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Abstract. This paper develops an actionable interdisci-
plinary model that quantifies and assesses uncertainties in
water resource allocation under climate change. To achieve
this objective, we develop an innovative socio-ecological
grand ensemble that combines climate, hydrological, and mi-
croeconomic ensemble experiments with a widely used deci-
sion support system for water resource planning and manage-
ment. Each system is populated with multiple models (multi-
model), which we use to evaluate the impacts of multiple cli-
mate scenarios and policies (multi-scenario, multi-forcing)
across systems so as to identify plausible futures where wa-
ter management policies meet or miss their objectives and to
explore potential tipping points. The application of the meth-
ods is exemplified by a study conducted in the Douro River
basin (DRB), an agricultural basin located in central Spain.
Our results show how marginal climate changes can trigger
non-linear water allocation changes in the decision support
systems (DSSs) and/or non-linear adaptive responses of ir-
rigators to water shortages. For example, while some irriga-
tors barely experience economic losses (average profit and
employment fall by < 0.5 %) under mild water allocation re-
ductions of 5 % or lower, profit and employment fall by up
to 12 % (∼ 24×) when water allocation is reduced by 10 %
or less (∼ 2×). This substantiates the relevance of informing
the potential natural and socio-economic impacts of adapta-
tion strategies and related uncertainties for identifying robust
decisions.

1 Introduction

Complex socio-ecological systems, including coupled
human–water systems, are inherently difficult to manage
(UNDRR, 2019). Periods of relative stability and pre-
dictability are interspersed with periods of unexpected, and
sometimes abrupt, change (UNDRR, 2021). These changes,
even if small, can create ripples that cascade across systems
and generate non-trivial environmental and socio-economic
impacts that are difficult to foresee – thus leading to uncer-
tainty. We define uncertainty as a situation where “(1) it is
not possible to identify all plausible futures, or (2) assign
a probability to each identified plausible future” (Walker
et al., 2003), which excludes probabilistic risk. Note that,
while point (2) refers to uncertainty in modelling that can be
quantitatively assessed, point (1) cannot and is accordingly
not considered in our study (Knightian uncertainty1; Knight,
1921). Conventional consolidative modelling based on point

1Walker et al. (2003) identify different levels across the uncer-
tainty spectrum: (1) determinism (where point predictions are re-
liable), (2) probabilistic risk (we know which plausible futures lie
ahead of us as well as the associated probabilities), (3) (deep) un-
certainty type 1 (we do not know which inputs, parameters, and/or
model structures are right, nor do we know their probability, but
we can anticipate how the system will react to these), (4) (deep)
uncertainty type 2 (we know we do not know), and (5) complete
ignorance (we are not aware of what we do not know). Knightian
uncertainty would fall into levels 4–5, which precludes modelling.
Deep uncertainty type 1 can be modelled and has been modelled
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predictions and optimization of expected performance risks
provides unrealistically precise information that gives a
false appearance of uncertainty reduction (Hino and Hall,
2017). By ignoring (large parts of) the uncertainty inherent
to modelling, the decision-making processes informed by
conventional consolidative models can miss their objectives
and under some conditions backfire and trigger crises
(Anderies et al., 2006; Lempert, 2019). To allow humankind
to embark on a sustainable and equitable development trajec-
tory that delivers a satisfactory performance under multiple
futures rather than a single plausible future (i.e. robust), a
fundamental re-examination of the current approaches to
modelling and uncertainty is necessary (IPCC, 2021). This
calls for actionable forecasting methods that go beyond
conventional consolidative models and point predictions
and that thoroughly quantify and assess uncertainty so as
to detect potential vulnerabilities of the system (including
non-linearities) and identify robust adaptation policies and
trajectories (UNEP, 2021).

The literature identifies three fundamental sources of un-
certainty in models: (1) input uncertainty arising from sce-
nario design and data inputs (Marchau et al., 2019), (2) pa-
rameter uncertainty associated with the data and methods
used to calibrate model parameters (Tebaldi and Knutti,
2007), and (3) structural uncertainties associated with “the
relationships between inputs and variables, among variables,
and between variables and outputs” in models (Walker et al.,
2003b). These uncertainties, which emerge within individ-
ual system models, can cascade across interconnected sys-
tems (UNDRR, 2019). Researchers have developed meth-
ods to quantify and assess scenario, parameter, and struc-
tural uncertainties in modelling, notably sensitivity analysis
and multi-model ensemble experiments. Sensitivity analysis
uses experiments representing the consequences of alterna-
tive sets of feasible assumptions (about scenario design, data,
or parameter values) to discover their implications (Groves
et al., 2015; Lempert and Groves, 2010), while multi-model
ensemble experiments group multiple models with alterna-
tive structures to produce a range of forecasts rather than a
single point prediction (CMIP6, 2023; ISIMIP, 2023). Sen-
sitivity analyses and multi-model ensembles can be com-
bined into “grand ensembles” that quantify input, param-
eter, and structural uncertainties within a system through
the ensemble spread (Athey et al., 2019). This approach
has been used in disciplines such as the climate sciences
(e.g. Hagedorn et al., 2005; IPCC, 2014), economics (e.g.
Krüger, 2017), and hydrology (e.g. Cloke et al., 2013). Re-
cent research has combined grand ensembles over multi-
ple ecological systems into multi-sector ensemble experi-
ments such as the Coupled Model Intercomparison Project 6
(CMIP6) and the Inter-Sectoral Impact Model Intercompar-
ison Project (ISIMIP) (CMIP6, 2023; ISIMIP, 2023). Echo-

by model intercomparison projects such as AGMIP (2023), CMIP6
(2023), HEPEX (2024), and ISIMIP (2023).

ing advances in socio-ecological research that have demon-
strated the importance of considering the links between en-
vironmental change and human behaviour when designing
and assessing solutions to complex climate, water, and other
challenges (Pande and Sivapalan, 2017), multi-sector ensem-
ble experiments have sought to incorporate human system
aspects into their analyses. The conventional approach has
been to exogenously model human systems through ensem-
bles of macroeconomic models (typically integrated assess-
ment models) and subsequently transform these simulation
outcomes into scenarios of greenhouse gas emissions that
can be used to force ensembles of climate system models
(Ferrari et al., 2022). Alternatively, human systems can be
endogenously represented in the socio-ecological ensemble
by explicitly representing the impacts of ecological systems
on human behaviour and responses and vice versa, e.g. us-
ing microeconomic models (Sapino et al., 2022b). Finally,
acknowledging that model performance is conditional on its
technical features as well as the modelling context and prac-
tices (Hamilton et al., 2019), research has paid attention to
decision support systems (DSSs) and studied their design
(Guillaume, 2022), output assessment (notably via robust
decision-making, including multi-criteria evaluation; Groves
et al., 2015; Maier et al., 2016; Marchau et al., 2019), and
output interpretation (including the study of beliefs and bi-
ases, path dependence, incentives, politics and power, and
information gaps and filtering; Cook et al., 2018; Peters and
Nagel, 2020; Quiggin, 2012).

