Articles | Volume 28, issue 1
https://doi.org/10.5194/hess-28-21-2024
https://doi.org/10.5194/hess-28-21-2024
Research article
 | 
02 Jan 2024
Research article |  | 02 Jan 2024

A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+

Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao

Related authors

SWAT+MODFLOW: A New Hydrologic Model for Simulating Surface-Subsurface Flow in Managed Watersheds
Ryan Bailey, Salam Abbas, Jeffrey Arnold, and Michael White
EGUsphere, https://doi.org/10.5194/egusphere-2025-300,https://doi.org/10.5194/egusphere-2025-300, 2025
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary

Cited articles

Abbas, S., Xuan, Y., and Bailey, R.: Assessing Climate Change Impact on Water Resources in Water Demand Scenarios Using SWAT-MODFLOW-WEAP, Hydrology, 9, 164, https://doi.org/10.3390/hydrology9100164, 2022. 
Arnold, J., Srinivasan, R., Muttiah, R., and Williams, J.: Large area hydrologic modeling and assessment part I: Model development, J. Am. Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 
Arnold, J., Kiniry, J., Srinivasan, R., Williams, J., Haney, E., and Neitsch, S.: Soil & Water Assessment Tool: Input/output documentation, version 2012, 2013 TR-439, Texas Water Resources Institute, https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf (last access: 16 June 2023), 2013. 
Arnold, J., White, M., Allen, P., Gassman, P., and Bieger, K.: Conceptual Framework of connectivity for a national agroecosystem model based on transport processes and management practices. J. Am. Water Resour. Assoc., 57, 154–169, https://doi.org/10.1111/1752-1688.12890, 2020. 
Bahremand, A. and De Smedt, F.: Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model, Water Resour. Manage., 24, 2869–2880, https://doi.org/10.1007/s11269-010-9584-1, 2010. 
Download
Short summary
Research highlights.

1. Implemented groundwater module (gwflow) into SWAT+ for four watersheds with different unique hydrologic features across the United States.

2. Presented methods for sensitivity analysis, uncertainty analysis and parameter estimation for coupled models.

3. Sensitivity analysis for streamflow and groundwater head conducted using Morris method.

4. Uncertainty analysis and parameter estimation performed using an iterative ensemble smoother within the PEST framework.

Share