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Abstract. The precipitation over the Arctic region is a dif-
ficult quantity to determine with high accuracy, as the in
situ observation network is sparse, and current climate mod-
els, atmospheric reanalyses, and direct satellite-based pre-
cipitation observations suffer from diverse difficulties that
hinder the correct assessment of precipitation. We undertake
a proof-of-concept investigation into how accurately optical
satellite observations, namely Sentinel-2 surface-reflectance-
based grain-size-connected specific surface area of snow
(SSA), and microwave-based snow water equivalent (SWE)
estimates can detect snowfall over the Arctic. In addition to
the satellite data, we also include ERA5-Land SWE data to
support the analysis. Here, we chose a limited area (a circle
of 100 km radius around Luosto radar located in Northern
Finland) and a short time period (covering March 2018) to
test these data sources and their usability in this precipita-
tion assessment problem. We classified differences between
observations independently for SSA and SWE and compared
the results to the radar-based snowfall information. These ini-
tial results are promising. Situations with snowfall are clas-
sified with high recalls, 64 % for the satellite-based SWE,
77 % for ERA5-Land-based SWE, and around 90 % for SSA
compared to radar-based data. Cases without snowfall are
more difficult to classify correctly using satellite-based data.
The recall values are 34 % for satellite-based SWE and vary
from almost 60 % to over 70 % for SSA. SWE from ERA5-
Land has the highest recall value for cases without snow-
fall, 80 %. These results indicate that optical and microwave-
based satellite observations can be used to detect snowfall
events over the Arctic.

1 Introduction

Precipitation in all its forms drives the hydrological cycle
over land, and it is also responsible for the mass balance
of glaciers and ice sheets. Precipitation in the form of snow
creates and grows the seasonal snowpack over the high lat-
itudes of the Northern Hemisphere. The future of this sea-
sonal snow depends largely on the Arctic temperature regime
and trends; climate models of both the fifth and sixth phases
of the Coupled Model Intercomparison Project (CMIP5 and
CMIP6, respectively) are projecting an increase in rainfall
and consequently a decrease in snowfall over the Arctic with
increasing warming (Bintanja and Selten, 2014; Vihma et al.,
2016; Bintanja and Andry, 2017; McCrystall et al., 2021).
However, climate models in general have struggled to match
observed warming over the Arctic during the past decades
(Rantanen et al., 2022).

Atmospheric reanalyses provide continuous coverage of
precipitation, supported by broad assimilation of observation
data of the atmospheric state. However, assessments of mod-
ern reanalyses over the Arctic Ocean have found a wide range
of portrayed frequency, intensity, and annual or seasonal to-
tal precipitation (Boisvert et al., 2018; Barrett et al., 2020).
Given this variation and the linkages between changes in the
state of the Arctic sea ice and the high-latitude hydrologi-
cal cycle (Screen and Simmonds, 2013; Merkouriadi et al.,
2017; Sato and Inoue, 2018; Webster et al., 2018), it is nat-
ural that reanalysis- and model-based precipitation estimates
over the Arctic land masses will also exhibit substantial vari-
ability (Krasting et al., 2013; Kouki et al., 2022).

Direct satellite-based observations of high-latitude precip-
itation now exist, measured by radars on board the Global
Precipitation Mission (GPM) and CloudSat satellite mis-
sions. While recent progress in quantification of the Arctic
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snowfall from these sources has been made (Edel et al., 2020;
Skofronick-Jackson et al., 2019), the limited swath coverage
of spaceborne radars, combined with the small number of
available observing platforms, is the main reason for limited
spatiotemporal coverage.

Tracking Arctic snowfall events on a wider spatiotemporal
scale is thus possible either by correctly modeling the atmo-
spheric conditions that generate snowfall events or by detect-
ing falling snow in the atmosphere using weather radar obser-
vations. Yet, fallen snow also modifies the observable surface
properties such as surface reflectivity, albedo, or snow wa-
ter equivalent (SWE). Detection of autumn’s first snowfall
over the seasonal snow zone is trivial because of the stark
albedo difference between snowy and non-snowy land sur-
faces. A more challenging task is to detect fresh snow atop
older snow. One solution is to use grain size information. We
expect that fresh snow deposited in snowfall events is typi-
cally smaller-grained and thus more reflective than any exist-
ing aged snow cover surface (Legagneux et al., 2002; Flan-
ner and Zender, 2006; Taillandier et al., 2007). Therefore,
the possibility exists to detect snowfall events a posteriori by
investigating changes in optical satellite imagery related to
snow reflectivity and grain size properties. Another possible
solution for detecting snowfall events is to use microwave-
based SWE, which is the amount of water contained in the
snowpack (in units of kgm−2) or, equivalently, the height
of the water layer (in units of millimeters) that would re-
sult from melting the whole snowpack instantaneously (Fierz
et al., 2009). Therefore, when snow falls, it is expected that
SWE will increase, provided that no melting or sublimation
occurs.

The aim of this study is to investigate if the detection of
snowfall events (in terms of occurrence, not intensity) is pos-
sible from satellite observations indirectly, using two meth-
ods: (1) from high-resolution satellite imagery covering the
visible and near-infrared wavebands using the “footprint”
they leave on the surface properties of snow and (2) from
abrupt increases in daily SWE, based on microwave emis-
sions from the snow cover. However, the challenges in this
investigation are numerous. Optical imagery is only avail-
able under clear skies, potentially extending the pre-/post-
snowfall sampling period and diminishing the detectable
change. Lack of sufficient sunlight during late autumn and
winter over high latitudes also effectively limits our investi-
gation to spring period snowfall. The microwave satellites,
in turn, only provide data at a coarse resolution, which can
complicate the analysis. The investigation also requires a ro-
bust reference data set for the occurrence of snowfall to be
feasible; for this purpose, we employ spatiotemporally well-
resolved ground-based weather radar measurements from the
radar network of the Finnish Meteorological Institute (FMI)
over Finnish Lapland.

