply strategies that are robust against climate, social, and land use changes in a sub-Saharan river basin. We found that robustness analysis supports the discovery of policies enhancing the resilience of water resources systems, benefiting the agricultural, energy, and urban sectors. We show how energy sustainability is affected by water availability, while urban and irrigation resilience also depends on infrastructural interventions and land use changes.
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci., 25, 6421–6435, https://doi.org/10.5194/hess-25-6421-2021, https://doi.org/10.5194/hess-25-6421-2021, 2021
Short summary
Short summary
Response surfaces are increasingly used to identify the hydroclimatic conditions leading to a water resources system's failure. Partitioning the surface usually requires performance thresholds that are not necessarily crisp. We propose a methodology that combines the inherent uncertainty of response surfaces with the ambiguity of performance thresholds. The proposed methodology is illustrated with a multireservoir system in Canada for which some performance thresholds are imprecise.
Lila Collet, Shaun Harrigan, Christel Prudhomme, Giuseppe Formetta, and Lindsay Beevers
Hydrol. Earth Syst. Sci., 22, 5387–5401, https://doi.org/10.5194/hess-22-5387-2018, https://doi.org/10.5194/hess-22-5387-2018, 2018
Short summary
Short summary
Floods and droughts cause significant damages and pose risks to lives worldwide. In a climate change context this work identifies hotspots across Great Britain, i.e. places expected to be impacted by an increase in floods and droughts. By the 2080s the western coast of England and Wales and northeastern Scotland would experience more floods in winter and droughts in autumn, with a higher increase in drought hazard, showing a need to adapt water management policies in light of climate change.
Seungwoo Chang, Wendy Graham, Jeffrey Geurink, Nisai Wanakule, and Tirusew Asefa
Hydrol. Earth Syst. Sci., 22, 4793–4813, https://doi.org/10.5194/hess-22-4793-2018, https://doi.org/10.5194/hess-22-4793-2018, 2018
Short summary
Short summary
It is important to understand potential impacts of climate change and human water use on streamflow and groundwater levels. This study used climate models with an integrated hydrologic model to project future streamflow and groundwater level in Tampa Bay for a variety of future water use scenarios. Impacts of different climate projections on streamflow were found to be much stronger than the impacts of different human water use scenarios, but both were significant for groundwater projection.
Jessica E. Cherry, Corrie Knapp, Sarah Trainor, Andrea J. Ray, Molly Tedesche, and Susan Walker
Hydrol. Earth Syst. Sci., 21, 133–151, https://doi.org/10.5194/hess-21-133-2017, https://doi.org/10.5194/hess-21-133-2017, 2017
Short summary
Short summary
We know that climate is changing quickly in the Far North (the Arctic and sub-Arctic). Hydropower continues to grow in this region because water resources are perceived to be plentiful. However, with changes in glacier extent and permafrost, and more extreme events, will those resources prove reliable into the future? This study amasses the evidence that quantitative hydrology modeling and uncertainty assessment have matured to the point where they should be used in water resource planning.
Claudio I. Meier, Jorge Sebastián Moraga, Geri Pranzini, and Peter Molnar
Hydrol. Earth Syst. Sci., 20, 4177–4190, https://doi.org/10.5194/hess-20-4177-2016, https://doi.org/10.5194/hess-20-4177-2016, 2016
Short summary
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.
Usman T. Khan and Caterina Valeo
Hydrol. Earth Syst. Sci., 20, 2267–2293, https://doi.org/10.5194/hess-20-2267-2016, https://doi.org/10.5194/hess-20-2267-2016, 2016
Short summary
Short summary
This paper contains a new two-step method to construct fuzzy numbers using observational data. In addition an existing fuzzy neural network is modified to account for fuzzy number inputs. This is combined with possibility-theory based intervals to train the network. Furthermore, model output and a defuzzification technique is used to estimate the risk of low Dissolved Oxygen so that water resource managers can implement strategies to prevent the occurrence of low Dissolved Oxygen.