However, the application of these practices to human–
water system modelling, management, and planning appears
to be limited. In a recent literature review of uncertainty
quantification in human–water system models (including
DSSs used to support management and planning) across 198
studies, it was found that most studies focused on partial as-
sessments of input (148 of 198 studies) or parameter uncer-
tainties (40) through local sensitivity analysis, while struc-
tural uncertainties (7) were typically neglected (González-
López et al., 2023). Few studies quantified two sources of
uncertainty (31), and none quantified all three sources of un-
certainty, which reflects the non-trivial computational costs
of conducting multi-model and sensitivity analyses across
multiple systems. Notably, 51 studies included a DSS or wa-
ter resource management model such as WEAP or MIKE,
of which 35 accounted for input uncertainty, 5 for parame-
ter uncertainty, and 3 for structural uncertainty. Not a sin-
gle study in the review, whether a DSS or another model,
quantified uncertainties in both human and water systems
(i.e. studies quantified uncertainties in either human or wa-
ter systems). While integrated human–water system models
(including DSSs) abound in the literature (Baccour et al.,
2022; Graveline, 2020; Gil-García et al., 2023; Li et al.,
2020; Martínez-Dalmau et al., 2023; Pande and Sivapalan,
2017; Ward, 2021) and examples of model intercomparison
experiments (e.g. HEPEX, 2024) and sensitivity analyses do
exist (Puy et al., 2022; Saltelli, 2019), particularly in wa-
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ter systems, in practice water resource modelling (includ-
ing DSSs for planning and management) ignores uncertain-
ties within and across water and/or human systems (OECD,
2021). This is also observed in the wider natural resource
literature, where multi-system model intercomparison exper-
iments to quantify structural uncertainties address ecologi-
cal (and non-human) systems (AGMIP, 2023; CMIP6, 2023;
ISIMIP, 2023).

We argue that to develop water policies that are sensitive
to climate change and other key sources of uncertainty, in-
cluding the adaptive responses by human agents, it is nec-
essary to deliver actionable interdisciplinary modelling that
quantifies and assesses uncertainty. To achieve this objec-
tive, we propose an innovative human–water system grand
ensemble that combines climate, hydrological, and microe-
conomic ensemble experiments with a widely used DSS for
water resource planning and management, named AQUA-
TOOL (Andreu et al., 1991). The proposed modelling frame-
work is illustrated with an application that quantifies struc-
tural uncertainties and input uncertainties via climate change
scenarios, although it can be expanded to quantify parameter
and other input uncertainties (with non-trivial computational
costs; see Sect. 4). In the first step, we use surface hydrology
forecasts under alternative climate scenarios (representative
concentration pathways RCP2.6, RCP6.0, and RCP8.5) ob-
tained from ISIMIP to force the DSS AQUATOOL, which
yields information on water allocation to water users in the
basin. In a second step, we assess the adaptive responses by
irrigators to water allocation decisions and their repercus-
sions in terms of income, employment, and water and land
use changes. The grand ensemble adopts a modular approach
where models at each system level operate independently
in modules, which are subsequently interconnected through
sets of protocols, i.e. rules designed to manage relationships
among modules (Essenfelder et al., 2018). Each system is
populated with multiple models (multi-model), which we use
to evaluate the impacts of multiple climatic scenarios and
policies (multi-scenario, multi-forcing) across systems. The
uncertainty range provided through the ensemble spread can
reveal relevant trade-offs and vulnerabilities, including po-
tential non-linearities, thus providing valuable information
that can be used to revise strategies and policies, including
by adapting models to account for expert feedback until a ro-
bust policy is agreed upon (Marchau et al., 2019). The meth-
ods are exemplified by an application to the Spanish part of
the Douro River basin (DRB).

2 Case study area: the Douro River basin

The DRB in Spain covers an area of 78 889 km2 and stretches
over eight regions (NUTS22), of which Castile and León is
the most relevant (98.25 % of the basin’s total area). The re-

2The European Union (EU) uses a system called NUTS
(Nomenclature des Unités Territoriales Statistiques) to categorize

gion experiences an average annual rainfall of 450–500 mm,
with lower figures in the central part, where most of the agri-
cultural area is situated, and higher precipitation in the moun-
tainous areas surrounding the basin. Low rainfall values are
complemented in agriculture with an expanding irrigation
supply that, while representing 10 % of the total agricultural
land, already claimed 89 % of the total water use of 4366×
106 m3 yr−1 in 2021 – which is expected to increase to 4692
and 4688 ×106 m3 yr−1 by 2027 and 2033, respectively, and
which is mainly driven by irrigation expansion. Water supply
on the other hand decreased from 14231 ×106 m3 yr−1 over
1940–2005 to 12777 ×106 m3 yr−1 over 1980–2005, and al-
though on average this is still sufficient to meet the growing
demand, drought spells are increasing in both frequency and
intensity (Field et al., 2014). Agriculture, the main user and
the one generating the lowest market added value from wa-
ter, suffers most from water allocation restrictions as per the
Spanish use priority rules established in the Drought Man-
agement Plans (DRBA, 2018).

Agricultural lands represent more than half of the Douro
River basin’s total area (5.7 × 106 ha) and include rainfed
crops such as wheat (26 %), barley (23 %), rye (2 %), sun-
flower (6 %), and vineyards (2 %). Irrigated crops include ce-
reals such as maize (4 %), alfalfa (2 %), vegetables (1 %), and
sugar beet (1 %). Surface water resources serve as the pri-
mary irrigation water source, representing on average 82 %
of the basin’s water supply (DRBA, 2022). The relevant ad-
ministrative units for irrigation in the DRB (and in other re-
gions in Spain) are the agricultural water demand units (AW-
DUs), which are also the agents in the microeconomic mod-
els.

3 Methods: a modular hierarchy of socio-ecological
ensembles

We build a socio-ecological grand ensemble around AQUA-
TOOL, a widely used DSS for watershed planning and man-
agement of water resource systems with applications to real
planning cases in Spain, Ecuador, Brazil, Italy, Algeria, Mex-
ico, Bosnia, Chile, Peru, Argentina, and Morocco, inter alia.
The grand ensemble comprises four modules, each of which
represents a key system in the human–water conundrum: the
climate system, modelled by ISIMIP (2023) through an en-
semble of global circulation models (GCMs); the natural wa-
ter system, also modelled by ISIMIP (2023) through an en-
semble of global hydrological models (GHMs); the water
management system, modelled through an ensemble com-
prising alternative setups of the DSS AQUATOOL; and the
human system, modelled through an ensemble of microe-
conomic mathematical programming models. The coupling
among the modules is implemented in three steps (Fig. 2):

its economic regions. In Spain, NUTS2 levels correspond to re-
gional divisions (Eurostat, 2020).
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Figure 1. Localization of the DRB and detail of its AWDUs.