This paper is structured as follows. We begin by describ-
ing the area of investigation and the chosen satellite imagery,
the weather radar data serving as a reference, and their pre-

processing methods (Sects. 2 and 3). Supporting data from
atmospheric reanalysis and other auxiliary sources are also
described. Obtained results are then presented in Sect. 4,
followed by a summarizing discussion on the strengths and
weaknesses of the investigated approach in Sect. 5.

2 Data

The study area of this work is located in Northern Finland,
a circle of 100 km radius around the weather radar placed
on Luosto fell (centered at 67.1386° N, 26.9008° E; Fig. 1a),
and the chosen time period is March 2018. This particular
area and this particular time period are chosen because they
fulfill both of the two necessary conditions at the same time:
(1) solar zenith angle (SZA) is high enough in early spring to
enable optical satellite-based observations, and (2) the tem-
perature remains below −5 °C for most of the time period
(only just at the end of the month do the temperatures rise
above −5 °C), meaning that the precipitation falls as snow,
and we do not have to take into account the metamorphosis
of snow or snowmelt (e.g. Pirazzini, 2004; Pirazzini et al.,
2006; Kouki et al., 2019).

We use both microwave and optical satellite data to-
gether with radar observations. Microwave-based SWE es-
timates and optical-based specific surface area (SSA) es-
timates (which are calculated from the surface reflectance
data) are chosen as satellite-based data because they both
are affected by snowfall. The reference snowfall data in our
study are based on snowfall information from weather radar
data. In addition to the satellite and radar data, we also in-
clude ERA5-Land SWE data to support the analysis.

2.1 Satellite data

Atmospheric-corrected surface reflectance values are re-
trieved from the observations of MultiSpectral Instruments
(MSI), on board Sentinel-2 (S2) A and B satellites (ESA,
2021). These level-2A (L2A) data are available in 12 dif-
ferent wavelength bands, covering the visible, near-infrared
(NIR), and shortwave infrared (SWIR) wavelength ranges.
Compared to many other satellite-based data, the L2A data
are provided in three very fine spatial resolutions, 10, 20,
and 60 m, the resolution depending on the wavelength band.
The L2A data are divided into predefined tiles, each of them
consisting of ortho-images in the UTM-WGS84 projection
covering 110km× 110km areas. Each tile overlaps with the
neighboring ones about 10 km.

In this study, we use data from band 9 (central wavelength
945 nm) with a spatial resolution of 60 m. The uncertainty
for this band is not provided directly, but based on uncer-
tainty for other wavelength channels, we assume that the un-
certainty for band 9 is around 0.03 (Clerc and MPC Team,
2022).
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Figure 1. Location of the study area (a), the total canopy estimate of trees for the 100 km radius around the Luosto radar (b), and a digital
elevation map for the 100 km radius around the Luosto radar (c).

The satellite-based SWE data set used in this study is
the European Space Agency (ESA) Snow Climate Change
Initiative (SnowCCI) version 2 data (Luojus et al., 2022).
The algorithm combines satellite-based microwave bright-
ness temperature data with in situ snow depth measurements.
To estimate SWE, the algorithm uses the difference in mi-
crowave brightness temperature between two frequencies (37
and 19 GHz). The different frequencies penetrate through
the snowpack differently, and, therefore, a large difference
between the high-frequency and low-frequency signal indi-
cates a larger snow volume. The algorithm combines satel-
lite data with in situ measurements, which notably improves
the SWE estimates relative to a satellite-only retrieval (Pul-
liainen, 2006). Version 2 uses dynamic snow density, which
improves the seasonal evolution of SWE (Mortimer et al.,
2020), making it well-suited for this study. The SnowCCI v2
is mapped to a 0.1° resolution, and it is a daily SWE product,
allowing us to detect daily changes in SWE.

2.2 Radar data

The Finnish Meteorological Institute maintains a ground-
based radar network, which consists of 11 dual-polarization
C-band Doppler radars, spatially covering almost the whole
area of Finland (FMI, 2023). Dual-polarization radars send
out horizontally and vertically polarized electromagnetic
waves, which are scattered when encountering particles and
objects in the atmosphere. The radars receive these backscat-
tered signals, which are then modified to different quan-
tities using dedicated algorithms (Kumjian, 2013). One of

the advantages of dual-polarized radars is that they are use-
ful in identifying different precipitation types during winter.
For example, snow particles have a uniform shape and size,
which is demonstrated by a high (above 0.97) correlation co-
efficient value (ρhv) between polarizations (Kumjian, 2013).

Radar reflectivity dBZ and correlation coefficient ρhv, ob-
served every 10 min, were chosen for this study. The parame-
ter dBZ, a decibel quantity derived from the radar reflectivity
factor Z, is a precipitation intensity measurement. A higher
dBZ signifies stronger precipitation, and it can be used to cal-
culate, for example, rain rate and snow rate (i.e., the amount
of precipitation measured as mmh−1). In this study, the radar
data are from Luosto radar which is located in Northern Fin-
land.