M. Biasutti and R. Seager
Hydrol. Earth Syst. Sci., 19, 2945–2961, https://doi.org/10.5194/hess-19-2945-2015, https://doi.org/10.5194/hess-19-2945-2015, 2015
Short summary
Short summary
We estimate future changes in US erosivity from the most recent ensemble projections of daily and monthly rainfall accumulation. The expectation of overall increase in erosivity is confirmed by these calculations, but a quantitative assessment is marred by large uncertainties. Specifically, the uncertainty in the method of estimation of erosivity is more consequential than that deriving from the spread in climate simulations, and leads to changes of uncertain sign in parts of the south.
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
T. A. McMahon, M. C. Peel, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 361–377, https://doi.org/10.5194/hess-19-361-2015, https://doi.org/10.5194/hess-19-361-2015, 2015
Short summary
Short summary
Here we assess GCM performance from a hydrologic perspective. We identify five better performing CMIP3 GCMs that reproduce grid-scale climatological statistics of observed precipitation and temperature over global land regions for future hydrologic simulation. GCM performance in reproducing observed mean and standard deviation of annual precipitation, mean annual temperature and mean monthly precipitation and temperature was assessed and ranked, and five better performing GCMs were identified.
L. J. M. Peeters, G. M. Podger, T. Smith, T. Pickett, R. H. Bark, and S. M. Cuddy
Hydrol. Earth Syst. Sci., 18, 3777–3785, https://doi.org/10.5194/hess-18-3777-2014, https://doi.org/10.5194/hess-18-3777-2014, 2014
L. Zhuo, M. M. Mekonnen, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 18, 2219–2234, https://doi.org/10.5194/hess-18-2219-2014, https://doi.org/10.5194/hess-18-2219-2014, 2014
C. A. Scott, S. Vicuña, I. Blanco-Gutiérrez, F. Meza, and C. Varela-Ortega
Hydrol. Earth Syst. Sci., 18, 1339–1348, https://doi.org/10.5194/hess-18-1339-2014, https://doi.org/10.5194/hess-18-1339-2014, 2014
N. Voisin, H. Li, D. Ward, M. Huang, M. Wigmosta, and L. R. Leung
Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, https://doi.org/10.5194/hess-17-3605-2013, 2013
D. Zhu, D. Z. Peng, and I. D. Cluckie
Hydrol. Earth Syst. Sci., 17, 1445–1453, https://doi.org/10.5194/hess-17-1445-2013, https://doi.org/10.5194/hess-17-1445-2013, 2013
B. L. Harding, A. W. Wood, and J. R. Prairie
Hydrol. Earth Syst. Sci., 16, 3989–4007, https://doi.org/10.5194/hess-16-3989-2012, https://doi.org/10.5194/hess-16-3989-2012, 2012
J.-S. Yang, E.-S. Chung, S.-U. Kim, and T.-W. Kim
Hydrol. Earth Syst. Sci., 16, 801–814, https://doi.org/10.5194/hess-16-801-2012, https://doi.org/10.5194/hess-16-801-2012, 2012
S. Quiroga, Z. Fernández-Haddad, and A. Iglesias
Hydrol. Earth Syst. Sci., 15, 505–518, https://doi.org/10.5194/hess-15-505-2011, https://doi.org/10.5194/hess-15-505-2011, 2011
Cited articles
AGMIP: Agricultural Model Intercomparison and Improvement Project, Columbia University, https://agmip.org/ (last access: 1 September 2023), 2023.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.
Anderies, J. M., Ryan, P., and Walker, B. H.: Loss of Resilience, Crisis, and Institutional Change: Lessons from an Intensive Agricultural System in Southeastern Australia, Ecosystems, 9, 865–878, https://doi.org/10.1007/s10021-006-0017-1, 2006.
Andreu, J., Capilla, J., and Sanchis, E.: AQUATOOL: A Computer-Assisted Support System for Water Resources Research Management Including Conjunctive Use, in: Decision Support Systems, edited by: Loucks, D. P. and Da Costa, J. R., Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-76048-8_15, 333–355, 1991.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Athey, S.,Bayati, M., Imbens, G., and Qu, Z.: Ensemble Methods for Causal Effects in Panel Data Settings (Working Paper No. 25675), Nat. Bur. Ec., AEA Papers and Proceedings, 109, 65–70, https://doi.org/10.3386/w25675, 2019.