Figure 2. Human–water system grand ensemble.

– Step 1 is done externally to our model by ISIMIP Proto-
col 2b (2023) and includes the simulation of discharge
data by forcing the ensemble of GHMs with climate
change forecasts obtained from the ensemble of GCMs
under alternative climate scenarios.

– Step 2 imports discharge outputs from the GHM ensem-
ble into the AQUATOOL ensemble and produces data

on water allocations under alternative water manage-
ment scenarios.

– Step 3 uses water allocation data to force an ensemble of
microeconomic models that represent human behaviour
and responses and that simulate changes in land use, wa-
ter use, income, and employment.
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The upshot of this coupling process is a database of plausi-
ble futures that assesses the repercussions of climate change
and adaptation scenarios for the water and human systems
while accounting for input (climate and management scenar-
ios), structural and parameter uncertainties in modelling, and
cascading uncertainties across coupled ecological and human
systems.

The following sub-sections describe the components of
the grand ensemble, i.e. the climate scenarios (Sect. 3.1),
the management scenarios (Sect. 3.2), and the modules, in-
cluding the climate system (Sect. 3.3), natural water system
(Sect. 3.4), water management system (Sect. 3.5), and human
system modules (Sect. 3.6).

3.1 Climate scenarios

The modelling exercise encompasses three of the original
four RCP scenarios. ISIMIP Protocol 2b (2023) considers
RCP2.6, RCP6.0, and RCP8.5, which outline trajectories
used by the IPCC (2021, 2014) to depict various potential
climate futures based on future greenhouse gas emissions. In
our simulations, for all the scenarios, we assumed present-
day socio-economic conditions (2005 economic develop-
ment, population levels, land use, and management consis-
tent with the management scenarios in AQUATOOL).

– RCP2.6 outlines a climate scenario where CO2 emis-
sions decline to zero by 2100, with methane emis-
sions at 50 % of 2020 levels and sulfur dioxide emis-
sions at 10 % of 1980–1990 levels. Negative CO2
emissions (e.g. via tree CO2 sequestration) averaging
2 GtCO2 yr−1 are incorporated. This pathway aims to
keep global temperature rise below 2 °C by 2100.

– RCP6.0 foresees a peak in emissions by 2080, followed
by a decline. It involves initially high greenhouse gas
emissions and stabilization of radiative forcing post-
2100, leading to a projected 3–4 °C temperature rise
with CO2 reaching 670 ppm.

– RCP8.5 depicts a scenario where emissions keep in-
creasing throughout the 21st century, which is typically
regarded as unlikely but still possible. Initially viewed
as a worst-case scenario with overestimated coal emis-
sions, it continues to be employed today to predict mid-
century and earlier emissions based on existing policies.

3.2 Management scenarios

The water management ensemble comprises three different
setups of the AQUATOOL model. Each model setup corre-
sponds to one alternative management scenario with specific
developments of reservoirs, canals, irrigated land, and irriga-
tion infrastructure. These management scenarios are the out-
come of the public consultation process led by the basin au-
thority and implemented during the third river basin planning

cycle (2022–2027), which crystalized in the DRB Manage-
ment Plan (DRBA, 2022). In management scenario 1 (M01),
all new developments proposed in the river basin plan are im-
plemented. In management scenario 2 (M02), all new devel-
opments proposed in the river basin plan, excluding irrigation
expansion, are developed. In management scenario 3 (M03),
all new developments proposed in the river basin plan, ex-
cluding irrigation expansion and irrigation modernization,
are developed. The specific developments carried out in each
management scenario are detailed in Appendix A.

3.3 Climate system module

Climate change forecasts are produced by ISIMIP Proto-
col 2b (2023) by simulating the impacts of the three climate
change scenarios (Sect. 3.1) using four GCMs. Each of the
four GCMs is combined with each of the three RCP scenar-
ios, thus generating 12 climate scenarios. The outputs from
the GCMs are used, in turn, to force GHMs (see the next
sub-section). The four GCMs are the following:

– GFDL-ESM2M combines atmospheric and oceanic cir-
culation models, land dynamics, and biogeochemical
processes like the carbon cycle. This model, a collabora-
tive effort involving various institutions under the lead-
ership of the Geophysical Fluid Dynamics Laboratory
of the NOAA, aims to study climate and ecosystem in-
teractions, both natural and human-induced. It includes
components for the atmosphere, land, and oceans, track-
ing factors such as aerosols, precipitation, and sea ice
dynamics. The model also monitors chemical and eco-
logical tracers that impact nutrient cycles, plant growth,
and more. By integrating these components, GFDL-
ESM2M provides comprehensive understanding of how
Earth’s ecosystems interact with the climate system.
For additional details and a mathematical statement, the
reader is referred to Dunne et al. (2013, 2012).

– HadGEM2-ES is part of the broader HadGEM2 model
family involving diverse model setups that vary in com-
plexity while sharing a unified physical structure. This
version of the HadGEM is the second generation and
includes, among other features, a well-resolved strato-
sphere. The HadGEM is developed in the Hadley Cen-
ter and the Met Office (UK) and is one of the most well-
known full global climate models. For additional details
and a mathematical statement, the reader is referred to
Collins et al. (2011).

– The IPSL-CM5A-LR model is a comprehensive and full
Earth system model (ESM) and is developed at the In-
stitut Pierre-Simon Laplace (IPSL) (France). The model
offers a versatile platform for addressing diverse scien-
tific questions. It comprises two sets of physical models,
including ocean extensions. The model’s configurations
can vary in terms of physical parameterizations, reso-
lution, components (ranging from the atmosphere and
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land to a full ESM), and processes (covering physical,
chemical, aerosol, and carbon cycle processes). At its
core, IPSL-CM5 integrates components for the land sur-
face, atmosphere sea ice, and ocean, along with biogeo-
chemical processes, including stratospheric and tropo-
spheric chemistry, aerosols, and terrestrial and oceanic
carbon cycles. For additional details and a mathemati-
cal statement, the reader is referred to Dufresne et al.
(2013).

– MIROC5 (Model for Interdisciplinary Research on Cli-
mate version 5) is an atmospheric and oceanic GCM
developed at the Atmosphere and Ocean Research In-
stitute of the University of Tokyo (Japan). MIROC is
an advanced climate model designed to better simu-
late the average climate, variability, and climate change
resulting from human-induced radiative forcing. This
model was tested through a 100-year long control ex-
periment with specific atmospheric and oceanic reso-
lutions, and its performance was compared to observa-
tions and a previous model version with varying spatial
resolutions. For additional details and a mathematical
statement of the model, the reader is referred to Watan-
abe et al. (2010).