2.3 ERA5 and ERA5-Land reanalysis

The fifth generation of European Centre for Medium-Range
Weather Forecasts (ECMWF) atmospheric reanalysis of the
global climate (ERA5), produced by the Copernicus Climate
Change Service, covers the period spanning 1940 up to the
present day (Hersbach et al., 2020). The ocean, land, and
atmospheric variables are provided in 31 km spatial resolu-
tion and in three different time resolutions (hourly, daily,
and monthly). In addition, the atmospheric variables are pro-
vided in multiple pressure levels, starting from the surface
and going up to 80 km in the atmosphere. In this work, we
use hourly data of the eastward wind component u (ms−1),
northward wind component v (ms−1), and geopotential φ(z)
(m2 s−2) to determine the wind drift trajectories of the snow-
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fall. The wind components are the horizontal speeds of air
moving either towards the east or north if the values are
positive or towards the west or south if the values are neg-
ative. Geopotential is the gravitational potential energy of a
unit mass, and it can be used to calculate geopotential height
(Holton, 2004):

H = φ(z)/g0, (1)

where z is a geometric height, and the global average of grav-
ity at mean sea level g0 is a constant value of 9.80665 ms−2.
Near the surface, the geopotential height can be considered
to be numerically equal to the geometric height (Holton,
2004). The minimum detection height of the Luosto radar
increases with the distance from the radar, reaching the max-
imum height of around 1.1 km above the level of the radar
at the edge of the 100 km study area. Therefore, we can use
the geopotential heights directly as the heights of the wind
component layers, i.e., H = z.

In addition to the satellite-based SWE, we also include
ERA5-Land (ERA5L) SWE data to the analysis. ERA5L is
the land component of ERA5 (Muñoz-Sabater et al., 2021).
The spatial resolution of ERA5L is 9 km, and, contrary to
ERA5, ERA5L is run without data assimilation and coupling
of the atmospheric module. In this study, we use hourly SWE
values from which we calculate daily means.

2.4 Auxiliary data

Auxiliary data on forest and terrain are required for the anal-
ysis and obtained from external sources as follows. The oper-
ational Finnish Multisource National Forest Inventory (MS-
NFI) describes Finnish forests at a national scale from a va-
riety of data sources. The first edition was created in 1990,
and it has since been updated frequently. The national forest
inventory provides multiple parameters, and the one we are
interested in is the total canopy cover estimates of the trees
[%]. In this work, we used the version based on Sentinel-2A
MSI satellite images (bands 2, 3, and 4) from the year 2017
and an improved k-NN method (ik-NN). For more details,
see, for example, Tomppo et al. (2013).

Our terrain is described with a digital elevation map
(DEM) from the National Land Survey of Finland. These
data are based on airborne laser scanning, and we use a ver-
sion provided in 10 m spatial resolution. The total canopy
cover and the DEM of the study area are shown in Fig. 1b
and c, respectively.

3 Preprocessing

All data are first reprojected to the UTM zone 35N projec-
tion. Then, all S2-related data are resampled to spatial reso-
lution of 1km×1km, and all SWE-related data are resampled
to spatial resolution of 5km× 5km.

3.1 Snow rate calculation

Radar reflectivity dBZ is processed to the liquid equivalent
snow rate using the so-calledZ–R relationship (Marshall and
Palmer, 1948):

R =

(
Z

A

)−b
, (2)

where R is the snow rate (mmh−1), Z = 10
dBZ
10 , and coef-

ficients A and b are determined empirically for snowfall.
In our case, for Finland, the coefficients are A= 115 and
b = 1.35. Due to the chosen 10 min intervals and the unit of
snow rate being mmh−1, we divide the snow rate value by
6 to acquire the amount of snowfall for each individual time
step.

After acquiring the snow rate values, they are screened us-
ing the condition ρhv ≥ 0.98 to ensure that only snow obser-
vations are used. If ρhv < 0.98, we assume that there is no
snowfall (the R value is set to zero). A small spatial inter-
polation is performed to instantaneous snow rate values to
remove the small gaps, from one to two missing data pixels
due to the ground clutter, to provide more spatially continu-
ous snow rate values. For persistent ground clutter areas (i.e.,
areas which have ground clutter almost always) a mask is cre-
ated, and it is used to discard those pixels from the analysis.

3.2 Wind-adjusted snow rate data

Snowfall can drift significantly due to the wind after it has
been detected by the radar and before it hits the ground.
Therefore, snow rate data need to be wind-adjusted. For that,
we use the minimum height of radar observation values, the
adjusted DEM, and u and v wind components and geopoten-
tial height data from the ERA5 reanalysis.

The minimum observation height data for the Luosto radar
are provided as discrete values. The values are dependent
on the distance of the radar, and therefore a simple second-
degree polynomial fit is performed to obtain a function (y =
−0.04+ 5.42× 10−3x+ 5.77× 10−5x2, where x is the dis-
tance from the radar in kilometers) to be used to calculate
minimum observation height values for each pixel for the
100 km area around the Luosto radar. All predicted values
below zero are assumed to be equal to zero. After calculat-
ing the radar minimum height values, the radar tower height
(19 m) and DEM values for the location of the radar tower
(240 m) are added to the values to lower the minimum obser-
vation height to sea level.

For the wind adjustment, the DEM data and ERA5-based
data are modified. The DEM is slightly adjusted by adding
10 m to every pixel, which has a total canopy cover estimate
above 10 %. This is to add an assumption of around 10 m
tall trees to all forested pixels to help determine the lowest
geopotential height to be used (snowfall cannot be moved
below ground level). The tree height of around 10 m is based
on the environment information for Sodankylä forest (FMI,
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2022). And because wind components, u and v, and geopo-
tential height z data layers are provided as hourly data, they
are interpolated temporally to correspond to 10 min intervals
of radar data.

The wind adjustment is performed separately for every
10 min interval observation. We follow the method described
in Lauri (2010). We do the wind adjustment from the ground
up, meaning that we start from a blank matrix and fill that for
snow rate values based on the wind drift. That way we only
have one value in each pixel, and we avoid discontinuities in
the wind-adjusted data. More details of the algorithm are in
Appendix A.

