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Abstract. Parameter sensitivity analysis plays a critical role
in efficiently determining main parameters, enhancing the
effectiveness of the estimation of parameters and uncer-
tainty quantification in hydrologic modeling. In this pa-
per, we demonstrate an uncertainty and sensitivity analy-
sis technique for the holistic Soil and Water Assessment
Tool (SWAT+) model coupled with new gwflow mod-
ule, spatially distributed, physically based groundwater flow
modeling. The main calculated groundwater inflows and out-
flows include boundary exchange, pumping, saturation ex-
cess flow, groundwater–surface water exchange, recharge,
groundwater–lake exchange and tile drainage outflow. We
present the method for four watersheds located in different
areas of the United States for 16 years (2000–2015), empha-
sizing regions of extensive tile drainage (Winnebago River,
Minnesota, Iowa), intensive surface–groundwater interac-
tions (Nanticoke River, Delaware, Maryland), groundwater
pumping for irrigation (Cache River, Missouri, Arkansas)
and mountain snowmelt (Arkansas Headwaters, Colorado).

The main parameters of the coupled SWAT+gwflow
model are estimated utilizing the parameter estima-
tion software PEST. The monthly streamflow of holistic
SWAT+gwflow is evaluated based on the Nash–Sutcliffe ef-
ficiency index (NSE), percentage bias (PBIAS), determi-
nation coefficient (R2) and Kling–Gupta efficiency coeffi-
cient (KGE), whereas groundwater head is evaluated using
mean absolute error (MAE). The Morris method is employed
to identify the key parameters influencing hydrological
fluxes. Furthermore, the iterative ensemble smoother (iES)

is utilized as a technique for uncertainty quantification (UQ)
and parameter estimation (PE) and to decrease the computa-
tional cost owing to the large number of parameters.

Depending on the watershed, key identified selected pa-
rameters include aquifer specific yield, aquifer hydraulic
conductivity, recharge delay, streambed thickness, streambed
hydraulic conductivity, area of groundwater inflow to tile,
depth of tiles below ground surface, hydraulic conductivity
of the drain perimeter, river depth (for groundwater flow pro-
cesses), runoff curve number (for surface runoff processes),
plant uptake compensation factor, soil evaporation compen-
sation factor (for potential and actual evapotranspiration pro-
cesses), soil available water capacity and percolation coeffi-
cient (for soil water processes). The presence of gwflow pa-
rameters permits the recognition of all key parameters in the
surface and/or subsurface flow processes, with results sub-
stantially differing if the base SWAT+ models are utilized.

1 Introduction

Hydrologic models have been developed to enhance our un-
derstanding of the dynamics of hydrological fluxes to address
practical issues related to water resource management (Liu et
al., 2020; Wei et al., 2018), especially under the influence of
anthropogenic activities and climate change, which can result
in significant changes in the hydrological system (Abbas et
al., 2022; Pokhrel et al., 2021). Typically, hydrologic models
include several parameters to represent the hydrologic pro-
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cesses and to consider spatial variations resulting from cli-
mate, soil type, land use, etc. (Fatichi et al., 2016; Čerkasova
et al., 2021).

To employ hydrologic models in a responsible manner for
system understanding and scenario analysis, sensitivity anal-
ysis (SA), uncertainty analysis (UA) and parameter estima-
tion (PE) are key steps in the modeling process due to the
presence of spatial heterogeneities (Bennett et al., 2013; Do-
herty and Hunt, 2009) and, often, the use of a broad suite of
model parameters. SA identifies model parameters that have
a strong influence on model output (e.g., streamflow), and re-
sults generally can provide insights into system behavior and
point to system parameters that require more data collection
or management strategies that may be efficient in controlling
a certain system response (Leta et al., 2015). UA relates un-
certainty in model parameters to model output and hence can
provide ranges of system output possibilities, e.g., when us-
ing the model in scenario analysis as a decision support tool,
to answer questions regarding the effects of system changes.
PE provides the best values for matching model predictions
to historical observations.