Baccour, S., Ward, F. A., and Albiac, J.: Climate adaptation guidance: New roles for hydroeconomic analysis, Sci. Total Environ., 835, 155518, https://doi.org/10.1016/j.scitotenv.2022.155518, 2022.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Bouraoui, F. and Dillaha, T. A.: ANSWERS-2000: Non-Point-Source Nutrient Planning Model, J. Environ. Eng., 126, 1045–1055, https://doi.org/10.1061/(ASCE)0733-9372(2000)126:11(1045), 2000.
CEDEX: SIMPA. Sistema Integrado para la Modelación del proceso Precipitación Aportación, Ministerio para la Transición Ecológica y el Reto Demográfico, http://ceh-flumen64.cedex.es/Hidrologia/pub/proyectos/simpa.htm (last access: 1 September 2023), 2020.
Cloke, H. L., Pappenberger, F., van Andel, S. J., Schaake, J., Thielen, J., and Ramos, M. H.: Hydrological ensemble prediction systems, Hydrol. Process., 27, 1–4, https://doi.org/10.1002/hyp.9679, 2013.
CMIP6: Detailed and up-to-date description of the CMIP6 experiments protocol, https://wcrp-cmip.org/cmip6/ (last access: 1 September 2023), 2023.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Cook, J., Ellerton, P., and Kinkead, D.: Deconstructing climate misinformation to identify reasoning errors, Environ. Res. Lett., 13, 024018, https://doi.org/10.1088/1748-9326/aaa49f, 2018.
Dagnino, M. and Ward, F. A.: Economics of Agricultural Water Conservation: Empirical Analysis and Policy Implications, Int. J. Water Resour. D., 28, 577–600, https://doi.org/10.1080/07900627.2012.665801, 2012.
DRBA: Plan Especial de Sequía, Douro River Basin Authority, Valladolid, Spain, https://www.chduero.es/documents/20126/99746/PlandeSequia_CHDuero_Memoria.pdf (last access: 1 May 2023), 2018.
DRBA: Plan Hidrológico de la Cuenca del Duero 2022–2027, Douro River Basin Authority, Valladolid, Spain, https://www.chduero.es/documents/20126/1883851/PHD22-27_000_00_Memoria-v08.pdf/8e3cd7e5-6e16-9c6c-f15d-5f65788ba883?t=1666613605946 (last access: 1 May 2023), 2022.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., De Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics, J. Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1, 2012.
Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Sentman, L. T., Adcroft, A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics, J. Climate, 26, 2247–2267, https://doi.org/10.1175/JCLI-D-12-00150.1, 2013.
Essenfelder, A. H., Pérez-Blanco, C. D., and Mayer, A. S.: Rationalizing Systems Analysis for the Evaluation of Adaptation Strategies in Complex Human–Water Systems, Earths Future, 6, 1181–1206, https://doi.org/10.1029/2018EF000826, 2018.
EURO-CORDEX: Coordinated Downscaling Experiment – European Domain, Climate Service Center Germany, Germany, https://www.euro-cordex.net/ (last access: 1 September 2023), 2023.
Eurostat: Eurostat Database, Eurostat Database, http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/themes, (last access: 10 May 2013), 2020.
Ferrari, L., Carlino, A., Gazzotti, P., Tavoni, M., and Castelletti, A.: From optimal to robust climate strategies: expanding integrated assessment model ensembles to manage economic, social, and environmental objectives, Environ. Res. Lett., 17, 084029, https://doi.org/10.1088/1748-9326/ac843b, 2022.
Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., and Mastrandrea, M. D.: Summary for Policymakers, in: Climate Change 2014 Impacts, Adaptation, and Vulnerability, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781107415379.003, 1–32, 2014.
Gassman, P., Williams, J., and Wang, X.: The Agricultural Policy Environmental Extender (APEX) model: An emerging tool for landscape and watershed environmental analyses (Report No. 41), CARD Technical Reports, CARD, Iowa Sate University, Ames, https://www.card.iastate.edu/products/publications/synopsis/?p=1101 (last access: 1 June 2023), 2009.
