Articles | Volume 28, issue 16
https://doi.org/10.5194/hess-28-3855-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-3855-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detecting snowfall events over the Arctic using optical and microwave satellite measurements
Emmihenna Jääskeläinen
CORRESPONDING AUTHOR
Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland
Kerttu Kouki
Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland
Aku Riihelä
Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland
Related authors
Aku Riihelä, Emmihenna Jääskeläinen, and Viivi Kallio-Myers
Earth Syst. Sci. Data, 16, 1007–1028, https://doi.org/10.5194/essd-16-1007-2024, https://doi.org/10.5194/essd-16-1007-2024, 2024
Short summary
Short summary
We describe a new climate data record describing the surface albedo, or reflectivitity, of Earth's surface (called CLARA-A3 SAL). The climate data record spans over 4 decades of satellite observations, beginning in 1979. We conduct a quality assessment of the generated data, comparing them against other satellite data and albedo observations made on the ground. We find that the new data record in general matches surface observations well and is stable through time.
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022, https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Karl-Göran Karlsson, Kati Anttila, Jörg Trentmann, Martin Stengel, Jan Fokke Meirink, Abhay Devasthale, Timo Hanschmann, Steffen Kothe, Emmihenna Jääskeläinen, Joseph Sedlar, Nikos Benas, Gerd-Jan van Zadelhoff, Cornelia Schlundt, Diana Stein, Stefan Finkensieper, Nina Håkansson, and Rainer Hollmann
Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, https://doi.org/10.5194/acp-17-5809-2017, 2017
Short summary
Short summary
The paper presents the second version of a global climate data record based on satellite measurements from polar orbiting weather satellites. It describes the global evolution of cloudiness, surface albedo and surface radiation during the time period 1982–2015. The main improvements of algorithms are described together with some validation results. In addition, some early analysis is presented of some particularly interesting climate features (Arctic albedo and cloudiness + global cloudiness).
Emmihenna Jääskeläinen, Terhikki Manninen, Johanna Tamminen, and Marko Laine
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-180, https://doi.org/10.5194/amt-2016-180, 2016
Revised manuscript not accepted
Adriano Lemos and Aku Riihelä
EGUsphere, https://doi.org/10.5194/egusphere-2024-869, https://doi.org/10.5194/egusphere-2024-869, 2024
Short summary
Short summary
Here we used satellite imagery to measure snow depth in northern Finland and compared to on-site weather stations from 2019–2022. We correlated snow depths and vegetation coverage, and found thicker snow over non-vegetated areas and frozen water bodies due to the satellite's sensitivity. Our estimates showed underestimated results of snow depth and need further investigation, but they highlight the potential in monitoring seasonal snow changes, particularly where direct measurements are lacking.
Aku Riihelä, Emmihenna Jääskeläinen, and Viivi Kallio-Myers
Earth Syst. Sci. Data, 16, 1007–1028, https://doi.org/10.5194/essd-16-1007-2024, https://doi.org/10.5194/essd-16-1007-2024, 2024
Short summary
Short summary
We describe a new climate data record describing the surface albedo, or reflectivitity, of Earth's surface (called CLARA-A3 SAL). The climate data record spans over 4 decades of satellite observations, beginning in 1979. We conduct a quality assessment of the generated data, comparing them against other satellite data and albedo observations made on the ground. We find that the new data record in general matches surface observations well and is stable through time.
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022, https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Aku Riihelä, Michalea D. King, and Kati Anttila
The Cryosphere, 13, 2597–2614, https://doi.org/10.5194/tc-13-2597-2019, https://doi.org/10.5194/tc-13-2597-2019, 2019
Short summary
Short summary
We used a 1982–2015 time series of satellite observations to examine changes in surface reflectivity (albedo) of the Greenland Ice Sheet. We found notable decreases in albedo over most of the ice sheet margins in July and August, particularly over the west coast and between 2000 and 2015. The results indicate that significant melt now occurs in areas 50 to 100 m higher up the ice sheet relative to the early 1980s. The albedo decrease is consistent and covarying with modelled ice sheet mass loss.