SA methods can be classified into local sensitivity analy-
sis (LSA) and global sensitivity analysis (GSA) (Santos et al.,
2022). Examples of LSA approaches are the one-variable-
at-a-time (OAT) method and the differential analysis (DA)
method (Devak and Dhanya, 2017); these are less reputable
since they disregard considering the interaction between sev-
eral parameters and cannot precisely estimate optimal param-
eters value (Helton, 1993). On the other hand, GSA tech-
niques such as regional sensitivity analysis (RSA), Mor-
ris screening, variance-based sensitivity analysis (the Sobol
method) and the Fourier amplitude sensitivity test (FAST)
have been developed and used in many applications (Olaya-
Abril et al., 2017; Devak and Dhanya, 2017). These methods
take into account the interaction between different parame-
ters by altering several parameters of models together (Pi-
anosi et al., 2017; Devak and Dhanya, 2017). GSA is gaining
prominence in hydrologic and environmental modeling (e.g.,
Plischke et al., 2013; Pianosi et al., 2017). GSA is employed
for the detection of insignificant parameters and the identifi-
cation of influential parameters with a significant impact on
model outputs (Santos et al., 2022).

Other GSA applications include identification of model
behavior, prioritization for uncertainty estimation and re-
duction, and for simplification of the model (Pianosi et al.,
2017). However, these methods typically require a large
number of model evaluations. More recently, iterative ensem-
ble smoother (iES) techniques have been developed for un-
certainty quantification (UQ) and for more efficient parame-
ter estimations (PE) by reducing the number of model eval-
uations incurred by large numbers of parameters (Chen and
Oliver, 2012); this technique can be implemented in a non-
intrusive and/or model-independent approach, resulting in a
desirable option for application to analyses of hydrologic and
environmental modeling. The iES has been utilized in several

applications (e.g., Bocquet and Sakov, 2014; Crestani et al.,
2013).

The null-space Monte Carlo approach (NSMC) is not
dissimilar to the iES approach in their goals: to represent
posterior parameter uncertainty, especially as it relates to
null-space parameters and parameter components (i.e., non-
unique parameters). However, NSMC uses a full-rank Jaco-
bian filled using finite-difference perturbations, linearized at
the final calibration parameter set to project a prior parameter
ensemble, realization by realization, toward being calibrated
under the assumption of linearity. In contrast, the iES ap-
proach propagates the prior parameter ensemble directly dur-
ing history matching and avoids filling a full-rank Jacobian,
instead using an ensemble approximation of the Jacobian, an
approximation that is more regional or even global compared
to the linearized local Jacobian used in the NSMC. Because
of this, ensemble methods can, in general, cope with higher
levels of nonlinearity in the relation between parameters and
observations and can also scale to much larger numbers of
parameters (since the relation between the number of param-
eters and number of model runs is removed).

Although SA–UA–PE methods have been applied numer-
ous times to watershed models such as SWAT (Arnold et al.,
1998) (e.g., Pianosi et al., 2017; Nossent et al., 2011; Qiu
et al., 2019), their application to coupled surface–subsurface
models is sparse (e.g., Herzog et al., 2021; Wu et al.,
2014; Ryken et al., 2020). For example, the coupled SWAT-
MODFLOW model (Bailey et al., 2016) has been applied
to regions worldwide (e.g., Izady et al., 2022; Abbas et al.,
2022; Sith et al., 2019), and more recently, the SWAT+
model (Bieger et al., 2017) with the gwflow module (Bai-
ley et al., 2020) has been applied to simulate hydrological
processes in watershed systems; but these models have been
applied without SA and in a deterministic manner, i.e., with-
out including UA. In addition, PE has been challenging, with
SWAT and MODFLOW often being calibrated separately be-
fore being linked, which can be attributed to the complexity
in the interaction between SWAT and MODFLOW, as well as
the high dimensionality of the parameter space of these two
models.