Gil-García, L., González-López, H., and Pérez-Blanco, C. D.: To dam or not to dam? Actionable socio-hydrology modeling to inform robust adaptation to water scarcity and water extremes, Environ. Sci. Policy, 144, 74–87, https://doi.org/10.1016/j.envsci.2023.03.012, 2023.
González-López, H., Pérez-Blanco, C. D., Gil-García, L., Foster, T., Mysiak, J., and Pulido-Velázquez, M.: Report Deliverable 3.1: WHITE PAPER – METHODS & MODELS FOR ASSESSING POLICY PERFORMANCE UNDER DEEP UNCERTAINTY, Universidad de Salamanca, https://transcend.usal.es/deliverable-3-1-white-paper-methods-models-for-assessing-policy-performance-under-deep-uncertainty/ (last access: 1 February 2024), 2023.
Graveline, N.: Combining flexible regulatory and economic instruments for agriculture water demand control under climate change in Beauce, Water Resour. Econ., 29, 100143, https://doi.org/10.1016/j.wre.2019.100143, 2020.
Graveline, N. and Merel, P.: Intensive and extensive margin adjustments to water scarcity in France's Cereal Belt, Eur. Rev. Agric. Econ., 41, 707–74, https://doi.org/10.1093/erae/jbt039, 2014.
Groves, D. G., Evan, B., Lempert, R. J., Fischbach, J. R., Nevills, J., and Goshi, B.: Developing Key Indicators for Adaptive Water Planning, J. Water Res. Plan. Man., 141, 05014008, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000471, 2015.
Guillaume, J.: Designing a knowledge system for managing deep uncertainty?, International Congress on Environmental Modelling and Software, Brussels, Belgium, 7 June 2022, 12, https://scholarsarchive.byu.edu/iemssconference/2022/Stream-D/12 (last access: 1 September 2023), 2022.
Hagedorn, R., Doblas-Reyes, F. J., and Palmer, T. N.: The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept, Tellus A., 57, 219–233, https://doi.org/10.1111/j.1600-0870.2005.00103.x, 2005.
Hamilton, S. H., Fu, B., Guillaume, J. H. A., Badham, J., Elsawah, S., Gober, P., Hunt, R. J., Iwanaga, T., Jakeman, A. J., Ames, D. P., Curtis, A., Hill, M. C., Pierce, S. A., and Zare, F.: A framework for characterising and evaluating the effectiveness of environmental modelling, Environ. Modell. Softw., 118, 83–98, https://doi.org/10.1016/j.envsoft.2019.04.008, 2019.
Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi.org/10.5194/hess-22-789-2018, 2018.
Heckelei, T., Britz, W., Heckelei, T., and Britz, W.: Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure, Cah. Econ. Sociol., 57, 27–50, https://doi.org/10.3406/reae.2000.1649, 2000.
HEPEX: HEPEX. A global community in hydrological ensemble prediction, INRAE, France, https://hepex.org.au/ (last access: 1 September 2023), 2024.
Hertel, T. W. and Liu, J.: Implications of water scarcity for economic growth (OECD Environment Working Papers), Organisation for Economic Co-operation and Development, Paris, https://doi.org/10.1787/5jlssl611r32-en, 2016.
Hino, M. and Hall, J. W.: Real Options Analysis of Adaptation to Changing Flood Risk: Structural and Nonstructural Measures, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3, 04017005, https://doi.org/10.1061/AJRUA6.0000905, 2017.
Howitt, R. E.: Positive Mathematical Programming, Am. J. Agr. Econ., 77, 329–342, https://doi.org/10.2307/1243543, 1995.
IPCC: IPCC Sixth Assessment Report (AR6) (No. WGII), Intergovernmental Panel on Climate Change, Geneva, Switzerland, https://www.ipcc.ch/assessment-report/ar6/ (last access: 1 October 2023), 2021.
IPCC: IPCC Fifth Assessment Report (AR5) (No. WGII), Intergovernmental Panel on Climate Change, Geneva, Switzerland, https://www.ipcc.ch/assessment-report/ar5/ (last access: 1 October 2023), 2014.