Karl-Göran Karlsson, Kati Anttila, Jörg Trentmann, Martin Stengel, Jan Fokke Meirink, Abhay Devasthale, Timo Hanschmann, Steffen Kothe, Emmihenna Jääskeläinen, Joseph Sedlar, Nikos Benas, Gerd-Jan van Zadelhoff, Cornelia Schlundt, Diana Stein, Stefan Finkensieper, Nina Håkansson, and Rainer Hollmann
Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, https://doi.org/10.5194/acp-17-5809-2017, 2017
Short summary
Short summary
The paper presents the second version of a global climate data record based on satellite measurements from polar orbiting weather satellites. It describes the global evolution of cloudiness, surface albedo and surface radiation during the time period 1982–2015. The main improvements of algorithms are described together with some validation results. In addition, some early analysis is presented of some particularly interesting climate features (Arctic albedo and cloudiness + global cloudiness).
Emmihenna Jääskeläinen, Terhikki Manninen, Johanna Tamminen, and Marko Laine
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-180, https://doi.org/10.5194/amt-2016-180, 2016
Revised manuscript not accepted
P. Räisänen, A. Luomaranta, H. Järvinen, M. Takala, K. Jylhä, O. N. Bulygina, K. Luojus, A. Riihelä, A. Laaksonen, J. Koskinen, and J. Pulliainen
Geosci. Model Dev., 7, 3037–3057, https://doi.org/10.5194/gmd-7-3037-2014, https://doi.org/10.5194/gmd-7-3037-2014, 2014
Short summary
Short summary
Snowmelt influences greatly the climatic conditions in spring. This study evaluates the timing of springtime end of snowmelt in the ECHAM5 model. A key finding is that, in much of northern Eurasia, snow disappears too early in ECHAM5, in spite of a slight cold bias in spring. This points to the need for a more comprehensive treatment of the surface energy budget. In particular, the surface temperature for the snow-covered and snow-free parts of a climate model grid cell should be separated.
K.-G. Karlsson, A. Riihelä, R. Müller, J. F. Meirink, J. Sedlar, M. Stengel, M. Lockhoff, J. Trentmann, F. Kaspar, R. Hollmann, and E. Wolters
Atmos. Chem. Phys., 13, 5351–5367, https://doi.org/10.5194/acp-13-5351-2013, https://doi.org/10.5194/acp-13-5351-2013, 2013
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013, https://doi.org/10.5194/acp-13-3743-2013, 2013
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Remote Sensing and GIS
Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Assimilation of airborne gamma observations provides utility for snow estimation in forested environments
Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau
Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data
Development and validation of a new MODIS snow-cover-extent product over China
Processes governing snow ablation in alpine terrain – detailed measurements from the Canadian Rockies
Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record
Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: the Clutha Catchment, New Zealand
Icelandic snow cover characteristics derived from a gap-filled MODIS daily snow cover product
The recent developments in cloud removal approaches of MODIS snow cover product
Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA
Assessment of a multiresolution snow reanalysis framework: a multidecadal reanalysis case over the upper Yampa River basin, Colorado
Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S) during the years 2000–2016
A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya
A snow cover climatology for the Pyrenees from MODIS snow products
Cloud obstruction and snow cover in Alpine areas from MODIS products
Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada
LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California
Early 21st century snow cover state over the western river basins of the Indus River system
Validation of the operational MSG-SEVIRI snow cover product over Austria
Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach
CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data
Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan
Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years
Assessing the application of a laser rangefinder for determining snow depth in inaccessible alpine terrain
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024, https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Short summary
Estimates of 250 m of snow water equivalent in the western USA and Canada are improved by assimilating observations representative of a snow-focused satellite mission with a land surface model. Here, by including a gap-filling strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach improved estimates of winter maximum snow water volume to within 4 %, on average, with persistent improvements to both spring snow and runoff in many regions.
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023, https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Short summary
An airborne gamma-ray remote-sensing technique provides reliable snow water equivalent (SWE) in a forested area where remote-sensing techniques (e.g., passive microwave) typically have large uncertainties. Here, we explore the utility of assimilating the gamma snow data into a land surface model to improve the modeled SWE estimates in the northeastern US. Results provide new insights into utilizing the gamma SWE data for enhanced land surface model simulations in forested environments.
Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Linghong Ke, Xiao Qiao, Jie Zhang, Weihua Xiao, and Yuyan Zhou
Hydrol. Earth Syst. Sci., 27, 933–952, https://doi.org/10.5194/hess-27-933-2023, https://doi.org/10.5194/hess-27-933-2023, 2023
Short summary
Short summary
We assessed and compared the glacier areal retreat rate and surface thinning rate and the effects of topography, debris cover and proglacial lakes in the west Nyainqentanglha Range (WNT) during 1976–2000 and 2000–2020. Our study will help us to better understand the glacier change characteristics in the WNT on a long timescale and will serve as a reference for glacier changes in other regions on the Tibetan Plateau.
Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier
Hydrol. Earth Syst. Sci., 27, 21–38, https://doi.org/10.5194/hess-27-21-2023, https://doi.org/10.5194/hess-27-21-2023, 2023
Short summary
Short summary
We explore satellite retrievals of snow water equivalent (SWE) along hypothetical ground tracks that would allow estimation of SWE over an entire watershed. The retrieval of SWE from satellites has proved elusive, but there are now technological options that do so along essentially one-dimensional tracks. We use machine learning (ML) algorithms as the basis for a track-to-area (TTA) transformation and show that at least one is robust enough to estimate domain-wide SWE with high accuracy.
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
Michael Schirmer and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 143–157, https://doi.org/10.5194/hess-24-143-2020, https://doi.org/10.5194/hess-24-143-2020, 2020
Short summary
Short summary
The spatial distribution of snow water equivalent (SWE) and melt are important for hydrological applications in alpine terrain. We measured the spatial distribution of melt using a drone in very high resolution and could relate melt to topographic characteristics. Interestingly, melt and SWE were not related spatially, which influences the speed of areal melt out. We could explain this by melt varying over larger distances than SWE.
Dorothy K. Hall, George A. Riggs, Nicolo E. DiGirolamo, and Miguel O. Román
Hydrol. Earth Syst. Sci., 23, 5227–5241, https://doi.org/10.5194/hess-23-5227-2019, https://doi.org/10.5194/hess-23-5227-2019, 2019
Short summary
Short summary
Global snow cover maps have been available since 2000 from the MODerate resolution Imaging Spectroradiometer (MODIS), and since 2000 and 2011 from the Suomi National Polar-orbiting Partnership (S-NPP) and the Visible Infrared Imaging Radiometer Suite (VIIRS), respectively. These products are used extensively in hydrological modeling and climate studies. New, daily cloud-gap-filled snow products are available from both MODIS and VIIRS, and are being used to develop an Earth science data record.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
Hydrol. Earth Syst. Sci., 23, 3189–3217, https://doi.org/10.5194/hess-23-3189-2019, https://doi.org/10.5194/hess-23-3189-2019, 2019
Short summary
Short summary
Spatio-temporal variability of seasonal snow cover is characterised from 16 years of MODIS data for the Clutha Catchment, New Zealand. No trend was detected in snow-covered area. Spatial modes of variability reveal the role of anomalous winter airflow. The sensitivity of snow cover duration to temperature and precipitation variability is found to vary spatially across the catchment. These findings provide new insight into seasonal snow processes in New Zealand and guidance for modelling efforts.
Andri Gunnarsson, Sigurður M. Garðarsson, and Óli G. B. Sveinsson
Hydrol. Earth Syst. Sci., 23, 3021–3036, https://doi.org/10.5194/hess-23-3021-2019, https://doi.org/10.5194/hess-23-3021-2019, 2019
Short summary
Short summary
In this study a gap-filled snow cover product for Iceland is developed using MODIS satellite data and validated with both in situ observations and alternative remote sensing data sources with good agreement. Information about snow cover extent, duration and changes over time is presented, indicating that snow cover extent has been increasing slightly for the past few years.
Xinghua Li, Yinghong Jing, Huanfeng Shen, and Liangpei Zhang
Hydrol. Earth Syst. Sci., 23, 2401–2416, https://doi.org/10.5194/hess-23-2401-2019, https://doi.org/10.5194/hess-23-2401-2019, 2019
Short summary
Short summary
This paper is a review article on the cloud removal methods of MODIS snow cover products.