3.3 Preprocessing S2 data

S2 MSI data are from Copernicus Collection 1 (ESA, 2021),
preprocessed with Google Earth Engine (Gorelick et al.,
2017), and provided as individual tiles. The multi-size mo-
saic tool by SeNtinel’s Application Platform (SNAP; https:
//step.esa.int/main/, last access: 22 August 2024) is used to
process the overlapping 10 km areas of the identically time-
stamped tiles by combining overlaying pixels. Data are di-
vided back into tiles during the reprojecting and resampling
phase (tile bounds are based on original tiles).

3.3.1 Cloud shadow removal

Clouds and cloud shadows from S2 data are removed using
the Copernicus Sentinel-2 Cloud Probability data set, based
on the gradient-boosting-based Sentinel-2 the Sentinel Hub
Cloud Detector algorithm (Zupanc, 2017). The identification
and removal of clouds are applied as part of the preprocess-
ing in Google Earth Engine. As always, cloud detection over
bright snow with probabilistic methods implies a trade-off
between sampling and robustness, as bright surfaces seldom
provide near-zero cloud probabilities. Here, a 30 % cloud
probability was chosen as the cutoff as a compromise be-
tween residual cloud contamination and sufficient sampling
across our study domain. Also, to account for most cloud
shadows in the imagery, we projected 9 km long cloud shad-
ows and discarded imagery in the affected pixels. The effort
is of course approximative as robust cloud top height data
are unavailable from Sentinel-2 imagery alone. To limit these
residual effects to the classification results, we further re-
move all those pixels that have at least one missing pixel due
to the cloud contamination in neighboring pixels. This pro-
cess is iterated only twice, due to the trade-off between los-
ing some of the good-quality data and not discarding enough
cloud-contaminated pixels.

3.3.2 Forest correction

The Luosto radar site and the study area around it are lo-
cated in the boreal forest zone and mostly have evergreen
needleleaf trees. The forest canopy complicates the detec-
tion of snow property changes in two ways. First, the boreal

needleleaf canopy is dark, with typical (winter) albedo be-
tween 0.1 and 0.15 (Betts and Ball, 1997). For the near-nadir
S2 imagery, this means that the snow-free canopy darkens
the scene by its coverage fraction and complicates the detec-
tion of reflectivity changes in the under-canopy snow. Falling
snow that is intercepted by the canopy may also, under the
right conditions, remain on the branches for extended peri-
ods of time. This significantly brightens the canopy-covered
area and thus the reflectivity of the scene.

In order to take both effects into account, we calculate a
linear regression between independent forest canopy cover
estimates and observed S2 reflectivities for each image.
Then, the (snow) surface reflectance corrected for canopy
darkening is calculated by subtracting forest density values
multiplied by the slope term from the original surface re-
flectance (SR) values; that is,

SR= β0+β1 ·CC

SRcorr = SR−β1 ·CC,
(3)

where CC is forest canopy cover, and β0 and β1 are linear
regression coefficients. An example of forest correction is
shown in Fig. 2. To account for the possible snow intercep-
tion on the canopy, the correction is only applied for snow
rate if the corrected value remains below 1.0, as the snowy
canopy would be overcorrected by this method, which as-
sumes the canopy to be snow-free.

3.3.3 SSA calculation

Snowfall detection based on visible wavelength surface re-
flectance changes would maximize the detection of the tran-
sition from snow-free to snowy ground. However, because
visible light penetrates into the snowpack, detection of depo-
sitions of thin new snow layers would be obfuscated by re-
flectance contributions from older sub-surface snow layers,
decreasing the detectable pre-/post-snowfall reflectance dif-
ference. Therefore, we decided to use a parameter connected
to the snow grain size, namely the specific surface area of
snow (SSA; m2 kg−1). SSA is calculated from the surface
reflectance values measured at NIR wavelengths, where lim-
ited snowpack penetration enhances the surface layer con-
tribution to the detected reflectance. The SSA estimation is
based on Kokhanovsky et al. (2021). The main function is

R = R0 · (e
−
√
αL)f , (4)

where, in our case, R is surface reflectance from S2 band 9;
R0 is snow reflectance without absorption and is set as 0.99;
α is the bulk absorption coefficient of ice defined for S2
band 9; f is an angular function, dependent on sun zenith an-
gle and instrument viewing angle; and L is an effective light
absorption path related to the snow-specific surface area that
we want to solve. More details can be found in Kokhanovsky
et al. (2019) and Kokhanovsky et al. (2021). The SSA values
are then obtained using the relationship SSA= q/L, where
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Figure 2. An example of surface reflectance values from Sentinel-2 band 9 in relation to forest density from 15 March 2018. Original surface
reflectance values are shown in panel (a), and forest-corrected surface reflectance values are shown in panel (b).

q = 1.047 m3 kg−1 (Kokhanovsky et al., 2023) and L is ob-
tained from Eq. (4). We calculate SSA values using surface
reflectance values with and without forest correction imple-
mented, resulting in two SSA data sets. Also, because SSA
values are calculated, not measured, we decided to limit the
SSA values to a maximum of 160 m2 kg−1 (Gallet et al.,
2009). This is applied to both SSA data sets.

Because of metamorphism, snow grains grow larger as
snow ages. This means that surface area decreases compared
to fresh snow; that is, fresh snow increases SSA values, and
conversely, older snow (no new snow) decreases SSA values.
Therefore, we can detect possible snowfall events by calcu-
lating differences between two SSA values.

The uncertainty for SSA is determined by bootstrapping.
We randomly choose (with replacement) 10 000 data points,
and we calculate SSA values using S2 channel 9 surface
reflectance values with and without uncertainty included
(modified data and reference data, respectively). Uncertainty
for surface reflectance values is drawn randomly from the
normal distribution ε ∼N (0,0.032). This bootstrapping is
run 1000 times, and it resulted in a mean uncertainty of
2.7 m2 kg−1 in SSA values without forest correction imple-
mented and 15.0 m2 kg−1 in SSA values with forest correc-
tion.