ISIMIP: The Inter-Sectoral Impact Model Intercomparison Project, The Inter-Sectoral Impact Model Intercomparison Project, https://www.isimip.org/gettingstarted/data-access/ (last access: 1 September 2023), 2023.
Júdez, L., Chaya, C., Martínez, S., and González, A. A.: Effects of the measures envisaged in “Agenda 2000” on arable crop producers and beef and veal producers: an application of Positive Mathematical Programming to representative farms of a Spanish region, Agr. Syst., 67, 121–138, https://doi.org/10.1016/S0308-521X(00)00051-2, 2001.
Knight, F. H.: Risk, Uncertainty and Profit, University of Illinois at Urbana–Champaign's Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship, https://ssrn.com/abstract=1496192 (last access: 1 November 2023), 1921.
Krüger, F.: Survey-based forecast distributions for Euro Area growth and inflation: ensembles versus histograms, Empir. Econ., 53, 235–246, https://doi.org/10.1007/s00181-017-1228-3, 2017.
Krysanova, V., Hattermann, F., and Wechsung, F.: Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment, Hydrol. Process., 19, 763–783, https://doi.org/10.1002/hyp.5619, 2005.
Lempert, R. J.: Robust Decision Making (RDM), in: Decision Making under Deep Uncertainty: From Theory to Practice, edited by: Marchau, V. A. W. J., Walker, W. E., Bloemen, P., and Popper, S. W., Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-030-05252-2, 2019.
Lempert, R. J. and Groves, D. G.: Identifying and evaluating robust adaptive policy responses to climate change for water management agencies in the American west, Technol. Forecast. Soc., 77, 960–974, https://doi.org/10.1016/j.techfore.2010.04.007, 2010.
Li, G., Hu, J., Wang, S.-W., Georgopoulos, P. G., Schoendorf, J., and Rabitz, H.: Random Sampling-High Dimensional Model Representation (RS-HDMR) and Orthogonality of Its Different Order Component Functions, J. Phys. Chem. A, 110, 2474–2485, https://doi.org/10.1021/jp054148m, 2006.
Lerma, N., Paredes, J., Solera, A., and Andreu, J.: Herramienta EvalHid para la evaluación de recursos hídricos (Manual No. 1.1), Polytechnic University of Valencia, Valencia, Spain, https://aquatool.webs.upv.es/files/manuales/evalhid/Manual_Usuario_EvalHid.pdf (last access: 1 May 2023), 2017.
Li, T., Dong, Y., and Liu, Z.: A review of social-ecological system resilience: Mechanism, assessment and management, Sci. Total Environ., 723, 138113, https://doi.org/10.1016/j.scitotenv.2020.138113, 2020.
Loch, A., Adamson, D., and Auricht, C.: (g)etting to the point: The problem with water risk and uncertainty, Water Resour. Econ., 32, 100154, https://doi.org/10.1016/j.wre.2019.100154, 2020.
MAGRAMA: Evaluación del impacto del cambio climático en los recursos hídricos y sequías en España (Report), Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Madrid, Spain, https://www.miteco.gob.es/content/dam/miteco/es/cambio-climatico/publicaciones/publicaciones/Memoria_encomienda_CEDEX_tcm30-178474.pdf (last access: 1 February 2023), 2017.
Maier, H. R., Guillaume, J. H. A., Van Delden, H., Riddell, G. A., Haasnoot, M., and Kwakkel, J. H.: An uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit together?, Environ. Modell. Softw., 81, 154–164, https://doi.org/10.1016/j.envsoft.2016.03.014, 2016.
Marchau, V. A. W. J., Walker, W. E., Bloemen, P., and Popper, S. W.: Decision Making under Deep Uncertainty: From Theory to Practice, 2019th ed., Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-030-05252-2, 2019.
Martínez-Dalmau, J., Gutiérrez-Martín, C., Expósito, A., and Berbel, J.: Analysis of Water Pricing Policy Effects in a Mediterranean Basin Through a Hydroeconomic Model, Water Resour. Manag., 37, 1599–1618, https://doi.org/10.1007/s11269-023-03446-8, 2023.