Rose Petersky and Adrian Harpold
Hydrol. Earth Syst. Sci., 22, 4891–4906, https://doi.org/10.5194/hess-22-4891-2018, https://doi.org/10.5194/hess-22-4891-2018, 2018
Short summary
Short summary
Ephemeral snowpacks are snowpacks that persist for less than 2 months. We show that ephemeral snowpacks melt earlier and provide less soil water input in the spring. Elevation is strongly correlated with whether snowpacks are ephemeral or seasonal. Snowpacks were also more likely to be ephemeral on south-facing slopes than north-facing slopes at high elevations. In warm years, the Great Basin shifts to ephemerally dominant as rain becomes more prevalent at increasing elevations.
Elisabeth Baldo and Steven A. Margulis
Hydrol. Earth Syst. Sci., 22, 3575–3587, https://doi.org/10.5194/hess-22-3575-2018, https://doi.org/10.5194/hess-22-3575-2018, 2018
Short summary
Short summary
Montane snowpacks are extremely complex to represent and usually require assimilating remote sensing images at very fine spatial resolutions, which is computationally expensive. Adapting the grid size of the terrain to its complexity was shown to cut runtime and storage needs by half while preserving the accuracy of ~ 100 m snow estimates. This novel approach will facilitate the large-scale implementation of high-resolution remote sensing data assimilation over snow-dominated montane ranges.
Alejandra Stehr and Mauricio Aguayo
Hydrol. Earth Syst. Sci., 21, 5111–5126, https://doi.org/10.5194/hess-21-5111-2017, https://doi.org/10.5194/hess-21-5111-2017, 2017
Short summary
Short summary
In Chile there is a lack of hydrological data, which complicates the analysis of important hydrological processes. In this study we validate a remote sensing product, i.e. the MODIS snow product, in Chile using ground observations, obtaining good results. Then MODIS was use to evaluated snow cover dynamic during 2000–2016 at five watersheds in Chile. The analysis shows that there is a significant reduction in snow cover area in two watersheds located in the northern part of the study area.
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Short summary
Glacial lake outburst floods pose a significant threat to downstream communities and infrastructure as they rapidly unleash stored lake water. Nepal is home to many potentially dangerous glacial lakes, yet a holistic understanding of the hazards faced by these lakes is lacking. This study develops a framework using remotely sensed data to investigate the hazards and risks associated with each glacial lake and discusses how this assessment may help inform future management actions.
S. Gascoin, O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez
Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, https://doi.org/10.5194/hess-19-2337-2015, 2015
Short summary
Short summary
There is a good agreement between the MODIS snow products and observations from automatic stations and Landsat snow maps in the Pyrenees. The optimal thresholds for which a MODIS pixel is marked as snow-covered are 40mm in water equivalent and 150mm in snow depth.
We generate a gap-filled snow cover climatology for the Pyrenees. We compute the mean snow cover duration by elevation and aspect classes. We show anomalous snow patterns in 2012 and consequences on hydropower production.
P. Da Ronco and C. De Michele
Hydrol. Earth Syst. Sci., 18, 4579–4600, https://doi.org/10.5194/hess-18-4579-2014, https://doi.org/10.5194/hess-18-4579-2014, 2014
Short summary
Short summary
The negative impacts of cloud obstruction in snow mapping from MODIS and a new reliable cloud removal procedure for the Italian Alps.
P. D. Micheletty, A. M. Kinoshita, and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014, https://doi.org/10.5194/hess-18-4601-2014, 2014
P. B. Kirchner, R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo
Hydrol. Earth Syst. Sci., 18, 4261–4275, https://doi.org/10.5194/hess-18-4261-2014, https://doi.org/10.5194/hess-18-4261-2014, 2014
Short summary
Short summary
In this study we present results from LiDAR snow depth measurements made over 53 sq km and a 1600 m elevation gradient. We found a lapse rate of 15 cm accumulated snow depth and 6 cm SWE per 100 m in elevation until 3300 m, where depth sharply decreased. Residuals from this trend revealed the role of aspect and highlighted the importance of solar radiation and wind for snow distribution. Lastly, we compared LiDAR SWE estimations with four model estimates of SWE and total precipitation.