3.4 Natural water system module

Water discharge forecasts are produced by ISIMIP Proto-
col 2b (ISIMIP, 2023) forcing eight GHMs with the sim-
ulation outputs of the four GCMs. GHMs provide spa-
tially aggregated information within standardized grids of
0.5°× 0.5°. The eight GHMs are the following:

– CLM4.5 explores the cycling of water, trace gases,
chemical elements, and energy. The model components
include biogeophysics, the hydrological cycle, dynamic
vegetation, and biogeochemistry. The land surface is
categorized into glacier, lake, wetland, urban, and veg-
etated areas, with further sub-divisions for plant func-
tional types. For additional details and a mathemati-
cal formulation, the reader is referred to Oleson et al.
(2013).

– H08 represents a global hydrological model organized
by grid cells, featuring six sub-models designed to ex-
plicitly replicate the interplay between the natural water
cycle and human activities worldwide. The model main-
tains a nearly complete water balance. In 2016, water
abstraction schemes were improved, and a groundwa-
ter scheme was added. CLM4.5 in ISIMP Protocol 2b is
run using inputs from the climate models: IPSL-CM5A-
LR, HadGEM2-ES, GFDL-ESM2M, and MIROC5. For
additional details and a mathematical statement of the
model, the reader is referred to Hanasaki et al. (2018).

– LPJmL is a model that focuses on water balance and
irrigation processes, with the latest version distinguish-

ing between different irrigation systems. It is designed
to study the impact of replacing natural vegetation with
agroecosystems due to rising CO2 levels and climate
change. Additionally, it plays a key role in assess-
ing future ecosystem services, considering factors like
climate, CO2 levels, land management, and land use
change. LPJmL in ISIMP Protocol 2b is run using inputs
from the climate models: IPSL-CM5A-LR, HadGEM2-
ES, GFDL-ESM2M, and MIROC5. For additional de-
tails and a mathematical statement of the model, the
reader is referred to Bondeau et al. (2007).

– MATSIRO is meant to work with a climate system re-
search model. It is used for climate studies covering
various timescales and resolutions. MATSIRO focuses
on representing essential land–atmosphere water and
energy exchange processes in a physically based yet
straightforward manner, making it a valuable tool for
climate research. MATSIRO in ISIMP Protocol 2b is
run using inputs from the climate models: IPSL-CM5A-
LR, HadGEM2-ES, GFDL-ESM2M, and MIROC5. For
additional details and a mathematical formulation of
this model, the reader is referred to Takata et al. (2003).

– MPI-HM is a model that focuses solely on calculat-
ing water fluxes, excluding any considerations for en-
ergy balance calculations. MPI-HM is used for high-
resolution river routing in hydrological research. MPI-
HM in ISIMP Protocol 2b is run using inputs from
the climate models: IPSL-CM5A-LR, GFDL-ESM2M,
and MIROC5. For additional details and a mathemati-
cal statement, the reader is referred to Stacke and Hage-
mann (2012).

– PCR-GLOBWB is a model that simulates water dynam-
ics for each grid cell on a daily basis. It tracks water
storage in soil and groundwater layers as well as ex-
changes like infiltration, percolation, and capillary rise.
The model includes atmospheric interactions, such as
rainfall and evapotranspiration, and connects water use
in agriculture, industry, and households to daily hydro-
logical processes. The simulated runoff and water flow
are subsequently routed through river networks inter-
connected with water allocation and reservoir operation
schemes. PCR-GLOBWB in ISIMP Protocol 2b is run
using inputs from the climate models: IPSL-CM5A-LR,
HadGEM2-ES, GFDL-ESM2M, and MIROC5. For ad-
ditional details and a mathematical statement, the reader
is referred to van Beek and Bierkens (2009).

– WaterGAP2 and WaterGAP2-2C are global freshwa-
ter models that assess water flows and storage across
continents, factoring in human impact from water ab-
stractions and reservoirs. It helps analyse water scarcity,
droughts, floods, and the influence of human actions
on groundwater, wetlands, streamflow, and sea level
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rise. The model relies on climate data, surface water
information, land characteristics, and more for its in-
puts. WaterGAP2 and WaterGAP2-2C in ISIMP Pro-
tocol 2b are run using inputs from the climate mod-
els: IPSL-CM5A-LR, HadGEM2-ES, GFDL-ESM2M,
and MIROC5. For additional details and a mathematical
statement of the model, the reader is referred to Alcamo
et al. (2003).

3.5 Water management system module

AQUATOOL serves as a DSS designed for editing, imple-
menting, reviewing, and analysing hydrologic models, with
a specific emphasis on integrated watershed management. It
provides detailed data on the qualitative and quantitative con-
ditions of water bodies as well as water allocation, across
both space and time. AQUATOOL is structured into various
modules, each with its own model or software. In our appli-
cation to the DRB, we utilize the AQUATOOL module to
conduct a comprehensive longitudinal and spatial analysis of
the impacts of climate change and discharge variations in al-
ternative management scenarios on water bodies and water
allocation. The impacts of climate change models and man-
agement scenarios on surface water bodies are simulated ac-
cording to continuity or equilibrium principles, while both
unicellular and multicellular models are used for groundwa-
ter bodies. The water allocation, on the other hand, is deter-
mined by relying on a network optimization algorithm. The
model is calibrated following a positive approach that aims
to minimize the difference between simulated and observed
water allocations, observed discharges, and reservoir levels
(PUV, 2020).

The data inputs for setting up AQUATOOL in the DRB
are accessible online (Mírame-IDEDUERO, 2023), exclud-
ing the discharge series under natural conditions for the
model baseline conditions (no climate change), which must
be generated. To obtain these discharge series under natural
conditions, daily precipitation series from 1940 to 2018 are
processed using the EVALHID tool (Lerma et al., 2017), in
addition to SIMPA (Sistema Integrado para la Modelación
del proceso Precipitación Aportación) (CEDEX, 2020).

AQUATOOL is openly accessible for academics and prac-
titioners, while private for-profit companies have to pay a fee.

3.6 Human system module

The human system module is comprised of an ensemble
of five positive mathematical programming (PMP) models.
PMP modelling also adapts a positive calibration approach
capable of reproducing the choices of the reference year
without error. PMP was first formalized by Howitt (1995)
and has since been the dominant technique for calibrat-
ing mathematical decision-making models in the agricultural
sector. In general, these models include a non-linear com-
ponent within the objective function, which can be yield or

cost. The original parameter, yield (yi) or cost (ci), is re-
placed with a crop-area-dependent function (ci = αi+

1
2βixi

or yi = B0i+B1ixi), so that when the area of a crop (xi) ex-
pands, its yield decreases (its cost increases) and vice versa,
with B0i, B1i, αi, and βi being the calibrating parameters (in-
tercept and slope) for yield and cost linear functions.