Mírame-IDEDUERO: Visor Mírame-IDEDUERO, Valladolid, España, https://mirame.chduero.es/chduero/viewer (last access: 1 October 2023), 2023.
OECD: Toolkit for Water Policies and Governance: Converging Towards the OECD Council Recommendation on Water (Report), OECD Publishing, Paris (France), ISBN 978-92-64-87648-4, 2021.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Levis, S., Li, F., Riley, W. J., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, F., Lawrence, P. J., Leung, L. R., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of version 4.5 of the Community Land Model (CLM), Ncar Technical Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422 pp., https://doi.org/10.5065/D6RR1W7M, 2013.
Pande, S. and Sivapalan, M.: Progress in socio-hydrology: a meta-analysis of challenges and opportunities, WIREs Water 4, 1193, https://doi.org/10.1002/wat2.1193, 2017.
Paris, Q.: PQP, PMP, parametric programming and comparative statics, in: Lecture for notes for AE, edited by: Department of Agricultural Economics, University of California, Davis, 1988.
Parrado, R., Pérez-Blanco, C. D., Gutiérrez-Martín, C., and Gil-García, L.: To charge or to cap in agricultural water management. Insights from modular iterative modeling for the assessment of bilateral micro-macro-economic feedback links, Sci. Total Environ., 742, 140526, https://doi.org/10.1016/j.scitotenv.2020.140526, 2020.
Pérez-Blanco, C. D. and Gutiérrez-Martín, C.: Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback, Agr. Water Manage., 190, 6–20, https://doi.org/10.1016/j.agwat.2017.05.006, 2017.
Pérez-Blanco, C. D., Gil-García, L., and Saiz-Santiago, P.: An actionable hydroeconomic Decision Support System for the assessment of water reallocations in irrigated agriculture. A study of minimum environmental flows in the Douro River Basin, Spain, J. Environ. Manage., 298, 113432, https://doi.org/10.1016/j.jenvman.2021.113432, 2021a.
Pérez-Blanco, C. D., González-López, H., and Hrast-Essenfelder, A.: Beyond piecewise methods: Modular integrated hydroeconomic modeling to assess the impacts of adaptation policies in irrigated agriculture, Environ. Modell. Softw., 136, 104943, https://doi.org/10.1016/j.envsoft.2020.104943, 2021b.
Pérez-Blanco, C. D., Parrado, R., Essenfelder, A. H., Bodoque, J., Gil-García, L., Gutiérrez-Martín, C., Ladera, J., and Standardi, G.: Assessing farmers' adaptation responses to water conservation policies through modular recursive hydro-micro-macro-economic modeling, J. Clean. Prod., 360, 132208, https://doi.org/10.1016/j.jclepro.2022.132208, 2022.
Peters, B. G. and Nagel, M. L.: Zombie Ideas: Why Failed Policy Ideas Persist, 1st edn., Cambridge University Press, Cambridge New York Port Melbourne New Delhi Singapore, https://doi.org/10.1017/9781108921312, 2020.
Pindyck, R.: The Use and Misuse of Models for Climate Policy (No. w21097), Nat. Bur. Ec., Cambridge, MA, https://doi.org/10.3386/w21097, 2015.
PUV: Manuals – AquaTool, Universidad Politécnica de Valencia, https://aquatool.webs.upv.es/aqt/en/manuals/ (last access: 1 September 2021), 2020.
Puy, A., Sheikholeslami, R., Gupta, H. V., Hall, J. W., Lankford, B., Lo Piano, S., Meier, J., Pappenberger, F., Porporato, A., Vico, G., and Saltelli, A.: The delusive accuracy of global irrigation water withdrawal estimates, Nat. Commun., 13, 3183, https://doi.org/10.1038/s41467-022-30731-8, 2022.
Quiggin, J.: Zombie economics: how dead ideas still walk among us, Pbk, Princeton University Press, Princeton, ISBN 978-1-4008-4208-7, 2012.
Ronneberger, K., Berrittella, M., Bosello, F., and Tol, R. S. J.: KLUM@GTAP: Introducing Biophysical Aspects of Land-Use Decisions into a Computable General Equilibrium Model a Coupling Experiment, Environ. Model Assess., 14, 149–168, https://doi.org/10.1007/s10666-008-9177-z, 2009.