In this paper, we demonstrate the use of SA, PE and UA
methods in a coupled SWAT+gwflow model to identify sur-
face and subsurface parameters that control two key water-
shed responses: streamflow and groundwater head. Hydro-
logic fluxes in the coupled model include vegetation ET,
surface runoff, infiltration, soil percolation and recharge,
saturation excess flow, groundwater–stream exchange, soil
lateral flow, groundwater pumping, groundwater–lake ex-
change, tile drainage outflow, and boundary exchange. Tar-
geted parameters include soil properties, evaporation param-
eters, runoff curve number, snow parameters, aquifer proper-
ties (hydraulic conductivity, specific yield), streambed prop-
erties (hydraulic conductivity, thickness) and tile drain pa-
rameters. The chosen SA method is the Morris screening
method, joined to a PE method using the PEST (Param-
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eter ESTimation Tool) software program (Doherty, 2020).
In an alternate method, we demonstrate the use of UA in
the PE process, using an iterative ensemble smoother (iES)
to establish prior and posterior ensembles of parameters
and system responses. Both methods (PE–SA and iES) can
be key components in the application of coupled surface–
subsurface models to watershed systems. While, in this pa-
per, we demonstrate methods for the SWAT+gwflow model-
ing system, they can be applied to other hydrologic models.

We demonstrate the methods for four eight-digit water-
sheds throughout the conterminous United States: Nanticoke
River (Delaware, Maryland), Arkansas Headwaters River
(Colorado), Winnebago River (Minnesota, Iowa) and Cache
River (Missouri, Arkansas). These watersheds are chosen
owing to their distinct hydrologic characteristics, such as
their snowmelt-dominant basin (Arkansas Headwaters), their
shallow groundwater (Nanticoke), the extensive networks of
subsurface tile drains (Winnebago), and groundwater pump-
ing for irrigation (Cache). The SWAT+gwflow models were
simulated for each watershed from 2000 to 2015, with a 2-
year warm-up period (2000–2001), 7-year calibration period
(2002–2008) and 7-year testing period (2009–2015). These
models were tested based on annual groundwater head and
measured monthly streamflow measured at USGS monitor-
ing wells and stream gages, correspondingly. Preliminary
models of SWAT+gwflow for the Winnebago River water-
shed, the Nanticoke River watershed and the Cache River
watershed were presented in Bailey et al. (2023), but only
uncalibrated results were provided. This current study estab-
lishes possible SA–UA–PE methods to increase model ac-
curacy to a level suitable for scenario analysis (e.g., conser-
vation practices, changes in climate and land use) in these
watersheds.

2 Materials and methods

2.1 Modeling framework for the study watersheds

Figure 1 presents four watersheds in United States
with different hydrologic features that were selected for
SWAT+gwflow simulation: Nanticoke River (Delaware,
Maryland), Arkansas Headwaters River (Colorado), Win-
nebago River (Minnesota, Iowa) and Cache River (Missouri,
Arkansas). A comprehensive summary of the primary char-
acteristics of each watershed is presented in Table 1. The
annual precipitation rates vary between 425 mm (Arkansas
Headwaters) to 1287 mm (Cache), while the total surface
area of the watersheds varies considerably, from 1787 km2

for Winnebago to 7940 km2 for Arkansas Headwaters. Each
watershed is a headwater eight-digit watershed and is in a
different two-digit region.

These four watersheds were specifically chosen on ac-
count of distinctive hydrologic characteristics that demon-
strate informative application of the gwflow, such as high

baseflow with extensive groundwater discharge to streams
(Nanticoke; Wolock, 2003), extensive presence of tile
drainage (Winnebago), humid climate (Cache and Nanti-
coke), semi-arid climate (Arkansas Headwaters), extensive
groundwater pumping for irrigation (Cache) and mountain
snowmelt (Arkansas Headwaters). A detailed map of the
study areas showing watershed boundaries, streams, 12-digit
catchment boundaries (i.e., subbasin), USGS river gage sta-
tions, USGS groundwater monitoring well locations, weather
station locations and water bodies is shown in Fig. 2.