3.4 Detection threshold of snowfall-induced reflectance
changes in S2 imagery

The determination of what amount of snowfall is accepted
as a precipitation event in our study is not a straightforward
task. The change in snow reflectivity depends on both the
amount of fresh snow and its optical properties, and the as-
sociated change should be greater than the typical uncer-
tainty in retrieved S2 surface reflectances. To explore the
question, we simulated snow albedo changes resulting from
fresh snowfall on top of existing old snow with the Two-
streAm Radiative TransfEr in Snow (TARTES) snow model
(Libois et al., 2013). Prescribing an optically semi-infinite

old snow cover (SSA set as 19 m2 kg−1), we calculated the
diffuse snow albedo change over the S2 B9 band from snow-
fall depositing 0.5–15 cm of fresh snow with SSA of 40, 50,
or 65 m2 kg−1.

The S2 surface reflectance products have an uncertainty
requirement of 5 % (Gascon et al., 2017), which translates
to approximately 0.03–0.05 surface reflectance given typical
snow reflectances in the B9 band. Accordingly, the TARTES
simulation results (Fig. 3) show that there needs to be at least
1 cm of snowfall to ensure detectability given the observa-
tional uncertainty. To change that to accumulated snowfall,
we need to change it based on the snow-to-rain ratio, which
is sensitive to temperature (e.g. National Centers for Envi-
ronmental Information, 2021). The median value of all in situ
temperature observations from March 2018 from the area of
Luosto radar is −9 °C, and therefore, the 1 cm of snow is
changed using a 1 : 20 ratio, leading to the minimum accu-
mulated snow rate sum between observations (either SSA or
SWE) for detectable snowfall to be 0.5 mm.

4 Results

4.1 SSA-based classification

Differences between SSA values can be calculated either tile-
wise or pixel-wise. In a tile-wise approach, the whole tile
is compared pixel by pixel to the next available tile, leav-
ing missing pixels in either tile empty, leading to the time
difference between pixels in two tiles being the same. In a
pixel-wise approach, one pixel would be compared to the
next available pixel, regardless of the tile in which it is lo-
cated. This leads to the diverse time differences between pix-
els in two tiles. The advantage of the pixel-wise approach is
its larger number of data points to be used for analyses, but
we decided to use the tile-wise approach because the results
are easier to interpret.
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Figure 3. Change in white-sky albedo simulated by TARTES as a
function of fresh snow deposition of varying SSA, 40 (blue), 50
(orange), or 65 (green) m2 kg−1. The underlying old snow is pre-
scribed as optically semi-infinite with SSA of 19 m2 kg−1.

The limit for SSA difference was set to either zero or SSA
uncertainty, leading to four different classification cases:
classification for SSA differences without forest correc-
tion step and with change limit either zero or 2.7 m2 kg−1

(marked as SSA0 and SSAu, respectively) or classification
for SSA differences with forest correction step and with
change limit either zero (SSAf0) or 15.0 m2 kg−1 (SSAfu).
We also combined classification results from SSA0 and SSAu
(marked as SSAcomb). In this combination classification, a
pixel was classified as snowfall or no snowfall if both clas-
sifications agreed. If not, then the classification value was
omitted. The confusion matrices and statistics for each clas-
sification case are shown in Tables 1 and 2, respectively.

From the cases SSA0, SSAu, SSAf0, and SSAfu, the SSAf0
(SSA differences with forest correction step and with change
limit set as zero) case has the highest accuracy (78 %). The
SSAf0 classification detects 88 % of all radar-based snowfall
occurrences (recall), and it also classifies 77 % of snowfall
cases correctly (precision). For situations without snowfall,
the percentages are 63 % and 79 %, respectively. On the other
hand, SSA0 (SSA differences without forest correction step
and with change limit set as zero) yields a better recall value
(71 %) for no-snowfall cases. We can also see that includ-
ing uncertainty as a change limit decreases the number of
pixels significantly but does not yield better results. Combin-
ing the classification results from SSA0 and SSAu increases
all statistics. The accuracy is 83 %, and the recall value for
snowfall is above 90 %. The disadvantage is the decrease in
coverage (around 10 000 fewer pixels compared to the SSA0
and SSAu). Regardless of the decrease in the number of pix-
els in the combined classification, the statistical values are
still comparable. We used a bootstrapping method to gener-
ate random samples from the classification results. We gen-
erated 1000 samples separately, with a sample size of 10 000

from SSA0, SSAf0, and their combined results, and we cal-
culated statistical values (recalls, precisions, F1 scores, and
accuracies) for each 10 000-sized sample. Then, we took the
mean values of those 1000 statistical values. These boot-
strapped recalls, precisions, F1 scores, and accuracies are al-
most the same as the result in Table 2, leading to the differ-
ence between total populations of SSA0 and SSAf0 and their
combined classification being insignificant.

Examples of classifications are shown in Figs. 4 and 5.
In Fig. 4, which is an example of snowfall situations (col-
lected from classifications using tiles with the same dates,
15 March and 20 March), the importance of forest correction
can be seen. Large areas are classified incorrectly when the
forest correction step is excluded (panel b); even though one
tile has some challenges in the forest-corrected classification
results (panel c), the reason for that is not clear. The majority
of misclassifications in the results without forest correction
(panel b) are most likely due to the canopy interception of
snow not happening. As the interceptions do not only depend
on forest canopy cover but also, for example, air temperature
(Miller, 1964), wind (McNay et al., 1988), and topography
(D’Eon, 2004), it is not a straightforward task to determine
why in those particular areas the canopy interception did not
happen. The forest correction is therefore an important step,
as it corrects these missed canopy interception cases (panel
c). An example of situations without snowfall is shown in
Fig. 5. In this particular tile, the data without the forest cor-
rection step (panel b) yield better classification results than
when forest correction is included (panel c). The combined
results (panel d in both Figs. 4 and 5) look more similar to the
radar-based snowfall information (panel a in both figures).