Saltelli, A.: A short comment on statistical versus mathematical modelling, Nat. Commun., 10, 3870, https://doi.org/10.1038/s41467-019-11865-8, 2019.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis, The Primer, 1st edn., Wiley, 237–275, https://doi.org/10.1002/9780470725184, 2008.
Sapino, F., Pérez-Blanco, C. D., Gutiérrez-Martín, C., García-Prats, A., and Pulido-Velazquez, M.: Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture, Agr. Water Manage., 259, 107248, https://doi.org/10.1016/j.agwat.2021.107248, 2022a.
Sapino, F., Pérez-Blanco, C. D., and Saiz-Santiago, P.: A Hydro-Economic Model to Calculate the Resource Costs of Agricultural Water Use and the Economic and Environmental Impacts of Their Recovery, Water Economics and Policy, 08, 2240012, https://doi.org/10.1142/S2382624X22400124, 2022b.
Stacke, T. and Hagemann, S.: Development and evaluation of a global dynamical wetlands extent scheme, Hydrol. Earth Syst. Sci., 16, 2915–2933, https://doi.org/10.5194/hess-16-2915-2012, 2012.
Storlie, C. B., Swiler, L. P., Helton, J. C., and Sallaberry, C. J.: Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliab. Eng. Syst. Safe., 94, 1735–1763, https://doi.org/10.1016/j.ress.2009.05.007, 2009.
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced treatments of surface interaction and runoff, Global Planet. Change, 38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
Taner, M.Ü., Ray, P., and Brown, C.: Incorporating Multidimensional Probabilistic Information Into Robustness-Based Water Systems Planning, Water Resour. Res., 55, 3659–3679, https://doi.org/10.1029/2018WR022909, 2019.
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philos. T. R. Soc. A, 365, 2053–2075, https://doi.org/10.1098/rsta.2007.2076, 2007.
UNDRR: Global Assessment Report on Disaster Risk Reduction (GAR), United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, ISBN 978-92-1-004180-5, 2019.
UNDRR: GAR Special Report on Drought 2021 – World (Special Report on Drought), United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, ISBN 9789212320274, 2021.
UNEP: Adaptation Gap Report 2021, No. 2021, United Nations Environment Programme, New York, USA, ISBN 978-92-807-3895-7, 2021.
US Army Corps of Engineers: HEC-HMS Hydrologic Modeling System. User's Manual – Version 4.1, User's manual No. CPD-74A v. 4.1, US Army Corps of Engineers, Davis, California, USA, https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.1.pdf (last access: 1 September 2023), 2015.
van Beek, L. and Bierkens, M. M.: The global hydrological model PCR-GLOBWB: conceptualization, parameterizaction and verification, Report Department of Physical Geography, Utrecht University, Utrecht, the Netherlands, http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf (last access: 1 May 2023), 2009.
Walker, W. E., Harremoës, P., Rotmans, J., Van Der Sluijs, J. P., Van Asselt, M. B. A., Janssen, P., and Krayer Von Krauss, M. P.: Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support, Integrat. Ass., 4, 5–17, https://doi.org/10.1076/iaij.4.1.5.16466, 2003.
Ward, F. A.: Hydroeconomic Analysis to Guide Climate Adaptation Plans, Front. Water, 3, 681475, https://doi.org/10.3389/frwa.2021.681475, 2021.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.: Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity, J. Climate, 23, 6312–6335, https://doi.org/10.1175/2010JCLI3679.1, 2010.
Young, R. A., Onstad, C. A., Bosch, D. D., and Anderson, W. P.: AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds, J. Soil Water Conserv., 44, 168–173, 1989.
Short summary
This paper presents an interdisciplinary model for quantifying uncertainties in water allocation under climate change. It combines climate, hydrological, and microeconomic experiments with a decision support system. Multi-model analyses reveal potential futures for water management policies, emphasizing non-linear climate responses. As illustrated in the Douro River basin, minor water allocation changes have significant economic impacts, stresssing the need for adaptation strategies.
This paper presents an interdisciplinary model for quantifying uncertainties in water allocation...