Five alternative different PMP calibration techniques have
been included in the human system ensemble, i.e. the stan-
dard approach of Howitt (1995), the average cost approach
(Heckelei et al., 2000), the Paris (1988) approach, the Júdez
et al. (2001) approach, and the Dagnino and Ward (2012)
approach, which we briefly introduce below. For a detailed
description and mathematical statement of the model, the
reader is referred to the original papers. While all of these
approaches reproduce the reference or calibration year with-
out error, the objective function and agent responses during
the simulations do differ, often significantly.

– Standard approach (Howitt, 1995). The original work
included a yield function, which in this case has been re-
placed by a cost function. This method needs two stages
to calibrate. First, the dual values (µi) of some calibra-
tion constraints are obtained using a linear model. From
these dual values, the observed cost (cost0i ) and the ob-
served area (x0

i ), the calibration coefficients of the cost
function (αi and βi) are obtained. As noted by Heckelei
et al. (2000), a key problem with the standard approach
is the under-determination of the calibration parameters.

– Average cost approach (Heckelei et al., 2000). The av-
erage cost approach is similar to Howitt (1995), but the
calibration parameters are determined in such a way
that, for the reference year, the value of the cost func-
tion coincides with the observed average cost.

– Paris (1988) eliminates the first calibration parameter.

– Judez et al. (2001) skip the first phase of Howitt’s
method and rely on external information to calibrate the
model, land rent (LandRent), and average income per
crop (AverageIncomei).

– Dagnino and Ward (2012) also skip the first phase and
directly calibrate a yield function with the parameters
B0i (intercept) and B1i (slope) from the observed yield
(yield0

i ), average income (AverageIncomei), and price
per crop (pricei).

All the models maximize a quadratic objective function
where the only relevant attribute is profit, as measured by the
profit, subject only to soil and water constraints. The data
used for the calibration of the five PMP models are available
in Table S1 in the Supplement.

3.7 Results

We conduct a set of simulations in three steps, following the
hierarchy detailed in Fig. 2. Step 1, which is performed exter-
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Table 1. PMP calibrating parameters by method.

Linear calibrating parameter Quadratic calibrating parameter

Standard approach αi = cost0i βi =
µi
x0

i

Average cost approach αi = cost0i −µi βi =
2µi
x0

i

Paris approach (1988) αi = 0 βi =
cost0i +µi

x0
i

Judez et al. (2001) αi = cost0i −
1
2βi · x

0
i βi =

2·AverageIncomei−LandRent
x0

i

Dagnino and Ward (2012) B0i = yield0
i −B1i · x

0
i B1i =

−AverageIncomei
pricei·x

0
i

Figure 3. (a) Longitudinal discharge anomalies on the border between Portugal and Spain (moving average of 12 months). (b) Ensemble
spread and best estimate of discharge anomalies for the border between Portugal and Spain, with a moving average of 12 months.

nally to our model by ISIMIP (2023) Protocol 2b, produces
discharge data by forcing eight GHMs with climate change
forecasts produced by an ensemble of four GCMs in three cli-
mate change scenarios. This results in 86 plausible futures
(note that not all GHMs can run simulations using the out-
puts produced by the GCMs, as explained in Sect. 3.4). Dis-
charge data are produced in regular grids of 0.5°× 0.5° and
are transformed into discharge anomalies (%) by comparing
GHM forecasts under climate change (2006–2040 and 2006–
2070 periods) to simulations using historical data (45 years
in historical series from 1961 to 2005). Figure 3 illustrates
longitudinal discharge anomalies for a critical section of the
basin on the border between Portugal and Spain, using a 12-
month moving average. Most combinations of models and
scenarios in Fig. 3 forecast a reduction in discharge. Dis-
charge reductions exhibit a more significant impact during

the 2040–2070 period compared to the earlier 2006–2040
period, which is exacerbated by the peak in greenhouse gas
concentrations and the worsening effects of climate change
on the water cycle.

In Step 2, anomalies in discharge reported by GHMs are
imported into the water management system ensemble to ob-
tain longitudinal series of water allocation for each AWDU
in three alternative management scenarios (see Sect. 3.2). To
this end, we follow the approach by MAGRAMA (2017)
to adjust the discharge series under natural conditions in
AQUATOOL using the discharge anomalies obtained in
Step 1. The resulting water allocations for each of the 150
AWDUs in the Castile and León region and every year in the
series are reported in Table S2 in the Supplement. The inte-
gration of the ensembles of the climate system, natural water
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Figure 4. Box–whisker plots for (a) profit and (b) employment under RCP2.6, RCP6.0, and RCP8.5.

system, and water management system further amplifies the
database of plausible futures to 258.

Finally, in Step 3, each of these 258 plausible futures and
related water allocations to AWDUs is used to force the hu-
man system ensemble and produce longitudinal forecasts of
the impacts of climate change and water management strate-
gies on the income and employment for each of the AW-
DUs in the DRB. The box–whisker plot in Fig. 4 quantifies
the uncertainty across the entire basin for each RCP sce-
nario (RCP2.6, RCP6.0, and RCP8.5) for both profit and
employment. In Fig. 4a, the change in profit shows greater
dispersions and outliers in the RCP2.6 scenario, while the
RCP6.0 and RCP8.5 scenarios display distributions that are
more concentrated around the median. In all cases, the me-
dian is negative, indicating a reduction in profits in each sce-
nario. In Fig. 4b, changes in employment also exhibit a neg-
ative trend in the median across all the RCP scenarios. The
data dispersion is greater in the RCP8.5 scenario, followed
by RCP6.0 and RCP2.6, suggesting increased variability in
employment changes as greenhouse gas concentrations rise.
Figure 4a and b reflect an adverse impact on both profit and
employment as the RCP scenarios progress, with more pro-
nounced effects in scenarios with higher greenhouse gas con-
centrations (RCP8.5).

The presented box–whisker plot lacks spatial disaggrega-
tion of the results, thus constraining our understanding of
spatial variations within the basin. To address this limita-
tion, Fig. 5 exemplifies the modelling potential in deliver-
ing spatially distributed profit outcomes. This figure presents
the impacts of climate change on profit for each of the five
PMP models, considering one adaptive management strat-
egy (M03) and three climate scenarios (RCP2.6, RCP6.0,
and RCP8.5) over the period 2006–2070 and for each of
the AWDUs in the DRB. Such spatial representation allows
for the identification of regional patterns and trends that re-
main elusive in the aggregate analysis, which is of value for
local planning and management by pinpointing specific ar-

eas necessitating attention or adaptation. Detailed results of
the climate change impacts on profit and employment for
each AWDU, management strategy, and climatic scenario are
available in Appendix B. Additionally, Table S3 in the Sup-
plement provides longitudinal projections of profit and em-
ployment for each ensemble model and AWDU.