4.2 SWE-based classification

In addition to the optical-based SSA classification, we also
compared daily SWE differences with radar-based reference
data to see how well changes in SWE can detect snowfall
in spring. The satellite-based SWE retrievals are primarily
based on snow cover microwave emission detection using 19
and 37 GHz wavelengths, and, therefore, the retrievals are in-
sensitive to variations in solar illumination, cloudiness, and
most weather conditions. This leads to better spatial and tem-
poral coverage relative to optical satellite measurements, al-
though at the expense of spatial resolution, which is consid-
erably coarser for passive microwave radiometers.

The daily time series of satellite-based SWE classifica-
tion is shown in Fig. 6. A notable daily variability exists in
the classification, with high consistency between methods on
some days and large discrepancies on other days. The accu-
racy is 53 % (Table 2), which is lower than any of the SSA
classification accuracies. The SWE-based classification de-
tects 64 % of all the radar-based snowfall occurrences (recall)
and correctly classifies 63 % of snowfall cases (precision).
For situations without snowfall, the percentages are 34 % and
36 %, respectively.
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Table 1. Confusion matrices for five different classification cases based on SSA and for two classifications based on SWE. The unit of
measure for change limits for SSA-based classifications is m2 kg−1.

Limit Snow No snow Total

SSA0 SSA diff> 0 22 156 5896
SSA diff< 0 6461 14 517 49 030

SSAf0 SSA diff> 0 24 070 7109
SSA diff< 0 3176 12 230 46 585

SSAu SSA diff> 2.7 1112 550
SSA diff<−2.7 251 800 2713

SSAfu SSA diff> 15.0 3932 1291
SSA diff<−15.0 770 1977 7970

SSAcomb (SSA0 = 1) and (SSAf0 = 1) 19 927 4131
(SSA0 = 0) and (SSAf0 = 0) 2083 10 868 37 009

SnowCCI SWE SWE diff> 0 12 362 7323
SWE diff< 0 6823 3782 30 290

ERA5L SWE SWE diff> 0 16 625 2779
SWE diff< 0 5117 10 609 35 130

Table 2. Statistics from the confusion matrices in Table 1.

Recall Recall Precision Precision F1 score F1 score Accuracy
(snow) (no snow) (snow) (no snow) (snow) (no snow)

SSA0 0.77 0.71 0.79 0.69 0.78 0.70 0.75
SSAf0 0.88 0.63 0.77 0.79 0.82 0.70 0.78
SSAu 0.82 0.59 0.67 0.76 0.74 0.67 0.70
SSAfu 0.84 0.60 0.75 0.72 0.79 0.66 0.74
SSAcomb 0.91 0.72 0.83 0.84 0.87 0.78 0.83
SnowCCI SWE 0.64 0.34 0.63 0.36 0.64 0.35 0.53
ERA5L SWE 0.77 0.80 0.86 0.68 0.81 0.68 0.78

In addition to satellite-based SWE, we also investigated
daily SWE differences from ERA5L with radar-based refer-
ence data to ensure the usability of this method. The ERA5L-
based classification shows a notably higher accuracy (78 %;
Table 2) compared to the satellite-based classification. Time
series (Fig. 7) show that the classification is accurate, es-
pecially in the first half of the month. The number of mis-
classifications increases towards the end of the month but
is still relatively high compared to the satellite-based clas-
sification (Fig. 6). The satellite-based SWE classification is
more accurate in detecting snowfall than situations without
snowfall. For ERA5L, such a difference is not evident. The
ERA5L-based classification detects 77 % of all the radar-
based snowfall occurrences (recall) and correctly classifies
86 % of snowfall cases (precision). For situations without
snowfall, the percentages are 80 % and 68 %, respectively.

Classification examples for two different days are shown
in Figs. 8 and 9. From Fig. 8, we can observe that the radar
detects snowfall in approximately one-third of the study area,
while satellite-based SWE classification detects snowfall in

an area much larger than the radar data. ERA5L, in turn,
is highly consistent with the radar data. Furthermore, Fig. 9
shows that both SnowCCI and ERA5L fail to detect all the
spatial variability in snowfall. The original resolutions of
radar and SWE data sets differ considerably, thus possibly
leading to uncertainty in the classification.

We additionally investigated how elevation and forest
cover fraction affect the classification (Figs. 10 and 11).
Overall, ERA5L shows higher accuracy than SnowCCI,
which was already evident from Table 2 and Figs. 6 and 7.
Also, SnowCCI is better at detecting snowfall events than the
situation without snowfall, while such a difference is not ap-
parent in ERA5L. Figures 10 and 11 show that the overall ac-
curacy (dark blue line) does not exhibit notable dependency
on elevation or forest cover. However, SnowCCI is able to de-
tect situations without snowfall more accurately with higher
elevation and less dense forest.
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Figure 4. Example figure of different classifications for observations between 15 March and 20 March. White indicates snowfall, light blue
snowfall with uncertainty, green no snowfall, and black no snowfall with uncertainty. Grey is for missing or omitted values. Dashed lines
indicate the S2 tile borders. (a) Classification of snow rate data from radar, (b) classification of SSA differences without forest correction,
(c) classification of SSA difference with forest correction, and (d) combination of SSA classifications.