2.1.1 SWAT+ model

The Soil and Water Assessment Tool (SWAT; Arnold et
al., 1998) is a process-based, basin-scale, semi-distributed,
continuous-time hydrologic model that has been applied in
many countries around the world for watershed management,
policy development and environmental planning (Bieger et
al., 2015; Zhang et al., 2020). The SWAT model was de-
veloped and designed by the Agricultural Research Ser-
vice (ARS) of the United States Department of Agricul-
ture (USDA) to simulate spatial and temporal variations in
processes and fluxes of water, nutrients and sediment. Com-
mon uses of the model include assessing water supply, nu-
trient loads and sediments loads under historical and future
conditions of climate, land use and land management prac-
tices within watersheds and river basins of varying scale
(e.g., Ghaffari et al., 2010; Wang et al., 2018; Bhatta et al.,
2019). The main computational unit within SWAT is the hy-
drologic response unit (HRU), unique geographic areas of
soil type, land use and topographic slope (Neitsch et al.,
2011), with fluxes aggregated at the subbasin level and then
routed to streams. Stream routing occurs from upstream to
downstream, with the total watershed yield of water, nutri-
ents and sediment occurring at the watershed outlet.

The SWAT modeling code has recently been restructured
to SWAT+ (Bieger et al., 2017), which provides additional
flexibility in routing water, nutrients and sediment between
watershed spatial objects (HRUs, aquifers, reservoirs, chan-
nels, routing units, wetlands). As an example, fluxes can be
routed from HRU to HRU or from channel to channel within
a single subbasin, whereas the original SWAT only allowed
routing from HRUs to channels, and each subbasin had a
single channel. However, as with the original SWAT model,
the groundwater processes are treated simplistically, assum-
ing steady-state conditions and homogeneous aquifers, and
without physically based movement of groundwater and ex-
change with surface water features using hydraulic head po-
tential and differences. Hence, the gwflow module was cre-
ated for SWAT+ to allow the representation of groundwater
processes and fluxes in a physically based manner (Bailey et
al., 2020), as described in Sect. 2.1.2.

In this study, we use SWAT+ models that have been
created within the National Agroecosystem Model, NAM
(White et al., 2022; Arnold et al., 2020), a national effort
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Figure 1. Geographical locations and digital elevation model of the four study watersheds: Arkansas Headwaters River, Winnebago River,
Nanticoke River and Cache River.

Table 1. Key features for the four study basins.

Watershed State HUC2 region HUC8 No. of No. of Annual Area gwflow grid

channels HRUs precip. (km2) Rows Cols Cell
(mm) size (m)

Winnebago IA, MN Upper Mississippi 07080203 437 4358 880 1787 140 139 500
Nanticoke DE, MD Mid Atlantic 02080109 1069 5519 1180 2142 186 90 500
Arkansas Headwaters CO Arkansas–White–Red 11020001 2230 2986 425 7940 180 110 1000
Cache AR, MO Lower Mississippi 08020302 2941 17143 1287 5198 428 222 500

for improving environmental assessments and conservation
strategies. Within the NAM, a SWAT+ model is constructed
for each of the 2139 HUC8 (eight-digit hydrologic unit code)
watersheds within the conterminous United States, simulat-
ing hydrologic processes and management according to five
domains: main rivers (> 150 km2), tributaries (15–150 km2),
headwaters (1–15 km2), transitions (0.2–2.0 km2) and fields
(1–50 ha). Table 2 lists the data sets used to create each
SWAT+ model using publicly available data sources. Each
cultivated field is designated as a unique HRU, with remain-

ing HRUs delineated based on topographic slope, land use
and soil type. Subbasin boundaries coincide with HUC12
catchments within each HUC8 watershed. Each National Hy-
drography Dataset (NHD+) channel segment is designated
as a unique channel in SWAT+. White et al. (2022) provide
detailed information on model construction and input data
sets. We use these model set-ups for the four study water-
sheds.
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Figure 2. Detailed maps of the study watersheds, revealing the location of water bodies, streams, USGS monitoring wells, weather stations,
subbasin boundaries, tile drains and river gage stations.