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
S. Surer, J. Parajka, and Z. Akyurek
Hydrol. Earth Syst. Sci., 18, 763–774, https://doi.org/10.5194/hess-18-763-2014, https://doi.org/10.5194/hess-18-763-2014, 2014
V. López-Burgos, H. V. Gupta, and M. Clark
Hydrol. Earth Syst. Sci., 17, 1809–1823, https://doi.org/10.5194/hess-17-1809-2013, https://doi.org/10.5194/hess-17-1809-2013, 2013
T. Y. Lakhankar, J. Muñoz, P. Romanov, A. M. Powell, N. Y. Krakauer, W. B. Rossow, and R. M. Khanbilvardi
Hydrol. Earth Syst. Sci., 17, 783–793, https://doi.org/10.5194/hess-17-783-2013, https://doi.org/10.5194/hess-17-783-2013, 2013
A. A. Tahir, P. Chevallier, Y. Arnaud, and B. Ahmad
Hydrol. Earth Syst. Sci., 15, 2275–2290, https://doi.org/10.5194/hess-15-2275-2011, https://doi.org/10.5194/hess-15-2275-2011, 2011
J. Wang, H. Li, and X. Hao
Hydrol. Earth Syst. Sci., 14, 1979–1987, https://doi.org/10.5194/hess-14-1979-2010, https://doi.org/10.5194/hess-14-1979-2010, 2010
J. L. Hood and M. Hayashi
Hydrol. Earth Syst. Sci., 14, 901–910, https://doi.org/10.5194/hess-14-901-2010, https://doi.org/10.5194/hess-14-901-2010, 2010
Cited articles
Barrett, A. P., Stroeve, J. C., and Serreze, M. C.: Arctic Ocean precipitation from atmospheric reanalyses and comparisons with North Pole drifting station records, J. Geophys. Res.-Oceans, 125, e2019JC015415, https://doi.org/10.1029/2019JC015415, 2020. a
Betts, A. K. and Ball, J. H.: Albedo over the boreal forest, J. Geophys. Res.-Atmos., 102, 28901–28909, 1997. a
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim. Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017. a
Bintanja, R. and Selten, F.: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat, Nature, 509, 479–482, https://doi.org/10.1038/nature13259, 2014. a
Boisvert, L. N., Webster, M. A., Petty, A. A., Markus, T., Bromwich, D. H., and Cullather, R. I.: Intercomparison of precipitation estimates over the Arctic Ocean and its peripheral seas from reanalyses, J. Climate, 31, 8441–8462, 2018. a
Clerc, S. and MPC Team: Level 2A Data Quality Report, https://sentinel.esa.int/documents/247904/685211/Sentinel-2-L2A-data-Quality-Report (last access: 22 August 2024), 2022. a
D'Eon, R. G.: Snow depth as a function of canopy cover and other site attributes in a forested ungulate winter range in southeast British Columbia, BC Journal of Ecosystems and Management, 3, 136–144, 2004. a
Domine, F., Taillandier, A.-S., Cabanes, A., Douglas, T. A., and Sturm, M.: Three examples where the specific surface area of snow increased over time, The Cryosphere, 3, 31–39, https://doi.org/10.5194/tc-3-31-2009, 2009. a
ECMWF: IFS Documentation CY41R2 – Part IV: Physical Processes, ECMWF, https://doi.org/10.21957/tr5rv27xu, 2016. a
Edel, L., Claud, C., Genthon, C., Palerme, C., Wood, N., L'ecuyer, T., and Bromwich, D.: Arctic snowfall from CloudSat observations and reanalyses, J. Climate, 33, 2093–2109, 2020. a
ESA: MSI Level-2A BOA Reflectance Product. Collection 1, Copernicus Sentinel-2 (processed by ESA), https://doi.org/10.5270/S2_-znk9xsj, 2021. a, b
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The International Classification for Seasonal Snow on the Ground, IHP-VII Technical Documents in Hydrology No. 83, IACS Contribution No. 1, UNESCO-IHP, https://unesdoc.unesco.org/ark:/48223/pf0000186462 (last access: 22 August 2024), 2009. a
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo evolution, J. Geophys. Res.-Atmos., 111, D12208, https://doi.org/10.1029/2005JD006834, 2006. a
FMI: MS Windows NT Kernel Description, https://en.ilmatieteenlaitos.fi/fmi-radar-network (last access: 22 August 2024), 2023. a
Gallet, J.-C., Domine, F., Zender, C. S., and Picard, G.: Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm, The Cryosphere, 3, 167–182, https://doi.org/10.5194/tc-3-167-2009, 2009. a
Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De Bonis, R., Isola, C., Martimort, P., and Fernandez, V.: Copernicus Sentinel-2A Calibration and Products Validation Status, Remote Sens.-Basel, 9, 584, https://doi.org/10.3390/rs9060584, 2017. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Ishizaka, M., Motoyoshi, H., Yamaguchi, S., Nakai, S., Shiina, T., and Muramoto, K.-I.: Relationships between snowfall density and solid hydrometeors, based on measured size and fall speed, for snowpack modeling applications, The Cryosphere, 10, 2831–2845, https://doi.org/10.5194/tc-10-2831-2016, 2016. a, b
Jääskeläinen, E., Kouki, K., and Riihelä, A.: Data for “Detecting Snowfall Events over the Arctic Using Optical and Microwave Satellite Measurements” by Jääskeläinen et al., Finnish Meteorological Institute [data set], https://doi.org/10.57707/FMI-B2SHARE.B8E9F541ACC14C5692F3D55D18F53C43, 2024. a
Kokhanovsky, A., Lamare, M., Danne, O., Brockmann, C., Dumont, M., Picard, G., Arnaud, L., Favier, V., Jourdain, B., Le Meur, E., Di Mauro, B., Aoki, T., Niwano, M., Rozanov, V., Korkin, S., Kipfstuhl, S., Freitag, J., Hoerhold, M., Zuhr, A., Vladimirova, D., Faber, A.-K., Steen-Larsen, H. C., Wahl, S., Andersen, J. K., Vandecrux, B., van As, D., Mankoff, K. D., Kern, M., Zege, E., and Box, J. E.: Retrieval of Snow Properties from the Sentinel-3 Ocean and Land Colour Instrument, Remote Sens.-Basel, 11, 2280, https://doi.org/10.3390/rs11192280, 2019. a, b
Kokhanovsky, A., Gascoin, S., Arnaud, L., and Picard, G.: Retrieval of Snow Albedo and Total Ozone Column from Single-View MSI/S-2 Spectral Reflectance Measurements over Antarctica, Remote Sens.-Basel, 13, 4404, https://doi.org/10.3390/rs13214404, 2021. a, b
Kokhanovsky, A., Vandecrux, B., Wehrlé, A., Danne, O., Brockmann, C., and Box, J. E.: An Improved Retrieval of Snow and Ice Properties Using Spaceborne OLCI/S-3 Spectral Reflectance Measurements: Updated Atmospheric Correction and Snow Impurity Load Estimation, Remote Sens.-Basel, 15, 77, https://doi.org/10.3390/rs15010077, 2023. a
Kouki, K., Räisänen, P., Luojus, K., Luomaranta, A., and Riihelä, A.: Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014, The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, 2022. a
Krasting, J. P., Broccoli, A. J., Dixon, K. W., and Lanzante, J. R.: Future Changes in Northern Hemisphere Snowfall, J. Climate, 26, 7813–7828, https://doi.org/10.1175/JCLI-D-12-00832.1, 2013. a
Kumjian, M.: Principles and Applications of Dual-Polarization Weather Radar. Part I: Description of the Polarimetric Radar Variables, Journal of Operational Meteorology, 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119, 2013. a, b
Legagneux, L., Cabanes, A., and Dominé, F.: Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K, J. Geophys. Res.-Atmos., 107, ACH 5-1–ACH 5-15, https://doi.org/10.1029/2001JD001016, 2002. a
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013. a
Libois, Q., Picard, G., Arnaud, L., Dumont, M., Lafaysse, M., Morin, S., and Lefebvre, E.: Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau, The Cryosphere, 9, 2383–2398, https://doi.org/10.5194/tc-9-2383-2015, 2015. a
Luojus, K., Moisander, M., Pulliainen, J., Takala, M., Lemmetyinen, J., Derksen, C., Mortimer, C., Schwaizer, G., Nagler, T., and Venäläinen, P.: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global climate research data package (CRDP) (1979–2020), version 2.0, NERC EDS Centre for Environmental Data Analysis, https://doi.org/10.5285/4647cc9ad3c044439d6c643208d3c494, 2022. a
Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with size, J. Atmos. Sci., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948. a
McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C., and Screen, J. A.: New climate models reveal faster and larger increases in Arctic precipitation than previously projected, Nat. Commun., 12, 6765, https://doi.org/10.1038/s41467-021-27031-y, 2021. a