5 Summary and discussion

Over the high latitudes of the Northern Hemisphere, precip-
itation in the form of snow is responsible for creating and
growing seasonal snowpacks. Current atmospheric reanaly-
ses and direct satellite-based precipitation observations suf-
fer from high variability or limited spatiotemporal coverage
and thus are not ideal for detecting high-latitude snowfall
events. Therefore, we decided to utilize satellite observations
measured at the optical and microwave wavelength ranges.
Using optical measurement-based specific surface area of
snow (SSA) and microwave-based snow water equivalent
(SWE), we were able to detect snowfall with high accuracy,
but cases without snowfall turned out to be more difficult to
classify.

We used radar-based snowfall information as the reference
data, i.e., “ground truth”. Due to the wind drift, we needed
to do a wind adjustment to processed snow rate values. As
tree height is around 10 m in Northern Finland (FMI, 2022),
we adjusted the DEM slightly for the wind adjustment by
adding 10 m to all forested pixels. Changing this value to ei-
ther 0 or 30 m did not affect the classification results. Nev-
ertheless, we decided to use a tree height of 10 m for the

completeness of the study. Another possible parameter of
wind adjustment to affect the classification results is snow-
fall speed. The 1 ms−1 used is a typical value for snowfall
speed (Lauri, 2010; Ishizaka et al., 2016; Vázquez-Martín et
al., 2021). Lauri (2010) also states that fall speed has a spec-
trum width of about 0.3 ms−1. Therefore, we did additional
simulations with wind speed of either 0.7 or 1.3 ms−1 and
compared classification results to the classifications we ob-
tained using a wind speed of 1 ms−1. These changes did not
change the classification results. Because our study area is a
circle with a 100 km radius around the radar site, and the spa-
tial resolution is either 1 or 5 km, the distance between the
detection height of the snowfall and the ground is not long
enough for different fall speeds to affect where snow falls
at the grid cell scale. With a higher distance from the radar
(> 100 km), the distance between snow detection height and
ground increases, and hence the probability of snow falling
on different pixels increases. Therefore, uncertainties due to
the chosen constant tree height and fall speed hardly cause
any uncertainty about the actual location of the snowfall. Re-
gardless, in its entirety, the wind adjustment is an important
part of the retrieval process. We additionally did the clas-
sifications with SSA values and 1 km resolution data using
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Figure 5. Same as Fig. 4 but for the dates 23 and 25 March.

.

Figure 6. Daily time series of SnowCCI SWE-based classifications. Blue (dark blue and lighter blue) indicates agreement between SWE
data and radar-based snowfall information. Light grey and orange indicate disagreement between SWE and radar snowfall information. The
gaps in the time series are due to missing values in the SnowCCI data.

snow rate values without the wind adjustment included. Al-
most all statistical values (recalls, precisions, F1 scores, and
accuracies) in all cases decreased compared to the classifi-
cation values acquired with wind-adjusted snow rate values.
In particular, accuracies in each case decreased around 0.03,

indicating that wind adjustment is a necessary step for maxi-
mizing accuracy.

Using optical-based satellite measurements to detect
snowfall is not a straightforward task, and that may be the
reason it has not been used very widely. We considered mul-
tiple different optical satellite products to be used in this
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.

Figure 7. Daily time series of ERA5L SWE-based classifications. Blue (dark blue and lighter blue) indicates agreement between SWE data
and radar-based snowfall information. Light grey and orange indicate disagreement between SWE and radar snowfall information.

Figure 8. Example figure of radar-based and SWE-based classifications for observations between 3 March and 4 March.

study, but with almost all of them, we had similar challenges:
the resolution was not fine enough to classify snowfall cor-
rectly, bidirectional reflectance distribution function (BRDF)
over snow proved to be difficult to implement, and densely
forested areas combined with the coarse resolution (difficult
to differentiate between forested areas and open spaces) also
made it challenging to detect new snow atop older snow.
Sentinel-2 MSI measurements turn out to be the most suit-
able data to use, due to their very fine spatial resolution (10–
60 m) at near-nadir viewing angles, good radiometric preci-
sion, and easy accessibility.

Previously, snowfall has been linked to the increased SSA
values (Libois et al., 2015; Kokhanovsky et al., 2019), and in
our study, we use this connection conversely to detect snow-
fall with good results: from 77 % to 91 % of snowfall cases
are classified correctly (depending on the used data set) com-
pared to the reference data. Some of the misclassifications

(both snow and no-snowfall cases) are due to the remaining
clouds and cloud shadows, as it is typically difficult to iden-
tify correctly clouds over bright snow cover. Smaller-scale
misclassifications are mostly due to the higher temperatures
at the end of March 2018 (the study month and year) and the
effects of wind. Wind sublimates and fragments snow crys-
tals (Domine et al., 2009), causing SSA values to increase
without snowfall. In this study, we assume that the wind ef-
fect on the SSA values is minor due to the forested areas, i.e.,
a limited number of open spaces. Also, studies have shown
that albedo begins to decrease due to snow metamorphism
when the air temperature rises above −5 °C (Kouki et al.,
2019), which can have a slight impact on the SSA-based clas-
sification.

The microwave-based SWE was chosen for this study be-
cause snowfall is assumed to directly increase SWE over an
area. Also, contrary to optical measurements, microwave-
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Figure 9. Example figure of radar-based and SWE-based classifications for observations between 25 March and 26 March.