2.1.2 gwflow module

The gwflow module (Bailey et al., 2020, 2023) is con-
structed and combined with SWAT+ for physically based,
spatially distributed groundwater storage and flow model-
ing in unconfined aquifer systems to replace the original
SWAT+ groundwater module. The default SWAT+ ground-
water module simulates groundwater fluxes with homoge-
neous aquifer properties, an absence of groundwater flow be-
tween nearby aquifer systems, and groundwater discharge to
streams based on aquifer storage and release parameters, act-
ing as a substitute to distributed values of gradients and head
differences. If the gwflow module is activated, the routine is
called during each daily time step of the simulation; gwflow
utilizes a set of grid cells to simulate groundwater storage
and flow through time (Fig. 3). Each grid cell has a specified
aquifer volume, calculated using the ground surface eleva-

tion, bedrock elevation and specific cell widths. Groundwater
storage V (m3) is updated during each daily time step (time n
to time n+1) for each cell (i, j ) using a groundwater balance
equation:

V n+1
i,j =V

n
i,j +

(
sourcesni,j − sinksni,j ∓ lateral flowni,j

)
(
tn+1
− tn

)
. (1)

Sources consist of recharge, stream seepage and lake seep-
age; sinks consist of groundwater ET, saturation excess flow,
groundwater discharge to streams, pumping, tile drainage
outflow and groundwater discharge to lakes; and lateral flow
refers to the Darcy flow between adjacent cells based on
cell-specific hydraulic conductivity (K) and head gradients.
Recharge is provided from HRUs using a geographic inter-
section between HRUs and grid cells. Groundwater–stream
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Table 2. Data sets utilized to create the gwflow inputs and the base SWAT+ models (Bailey et al., 2023).

Data set Resolution (m) Source

SWAT+ model

Land use, land cover 30 US Geological Survey, National Land Cover Data
Field boundaries Yan and Roy (2016)
Topographic slope map 10 USGS National Elevation Dataset (Gesch et al., 2018)
Weather Global historical climatology network; PRISM
Soil boundaries and properties 10 Soil Survey Staff (2014)
Stream segments (NHD+) Moore and Dewald (2016)
Crop rotation USDA–NASS, CDL
Lakes and reservoirs Moore and Dewald (2016)
Water use Dieter et al. (2018)
Discharge from facilities Skinner and Maupin (2019)

gwflow module

Groundwater head Vector points Bailey and Alderfer (2022)
Aquifer thickness 250 Shangguan et al. (2017)
Tile drainage 30 Valayamkunnath et al. (2020)
Geologic units Vector polygons Horton et al. (2017)

Figure 3. Geographical layout and computation method of the gwflow module, presenting (a) grid cells, watershed boundary (red line), stream
channels (blue lines) and subbasins (black lines) for the Nanticoke watershed and (b) zoomed-in section of channels and grid, demonstrating
the water balance computations for each cell.
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Figure 4. Schematic representation of the hydrologic processes in a typical watershed stream–aquifer system showing the main hydrologic
elements and hydrologic processes for SWAT+ and gwflow. Blue arrows outline fluxes that are calculated by SWAT+, and green arrows are
for flow processes that are computed by gwflow.

exchange, groundwater–lake exchange and tile drainage out-
flow are calculated with Darcy’s law using object properties
(e.g., streambed conductivity, stream width, stream length).
Groundwater pumping can be specified or simulated based
on crop irrigation demand, conditioned on available ground-
water storage. Once the new volume is calculated, a new
value of head is calculated using the specific yield (Sy) of the
grid cell. With the inclusion of the gwflow module, SWAT+
simulates land surface, soil and channel processes, and the
gwflow module simulates subsurface processes (Fig. 4), with
several interface fluxes (soil recharge, saturation excess flow,
groundwater–stream exchange, groundwater–lake exchange
and tile drainage to streams).

Cell size (m) for the Winnebago, Cache and Nanticoke wa-
tersheds was set at 500 m, whereas cell size for the Arkansas
Headwaters, due to a larger spatial extent of the water-
shed, was set at 1000 m (Table 1). Data sets used to popu-
late gwflow cell values (Table 2) include aquifer thickness
(ground surface to bedrock; Fig. 5), geologic units forK and
Sy, locations of tile drainage, and USGS groundwater moni-
toring wells for initial groundwater head in the year 2000. For
the latter, spatial interpolation is used between wells to pro-
vide a head value for each cell. Cells for groundwater–stream
exchange and groundwater–lake exchange are identified by
intersecting cells with NHD+ channels and waterbodies (see
Table 2, Fig. 2), respectively. We note that the basic model
set-up for the Winnebago, Nanticoke and Cache watersheds
is provided in Bailey et al. (2023) in an initial demonstra-
tion of modifying SWAT+ models of the NAM to include
the gwflow module.