For all AWDUs, all combinations of models and scenar-
ios predict a reduction in profit and employment due to cli-
mate change. Profit and employment losses are higher for
2040–2070, when greenhouse gas concentrations peak and
discharge reductions are more marked. Notably, employment
and profit losses are significantly higher in management sce-
nario M01 than in M02, which in turn also displays higher
employment and profit losses than M03. This indicates that
the expansion of irrigation (incorporated into M01) and its
modernization (M01, M02) negatively affect both profit and
employment. This is due to the reallocation of water re-
sources from downstream to upstream users, resulting in a
cascade of negative and sometimes non-linear repercussions
that diminish overall profit and employment losses.

AWDUs in the DRB initially manage decreases in water
allocations by replacing irrigated crops at the margin (wheat)
with rainfed crops, so as to maintain the surface area ded-
icated to valuable irrigated crops like sugar beet, vegeta-
bles, maize, and fruits. As water allocations continue to de-
cline, AWDUs are constrained to decrease the surface area
of increasingly valuable irrigated crops, resulting in more
abrupt profit reductions. Due to the labour-intensive nature
of these crops, employment also undergoes sudden changes.
This explains why marginal decreases in water allocation can
lead to substantial and sometimes disproportionately larger
decreases in profit and employment, contributing to a con-
siderable degree of non-linear change. For instance, AW-
DUs in the Carrión sub-basin (AWDUs 2000063, 2000064,
2000065, 2000082, 2000083, 2000084, 2000085, 2000086,
2000097, 2000099, and 2000105 – see Table S3) can initially
manage reductions in water allocation of up to 10 % with low
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Figure 5. Spatially disaggregated impacts (best estimates) of discharge anomalies under climate change (a RCP2.6, b RCP6.0, c RCP8.5)
on profit in the AWDUs of the Douro River basin for the 2006–2070 periods, considering the management scenario M03. Changes in profit
are obtained as the difference between simulated and observed values in the year 2017. It is important to note that the GHM MPI-HM yields
discharge forecasts that are markedly lower than those obtained with the other models, leading to outliers in the employment and profit
predictions, which decrease by nearly 100 % in most of the years in the series. This outlier is excluded from the best estimates reported in
this figure.

to moderate economic losses (< 5 %). However, they experi-
ence abrupt decreases in profit and employment of up to 40 %
under more stringent water allocation reductions of around
20 %. Similarly, AWDUs in the Arlanza sub-basin (AWDUs
2000077, 2000078, 2000079, 2000080, 2000235, 2000320,
2000338, and 2000603 – see Table S3), with minimal eco-
nomic losses (< 0.5 %) under mild water allocation reduc-
tions of 5 % or lower, experience abrupt decreases in profit
and employment of 12 % when water allocation is decreased
by 10 %. These complex interactions between human be-
haviour and the water system, including non-linear responses
by economic agents to environmental change, cannot be fully
understood or modelled without considering the economic
system. To this end, coupled socio-ecological modelling is
necessary – although this can further amplify uncertainty, es-
pecially if more than one human system model is used.

4 Discussion and conclusions

This paper introduces a modular hierarchy comprising en-
sembles of socio-economic and ecological systems (multi-
system ensemble). Each ensemble incorporates multiple

models (multi-model ensemble) employed to evaluate the
repercussions of climate change and management scenarios
for water availability, profit, and employment (multi-model
ensemble). Using this modelling approach, a comprehensive
database of simulations is generated, wherein each result
represents the socio-economic and environmental implica-
tions of a distinct combination of scenarios and models, thus
quantifying parameter, structural, and scenario uncertainties.
By integrating human system dynamics into the modelling
framework, the resulting grand ensemble accounts for non-
linearities emerging across both human and water systems as
well as their cascading impacts, thus providing valuable data
for informing robust strategies.

The grand ensemble is built around a commonly used DSS
model, AQUATOOL, thus contributing to the generation of
actionable science that can be readily adopted by decision-
makers and other stakeholders. The coupling framework is
intentionally crafted to be reproducible and adaptable, with
the ability to incorporate alternative climate, hydrological,
DSS, and microeconomic models of farmers that may better
represent climate, water, and/or human systems in different
regions. Accordingly, our coupling approach and modelling
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framework can be applied widely and at a relatively low cost
by exploiting existing data and/or models. To better inform
the replication of our framework elsewhere, we exemplify
below which models can be used to populate our framework
at each system level.

– Climate system and natural water system: climate
forecasts for alternative climate scenarios are avail-
able in climate ensemble experiments, including
global (CMIP6, 2023; ISIMIP, 2023) and downscal-
ing (EURO-CORDEX, 2023) experiments at a regional
level, which offer simulation outputs for key climate
change scenarios such as RCP2.6 or RCP6.0. Manag-
ing these simulation outputs requires skills in big data,
knowledge of NetCDF and related software, knowledge
of the format in which simulations are reported, and el-
emental knowledge of climate model simulation. Cli-
mate ensemble experiments can provide relevant data
on water discharge, a key input for the water manage-
ment system. Water discharge data can alternatively be
produced using regionally calibrated models, which re-
quires ad hoc data-gathering efforts (although some of
these models also provide databases for their calibra-
tion) and modelling skills in the specific software to be
used. Also, a list of the hydrological models included
in Pérez-Blanco et al. (2022) could be incorporated: the
Soil and Water Assessment Tool – SWAT (Arnold et al.,
1998); the Annualized Agricultural Non-Point Source
Pollution Model – AnnAGNPS (Young et al., 1989);
the Areal Nonpoint Source Watershed Environment Re-
sponse Simulation – ANSWERS 2000 (Bouraoui and
Dillaha, 2000); the Agricultural Policy/Environmental
eXtender model – APEX (Gassman et al., 2009); the
US Army Corps of Engineers Hydrologic Engineering
Center Hydrologic Modeling System – HEC-HMS (US
Army Corps of Engineers, 2015); and the Soil and Wa-
ter Integrated Model – SWIM (Krysanova et al., 2005).

– Water management system: the data inputs necessary
to run the relevant DSS in a given basin are typically
accessible to the competent authority, either directly or
through a consulting company. Some widely used DSSs
that could be incorporated into our modelling frame-
work include AQUATOOL, WEAP, TOPKAPI, MIKE,
RIBASIM, or LISFLOOD. Critically, DSSs are often
profusely edited to account for the unique features of
the basin at hand, and thus their management requires
support from an expert. In our illustrative example with
AQUATOOL, the competent authority was the DRB,
which typically relies on an external consultant to run
hydrological simulations of the management and alloca-
tion of water resources. For this research, USAL collab-
orated with the consultant to develop the coupling and
run the simulations, leveraging funding provided by the
DRB.