Figure 10. Dependency of the statistics on elevation for SnowCCI and ERA5L-based classification.

based observations do not require sunlight and are not af-
fected by clouds. Therefore, SWE estimates are available
during the entire winter season. Currently, SnowCCI is the
only satellite-based SWE product covering the entire NH and
several decades. The most recent version of the SnowCCI
SWE product (version 2) is a well-suited product for this re-
search because the seasonal evolution of SWE is accurately
described in the product compared to the older SnowCCI ver-
sion 1 (Mortimer et al., 2020). In addition to the satellite-
based SWE, we also included SWE data from ERA5L re-
analysis to support the analysis. SWE-based classifications,
surprisingly, were not as good as SSA-based classifications;
only around 64 % (SnowCCI) and around 77 % (ERA5L)
of snowfall cases were classified correctly compared to the
reference data. The original resolution of the SWE data is

0.1° (about 10 km) for SnowCCI and 9 km for ERA5L, no-
tably coarser than the resolution of the reference data. There-
fore, it is likely that the different spatial resolutions of the
compared products reduce the accuracy of the classification.
Also, the analysis revealed that the SSA-based classification
shows higher classification accuracy than either of the SWE-
based classifications. The spatial resolution of the S2 data
used in the SSA-based comparison is 60 m, which is consid-
erably finer than the resolutions of the SWE data. This sug-
gests that the spatial resolution of the satellite data affects the
classification; i.e., a coarse resolution reduces the accuracy.

In contrast, the classification of no-snowfall cases turns
out to be a more challenging task for satellite-based data.
The aging of snow grows snow grains on the snowpack sur-
face more slowly than snowfall increases them. Therefore,
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Figure 11. Dependency of the statistics on forest cover for SnowCCI and ERA5L-based classification.

the decrease in SSA values may be undetected due to the
measurement uncertainties causing misclassifications. Still,
from almost 60 % to over 70 % no-snowfall cases are cor-
rectly classified compared to the reference data. Based on the
results, satellite-based SWE is mainly sensitive to snowfall,
as only 34 % of no-snowfall cases are correctly classified.
The higher temperatures at the end of March can also im-
pact SWE values, causing misclassifications. The analyses
also show higher statistical values for cases with and without
snowfall for classifications using SWE from ERA5L com-
pared to SWE from SnowCCI. This disagreement is mostly
due to the information about the snowfall (or lack of it) being
included to the ERA5L-based SWE calculations (ECMWF,
2016). This leads to the conclusion that the satellite-based
SWE can be used to detect snowfall events, but using it to
classify no-snowfall cases is not recommended.

In the future, we need to use more data and cover larger ar-
eas, as well as study the sensitivity of the chosen resolution
to the results to be able to achieve more reliable classification
results. Also, in the future, the goal is to apply these classifi-
cations for the entire Arctic and a longer time period. Using 1
or 5 km resolutions is too fine when covering the whole Arc-
tic, but one idea could be to do first-stage classifications us-
ing finer-resolution data and then perform analyses of larger
areas using coarser resolution (e.g., 10 km).

This proof-of-concept study was limited in the spatiotem-
poral domain, considering only March 2018 over an area
of approximately 31 400 km2 in Northern Finland. Neverthe-
less, the indirect snowfall detection from both optical and mi-
crowave satellite observations yielded encouraging results.
Correct classification of no snowfall proved more challeng-
ing, as discussed above, yet further improvements in the clas-

sification remain possible and could yield a robust snowfall
detection method applicable for large remote regions where,
e.g., weather radar observations are not available. Naturally,
questions regarding the generalization of the method trained
with weather radar data from Finland to other regions and
the validation of the ensuing estimates would then need to be
explored in detail.

Appendix A: Wind adjustment algorithm

The wind drift adjustment method is from Lauri (2010), and
here we provide an outline of the algorithm. The basic idea is
to find where the possible snow rate value would have come
from to the surface. The falling speed of snow, w, is assumed
to be 1 ms−1 (Lauri, 2010; Ishizaka et al., 2016; Vázquez-
Martín et al., 2021). The process in our case is as follows.

1. Set a blank matrix, S ∈ Rrows×cols×time.

2. For each pixel (r , c, t) in S, the following steps are con-
ducted:

a. Set the time t as t0.

b. Fetch wind data vectors zi , ui , and vi for the pixel
(r , c).

c. Determine the upper (jU) bound of the geopotential
height, which is based on the radar minimum height
at the location (r , c).

d. Determine the lower (jL) bound of the geopotential
height, which is based on DEMadj (adjusted DEM)
at the location (r , c).
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e. Calculate pixel movements, rm and cm, given by

rm =
∑jU

j=jL

(
zj − zj+1

w
·
vj + vj+1

2

)
cm =

∑jU

j=jL

(
zj − zj+1

w
·
uj + uj+1

2

)
.

(A1)

f. Add pixel movements to the pixel location (r , c) by

r1 = (r + 0.5)+ (−1)rm
c1 = (c+ 0.5)+ cm.

(A2)

g. Calculate time movement in minutes as

tm = ((zjU − zjL) ·w)/60. (A3)

h. Determine the adjusted time step by

t1 = t0−btm/10e. (A4)

i. Insert the snow rate value in S; i.e.,
S(r,c, t) = snow rate value at pixel location (r1,c1)

and time step t1.

In step 2f, the (−1) is used to change the direction of the
component v from south to north to north to south. We also
assume that each observation is located in the center of the
pixel, and therefore we need to add 0.5 km to each movement
(step 2f). We divide the movements by 1000 so as to change
them from meters to kilometers even though it is not denoted
in the formulas. For 5 km resolution data, the row and column
movements are divided by 5 and rounded. Time movement
(step 2g) finds how long it will take for the snow to actually
fall to the ground and whether the observed value should be
taken from some previous time layer (step 2h). The marking
bxe indicates rounding.

We do not change the zi , ui , and vi data vectors within
one iteration after the initial setting; i.e., we use the values
set in step 2b. The ERA5 data have a coarse resolution, and
therefore the values do not change a lot around the Luosto
area within each layer.
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