As with the initial set-up of these models, the follow-
ing features and limitations of the SWAT+gwflow modeling
framework, as used in this study, should be noted:

1. The gwflow module only considers a single-layer het-
erogeneous unconfined aquifer in connection with the
network of fields, channels and reservoirs.

2. Recharge from cultivated fields to the unconfined
aquifer is explicitly simulated; however, recharge from
non-field HRUs is not spatially explicit as the delin-
eation of these HRUs is not provided in the NAM.
Therefore, recharge for non-field areas is calculated us-
ing the average recharge rate for the 12-digit catchment.

3. The gwflow module does include an option to move wa-
ter from the aquifer to the soil profile of the HRU if
the water table rises above the base of the soil profile;
using this process, shallow groundwater can be used as
crop ET or discharged to nearby channels via soil lateral
flow. However, due to the lack of spatial representation
of non-field HRUs in the NAM, the groundwater→ soil
option is not possible. Therefore, shallow groundwater
is allowed to rise to the ground surface, and, if ground-
water head increases above the ground surface, the vol-
ume of water above the ground is routed as saturation
excess flow to the nearest channel. We acknowledge this
simplification but believe the methods to be adequate in
regional-scale applications.

4. Groundwater fluxes along the boundary of the wa-
tershed are simulated using a boundary condition ap-
proach: the groundwater head in cells along the water-
shed boundary is assumed to be fixed at the initial value
at the beginning of the simulation. If the cell head value
is higher than adjacent head values, then groundwater
inflow is simulated; if it is lower, then groundwater out-
flow is simulated. These fluxes are not calibrated per
se; this is done indirectly as groundwater head values
within the watershed are targets in model calibration.
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Figure 5. Schematic representation of aquifer thickness (m) maps for the four study watersheds of each grid cell.

2.2 SA–UA–PE methods for the SWAT+ models

In this section, we describe the application of SA, UA and
PE tools to the watershed models constructed in Sect. 2.1.
The general application of these tools to SWAT+gwflow is
summarized in the schematic of Fig. 6. In this study, we
demonstrate two possible operations: (1) PE with PEST fol-
lowed by SA with the Morris method to identify system pa-
rameters that control streamflow and groundwater head for
each watershed and (2) PE and UA with iES to provide prior
and posterior ensembles of parameters and system responses
(streamflow). The next sections describe the individual tools
and how they are applied to the four watersheds.

2.2.1 Method 1: Parameter ESTimation Tool (PEST)
followed by sensitivity analysis

The SWAT+gwflow models are constructed based on a
daily time step with a 2-year warm-up period (2000–2001)
for the calibration period of 2002–2008 and validation pe-
riod of 2009–2015. SWAT+gwflow models are first cali-
brated and tested using PEST (Doherty, 2020), a nonlinear,
model-independent parameter estimator. PEST uses a local

optimization technique that utilizes the Gauss–Marquardt–
Levenberg algorithm (Doherty, 2004) to minimize the user-
defined objective function (e.g., minimization of root mean
squares between simulated and observed values). PEST has
been broadly employed for sensitivity analysis, uncertainty
quantification and model calibration for water quality and
hydrologic models (e.g., Rode et al., 2007; Bahremand and
De Smedt, 2010; Jiang et al., 2014).

In this study, we use all available monthly streamflow from
USGS stream gage stations and average annual groundwa-
ter head from USGS monitoring wells in the objective func-
tion (OF). There are 1, 2, 3 and 4 stream gaging sites for
the Winnebago, Nanticoke, Cache, and Arkansas Headwa-
ters watersheds, respectively, and 7, 26, 92 and 3 monitor-
ing wells (Fig. 2). The contributions of each of these sites to
the composite OF were adjusted by manipulating the weights
applied to the residuals to ensure that each site is of similar
magnitude and significance in determining the optimal pa-
rameter values. Local optimization criterion (LOC) can be
described as the weighted sum of the OF. The objective func-
tion is computed as the squared sum of weighted residuals.
LOC and OF can be expressed as follows:
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Figure 6. Schematic of PEST automatic calibration, sensitivity analysis and uncertainty analysis (iES) applied to the SWAT+gwflow models.