– Human system: the human system can be populated by
any mathematical programming model of agricultural
water use available in the literature. The data necessary
to run these models are provided in Table S1. In the case
of EU river basins, all necessary data are publicly avail-
able, although the granularity may differ. For example,
in the case of the Portuguese part of the DRB, a sim-
ilar database to the one used in this paper is publicly
available, although the granularity is significantly lower
(regional scale rather than AWDU scale).

The current and previous (Gil-García et al., 2023; Pérez-
Blanco et al., 2021a, b) versions of the AQUATOOL-based
human–water system DSS presented in this paper have al-
ready been used by stakeholders in the context of financial
and economic viability assessments of new water works pro-
posed in the Douro River Basin Plan under climate change
and uncertainty, including La Rial reservoir, Los Morales
reservoir, the Lastras de Cuéllar reservoir (assessed with pre-
vious versions of the model with a focus on input uncer-
tainty), and the Las Cuezas reservoirs (assessed with the cur-
rent version of the model that includes structural uncertain-
ties in models). All of these assessments were commissioned
by the river basin authority.

Future scientific research offers several avenues to fur-
ther develop and expand the proposed hierarchical coupling
framework for understanding the intricate interactions be-
tween human actions, water resources, and related uncertain-
ties. Firstly, it is possible to introduce improvements to the
individual models within each module by integrating recent
scientific advancements within each discipline. For instance,
recent developments in microeconomic modelling decouple
land use choices from water use choices, allowing for two
decision variables rather than one decision variable, as is
usually the case in conventional PMP and other mathemat-
ical programming models, where agents only decide on land
use (Graveline and Merel, 2014; Loch et al., 2020; Sapino
et al., 2022a). This allows for the representation and assess-
ment of adaptation measures at the intensive margin (such
as deficit or supplementary irrigation), going beyond the ex-
tensive (transition to less water-intensive crops) and super-
extensive (transition to rainfed crops) adaptations examined
in conventional PMP and other mathematical programming
models.

Secondly, additional protocols could be introduced across
systems to bolster the framework and its interactions. For in-
stance, this might entail incorporating distinct protocols for
water use decisions independent of land use decisions in the
coupling between the human and hydrological modules.

Thirdly, the modelling framework could benefit from the
integration of extra modules, including the linkage with
macroeconomic or crop models. This integration would al-
low for the evaluation of climate change impacts on crop
yields (using crop models) and prices (using macroeco-
nomic models). Multi-model ensembles of global gridded
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crop models are available in ISIMIP (2023) and could be cou-
pled following a similar procedure to the one described here
for the natural water systems or GHMs, while the integra-
tion of macroeconomic models such as computable general
equilibrium (CGE) models (Hertel and Liu, 2016) into water
system research has already been done (Parrado et al., 2020;
Pérez-Blanco et al., 2021a; Pérez-Blanco and Gutiérrez-
Martín, 2017; Ronneberger et al., 2009). By adding these and
other new system modules, uncertainty could further cascade
across systems. This can help us identify new vulnerabilities
and further underpin robust decision-making.

On the other hand, as the number of modules, protocols,
structures, and other modelling factors (inputs, parameters,
structures) considered in the analysis grows, other issues may
arise that may reduce the tractability of the problem. These
issues are dealt with in our last three recommendations for
improvement.

Fourthly, having incorporated multiple uncertainties, the
model output may vary “so wildly as to be of no practical
use” (Saltelli et al., 2008). However, as noted by Saltelli et al.
(2008) and in line with previous work by Beven and Binley
(1992) and Beven and Freer (2001) that introduced the equi-
finality concept (i.e. distinct configurations of model com-
ponents such as inputs, parameters, or structures can lead
to similar or equally acceptable representations of the real-
world process of interest), this “trade-off may not be as dra-
matic as one might expect, and increasing the number of
input factors does not necessarily lead to an increased vari-
ance in model output.” (Beven and Freer, 2001). Typically, a
few inputs create almost all the uncertainty, and the majority
make a marginal contribution.

Fifthly, computational costs may pose a challenge to
conducting uncertainty quantification and analyses, where
(1) each model run demands a considerable amount of time
stretching from minutes to hours or even longer (especially
in the case of highly intricate models) and/or (2) the model
encompasses numerous uncertain inputs, which expand the
computational cost exponentially with the increase in the
number of inputs – a phenomenon known as the curse of
dimensionality. Addressing computational expenses is cru-
cial in many practical sensitivity analyses and model inter-
comparison projects. Strategies to mitigate this burden in-
clude employing emulators or meta-models driven by ma-
chine learning techniques that are particularly suitable for
large models (Storlie et al., 2009) and employing screening
methods to reduce the dimensionality of the problem, e.g.
high-dimensional model representations (Li et al., 2006).

Sixthly, at some point, modellers must decide on the
boundaries for the uncertainty quantification, i.e. the inputs
and models, which will condition the outputs of the mod-
elling exercise. This involves defining some limits to not gen-
erate computational costs we cannot afford through model
selection and other techniques. For example, techniques for
model selection can be employed to assign weights to the
models in the ensemble based on their performance in cal-

ibration and forecasting errors. This could help us not only
reduce computational costs (e.g. by discarding some mod-
els) but also reduce potential biases, such as the simulation
outputs from GHM MPI-HM, which yields discharge fore-
casts that are markedly lower than the other models (with
reductions close to or equal to 100 %), shifting the ensemble
spread downwards and with important implications for hu-
man system forecasting (see Fig. 5). It should be noted that,
while model selection techniques based on forecasting errors
can be implemented for GHMs and GCMs, the measurement
of forecasting errors in human system models is significantly
more challenging: information on agent crop choices in the
DRB has only been available since 2004, which leads to a
significantly more reduced data series that complicates the
implementation of rolling origins or other techniques to mea-
sure forecasting errors. On the other hand, the adoption of
model selection techniques on the basis of calibration er-
rors can be misleading, since models with higher calibra-
tion errors may show better predictive performance (Pindyck,
2015).