McNay, R. S., Peterson, L. D., and Nyberg, J. B.: The influence of forest stand characteristics on snow interception in the coastal forests of British Columbia, Can. J. Forest Res., 18, 566–573, 1988. a
Merkouriadi, I., Gallet, J.-C., Graham, R. M., Liston, G. E., Polashenski, C., Rösel, A., and Gerland, S.: Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition, J. Geophys. Res.-Atmos., 122, 10837–10854, 2017. a
Miller, D. H.: Interception processes during snowstorms, vol. 18, Pacific Southwest Forest and Range Experiment Station, Forest Service, USA, https://www.fs.usda.gov/psw/publications/documents/psw_rp018/psw_rp018.pdf (last access: 22 August 2024), 1964. a
Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R., Kelly, R., and Tedesco, M.: Evaluation of long-term Northern Hemisphere snow water equivalent products, The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, 2020. a, b
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
National Centers for Environmental Information: Estimating the Water Equivalent of Snow, https://www.ncei.noaa.gov/sites/default/files/2021-09/Estimating_the_Water_Equivalent_of_Snow.pdf (last access: 22 August 2024), 2021. a
Pirazzini, R.: Surface albedo measurements over Antarctic sites in summer, J. Geophys. Res.-Atmos., 109, D20118, https://doi.org/10.1029/2004JD004617, 2004. a
Pirazzini, R., Vihma, T., Granskog, M. A., and Cheng, B.: Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period, Ann. Glaciol., 44, 7–14, 2006. a
Pulliainen, J.: Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations, Remote Sens. Environ., 101, 257–269, 2006. a
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022. a
Sato, K. and Inoue, J.: Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations, Clim. Dynam., 50, 289–301, 2018. a
Screen, J. A. and Simmonds, I.: Exploring links between Arctic amplification and mid-latitude weather, Geophys. Res. Lett., 40, 959–964, 2013. a
Skofronick-Jackson, G., Kulie, M., Milani, L., Munchak, S. J., Wood, N. B., and Levizzani, V.: Satellite estimation of falling snow: A global precipitation measurement (GPM) core observatory perspective, J. Appl. Meteorol. Clim., 58, 1429–1448, 2019. a
Taillandier, A.-S., Domine, F., Simpson, W. R., Sturm, M., and Douglas, T. A.: Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, J. Geophys. Res.-Earth, 112, F03003, https://doi.org/10.1029/2006JF000514, 2007. a
Tomppo, E., Katila, M., Mäkisara, K., and Peräsaari, J.: The Multi-source National Forest Inventory of Finland – methods and results 2009, Natural Resources Institute Finland (Luke), http://urn.fi/URN:ISBN:978-952-380-538-5 (last access: 22 August 2024), 2013. a
Vázquez-Martín, S., Kuhn, T., and Eliasson, S.: Shape dependence of snow crystal fall speed, Atmos. Chem. Phys., 21, 7545–7565, https://doi.org/10.5194/acp-21-7545-2021, 2021. a, b
Vihma, T., Screen, J., Tjernström, M., Newton, B., Zhang, X., Popova, V., Deser, C., Holland, M., and Prowse, T.: The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts, J. Geophys. Res.-Biogeo., 121, 586–620, https://doi.org/10.1002/2015JG003132, 2016. a
Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Massom, R., Perovich, D., and Sturm, M.: Snow in the changing sea-ice systems, Nat. Clim. Change, 8, 946–953, 2018. a
Zupanc, A.: Improving cloud detection with machine learning, https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (last access: 10 October 2019), 2017. a
Short summary
Snow cover is an important variable when studying the effect of climate change in the Arctic. Therefore, the correct detection of snowfall is important. In this study, we present methods to detect snowfall accurately using satellite observations. The snowfall event detection results of our limited area are encouraging. We find that further development could enable application over the whole Arctic, providing necessary information on precipitation occurrence over remote areas.
Snow cover is an important variable when studying the effect of climate change in the Arctic....