OF=
n∑
j=1

[
xj,obs− xj,sim

]2
, (2)

LOC=
m∑
i=1

ωiOFi, (3)

where n is the total number of the measured or simulated
streamflow or groundwater monitoring wells, m is the total
number of the observation groups of the observed streamflow
from the gaging stations and groundwater monitoring wells,
and ω is the weight of the related objective function.

The monthly simulated streamflow of the SWAT+gwflow
models of the four study watersheds is evaluated using the
determination coefficient (R2), Nash–Sutcliffe efficiency in-
dex (NSE), Kling–Gupta efficiency index (KGE) and percent
of bias (PBIAS). The mean absolute error (MAE) is used
to evaluate the performance of groundwater level at USGS
monitoring wells. In our study, we set the maximum num-
ber of optimization iterations to 50. However, often, PEST
converged after 22 iterations (1600 model calls) for Win-
nebago River, 13 iterations (674 model calls) and 36 itera-

tions (2705 model calls) for Arkansas Headwaters, and 13 it-
erations (843 model calls) for Cache River.

Based on SWAT model literature (e.g., Arnold et al., 2013;
Koo et al., 2020), we selected 23 parameters to be modified
by PEST (Table 3), focusing on surface runoff, evaporation,
soil properties, groundwater processes, and snowmelt accu-
mulation and melt processes. We set 2000–2001 as the warm-
up period, 2002–2008 as the calibration period and 2009–
2015 as the testing period. Therefore, in the initial PEST
runs, we only use simulation periods of 2000–2008. Once
PEST is finished for each watershed model, we then run each
model for 2000–2015 to quantify criteria results (i.e., NSE,
R2, PBIAS, KGE and MAE).

Once a parameter set was established using PEST, we ap-
plied the Morris screening method to each model to assess
the impact of each parameter on streamflow and groundwa-
ter head. Morris screening (elementary-effects test) (Morris,
1991) is a qualitative global sensitivity analysis (GSA) tech-
nique that computes the relative sensitivity of model param-
eters by calculating the change in the model output given a
change in the model parameter xi value (i.e., elementary ef-
fect), with all other parameter values held constant. This pro-
cedure occurs over a range of parameter values, yielding a
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Table 3. Description of hydrological fluxes of 23 selected parameters for the SWAT+gwflow model.

Parameters Description of parameter Controlled hydrologic processes

CN2 # SCS runoff curve number Surface runoff processes (cn)

ESCO # Soil evaporation compensation factor Potential and actual
EPCO # Plant uptake compensation factor evapotranspiration processes (hydro)

rech_del Recharge delay (days)

Groundwater flow processes (gwflow)

Kaqu # Aquifer hydraulic conductivity for a specific zone (m d−1) for ith zone
Syaqu # Aquifer-specific yield for a specific zone for ith zone
bed_k Streambed hydraulic conductivity (m d−1)
bed_thick Streambed thickness (m)
bed_depth River depth (m)
tile_depth Depth of tiles below ground surface (m)
tile_area Area of groundwater inflow (m2) to tile
tile_k Hydraulic conductivity of the drain perimeter (m d−1)

Ftmp Snowfall temperature (◦C)

Snow processes (sno)

Snowd Minimum snow water content (mm H2O)
Mmin Melt factor for snow on 21 December (mm H2O ◦C−1 d−1)

Mmax Melt factor for snow on 21 June (mm H2O ◦C−1 d−1)
Mtmp Snowmelt base temperature (◦C)
Tmplag Snowpack temperature lag factor
COV50 Fraction of COVMX