The convenience of adopting model selection techniques
is a question for debate, since weighting can significantly af-
fect modelling results and condition stakeholder choices and
decision-making. On the other hand, it has been contended
that, whenever model selection techniques are not consid-
ered, each potential simulation outcome is equally important,
“which can also be interpreted as an implicitly equal weight-
ing” (Taner et al., 2019). This is more so the case when re-
sults are explicitly reported using best estimates as done in
Figs. 3–5. While this statistical treatment is a key step in
making results understandable to users, it may introduce non-
trivial biases through the processing and communication of
modelling results, which has to be explicitly addressed by
the use of dispersion measures (Fig. 5) and by the develop-
ment of adequate processing techniques for modelling out-
puts (e.g. serious games that convey the economic and en-
vironmental repercussions of water extremes). On the other
hand, a similar critique can be made of weighting. The de-
cision whether to assign weights to simulation outcomes or
leave them open for interpretation remains a subject of de-
bate among academics (Taner et al., 2019).
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Appendix A: New infrastructures in the Douro River
Basin Plan

Table A1. All new developments proposed in the Douro River Basin Plan.

AWDU System Situation Scenario 1 Scenario 2 Scenario 3

2000003 Esla Irrigation modernization × ×

2000006 Esla Irrigation modernization × ×

2000014 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000017 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000018 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000023 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000025 Tera Irrigation modernization × ×

2000026 Tera Decrease in irrigated areas × × ×

2000034 Esla Expansion of irrigated areas ×

2000038 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000041 Esla New AWDU in 2027 × × ×

Balsa Sector IV reservoir to AWDU 2000033 × × ×

2000047 Esla Expansion of irrigated areas ×

2000049 Tera New AWDU in 2027 × × ×

Expansion of irrigated areas to AWDU 2000025 ×

2000052 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000054 Esla New AWDU in 2033 × × ×

Valcuende de Almanza reservoir to AWDU 2000040 × × ×

2000055 Esla Expansion of irrigated areas ×

Vallehondo reservoir × × ×

2000057 Esla Expansion of irrigated areas ×

2000064 Carrión Irrigation modernization × ×

La Cueza 1 and La Cueza 2 reservoirs × × ×

2000065 Carrión Irrigation modernization × ×

La Cueza 1 and La Cueza 2 reservoirs × × ×

2000071 Pisuerga Expansion of irrigated areas ×

Burejo reservoir × × ×

2000073 Pisuerga Expansion of irrigated areas ×

Las Cuevas reservoir × × ×

2000080 Arlanza Expansion of irrigated areas ×

Irrigation modernization × ×

Castrovido reservoir × × ×

2000082 Carrión Irrigation modernization × ×

La Cueza 1 and La Cueza 2 reservoirs × × ×

2000083 Carrión Irrigation modernization × ×

La Cueza 1 and La Cueza 2 reservoirs × × ×

2000091 Bajo Duero Irrigation modernization × ×

2000092 Bajo Duero Irrigation modernization × ×

2000094 Bajo Duero Irrigation modernization × ×
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Table A1. Continued.

AWDU System Situation Scenario 1 Scenario 2 Scenario 3

2000097 Carrión Expansion of irrigated areas ×

La Cueza 1 and La Cueza 2 reservoirs × × ×

2000100 Pisuerga Expansion of irrigated ×

Boedo reservoir × × ×

2000102 Pisuerga Valles de Cerrato reservoir × × ×

2000108 Bajo Duero Irrigation modernization × ×

2000122 Alto Duero Irrigation modernization × ×

2000128 Alto Duero Expansion of irrigated areas ×

Irrigation modernization × ×

2000132 Alto Duero Expansion of irrigated areas ×

Dor reservoir × × ×

2000143 Alto Duero Expansion of irrigated areas ×

2000166 Cega-Eresma-Adaja New AWDU in 2033 × × ×

Torreiglesias reservoir to AWDU 2000159 × × ×

2000168 Cega-Eresma-Adaja Expansion of irrigated areas ×

Lastras de Cuéllar reservoir × × ×

2000171 Cega-Eresma-Adaja New AWDU in 2033 × × ×

Carbonero, Cigueñuela, Lastras de Cuéllar, and Torreiglesias reservoirs to AWDUs 2000168
and 2000164

× × ×

2000202 Águeda Irrigation modernization × ×

2000207 Tormes New AWDU in 2027 × × ×

Expansion of irrigated areas to AWDU 2000208 ×

2000209 Tormes Expansion of irrigated areas ×

Gamo reservoir × × ×

2000210 Tormes Expansion of irrigated areas ×

Margañán reservoir × × ×

2000211 Tormes Decrease in irrigated areas × × ×

2000212 Águeda New AWDU in 2027 × × ×

Expansion of irrigated areas to AWDU 2000185 ×

2000213 Esla New AWDU in 2027 × × ×

Expansion of irrigated areas to AWDU 2000202 ×

2000280 Órbigo Expansion of irrigated areas ×

Irrigation modernization × ×

2000282 Esla New AWDU in 2033 × × ×

Balsa Sector V reservoir to 2000033 × × ×

2000598 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000600 Órbigo Irrigation modernization × ×

La Rial and Los Morales reservoirs × × ×

2000605 Cega-Eresma-Adaja New AWDU in 2033 × × ×

Carbonero, Cigueñuela, Lastras de Cuéllar, and Torreiglesias reservoirs to AWDU 2000164 × × ×

2000606 Cega-Eresma-Adaja New AWDU in 2033 × × ×

Torreiglesias reservoir to AWDU 2000159 × × ×

2000607 Cega-Eresma-Adaja New AWDU in 2033 × × ×

Lastras de Cuéllar reservoir to AWDU 2000168 × × ×

2000608 Cega-Eresma-Adaja New AWDU in 2033 × × ×

Carbonero and Ciguiñuela reservoirs to AWDU 2000164 × × ×
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Appendix B: Spatial distribution of profit and
employment for each ensemble model

Figure B1. Spatially disaggregated impacts (best estimates) of discharge anomalies under climate change (a RCP2.6, b RCP6.0, (c) RCP8.5)
on profit in the AWDUs of the Douro River basin for the 2006–2040 and 2040–2070 periods. Changes in profit are obtained as the difference
between simulated values under alternative climate change and management scenarios and observed values in the year 2017. It is important
to note that the GHM MPI-HM yields discharge forecasts that are markedly lower than those obtained with the other models, leading to
outliers in the employment and profit predictions, which decrease by nearly 100 % in most of the years in the series. This outlier is excluded
from the best estimates reported in this figure.

Figure B2. Spatially disaggregated impacts (best estimates) of discharge anomalies under climate change (a RCP2.6, b RCP6.0, c RCP8.5)
on employment in the AWDUs of the Douro River basin for the 2006–2040 and 2040–2070 periods. Changes in employment are obtained as
the difference between simulated values under alternative climate change and management scenarios and observed values in the year 2017.
It is important to note that the GHM MPI-HM yields discharge forecasts that are markedly lower than those obtained with the other models,
leading to outliers in the employment and profit predictions, which decrease by nearly 100 % in most of the years in the series. This outlier
is excluded from the best estimates reported in this figure.
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