SOL_BD () Moist bulk density (g cm−3 or Mg m−3) for ith layer

Soil water processes (sol)SOL_AWC () Available water capacity of the soil layer (mm H2O mm−1 soil) for ith layer
Perco # Percolation coefficient
SOL_K () Saturated hydraulic conductivity (mm h−1) for ith layer

relationship between the parameter value and the model out-
put. The following equation demonstrates the computation of
a single elementary effect for the ith parameter:

EEi =
f
(
x1, . . ., xi +1i, . . ., xp

)
− f (x)

1i
, (4)

where EEi is the elementary-effect value of the ith model
parameter; f represents the model; x1, . . . , xi is the model
parameter value; and 1 represents the change. Within this
method, the mean µ and standard deviation σ of all EEi for
a parameter are often used to assess the sensitivity or sig-
nificance of parameters. To prevent the canceling of positive
and negative values of EEi , Campolongo et al. (2007) pro-
posed using the absolute value of EEi , yielding the mean µ∗.
Therefore, µ∗ and σ can be calculated as follows for a given
parameter xi :

µ∗i =
1
n

n∑
j=1

|EEi(j)| , (5)

σi =

√√√√ 1
n− 1

n∑
j=1

[
EEi(j)−

1
n

n∑
j=1

EEi(j)

]2

, (6)

where n is the number of EEi computations. The µ∗ for the
model parameters are then ranked to determine the parame-

ters that have the strongest influence on model output. In this
study, we implemented the Morris method using the software
tool pestpp-sen (White et al., 2020), a variation of PEST.
Table 4 lists parameters and their ranges for the four study
watersheds. The number of classes (column 3) refers to the
number of unique zones or categories for each parameter. For
example, for Winnebago River, there are four aquifer zones,
each with a different value of K and Sy.

PEST is a powerful inverse modeling tool that can handle
many parameters, needs linearity and a stable model, and re-
quires several methods for parameter adjustment. However,
determining the minimum of the objective function is re-
stricted if there is a large amount of data error, if the model
does not represent the data well, and if there is a high degree
of correlation between the parameters.

2.2.2 Method 2: iterative ensemble smoother (iES) for
parameter estimation and UA

In a second method, we use an iES (Chen and Oliver,
2013) to establish prior and posterior uncertainty estimates of
model parameters within the pestpp-ies (White, 2018) frame-
work that uses the PEST model interface. The iES is based
on the original ensemble Kalman filter (EnKF) (Evensen,
1994), a data assimilation algorithm that updates state vari-
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Table 4. Selected parameters and ranges for the sensitivity and uncertainty analysis for the SWAT+gwflow model.

Watershed Parameter No. of Hydrologic Parameter range
classes process

N
an

tic
ok

e
R

iv
er

rech_del – gwflow 1 to 30
Kaqu # 2 gwflow −80 % to +100 % (relative)
Syaqu # 2 gwflow 0.05 to 0.35
bed_k – gwflow 0.0001 to 1
bed_thick – gwflow 0.2 to 1
bed_depth – gwflow −80 % to +20 % (relative)
CN2 4 cn 0 % to +30 % (relative)
esco – hydro 0 to 1
epco – hydro 0 to 1
perco 2 hydro 0 to 1

W
in

ne
ba

go
R

iv
er

rech_del – gwflow 1 to 30
Kaqu # 4 gwflow −90 % to +100 % (relative)
Syaqu # 4 gwflow 0.05 to 0.35
bed_k – gwflow 0.0001 to 1
bed_thick – gwflow 0.2 to 1
bed_depth – gwflow −80 % to +20 % (relative)
tile_depth – gwflow 1 to 2
tile_area – gwflow 10 to 100
tile_k – gwflow 0.5 to 15
CN2 4 cn −12 % to +12 % (relative)
esco – hydro 0 to 1
epco – hydro 0 to 1
perco 3 hydro 0 to 1

C
ac

he
R

iv
er

rech_del – gwflow 1 to 30
Kaqu # 5 gwflow −80 % to +100 % (relative)
Syaqu # 5 gwflow 0.05 to 0.35
bed_k – gwflow 0.0001 to 1
bed_thick – gwflow 0.2 to 1
bed_depth – gwflow −80 % to +20 % (relative)
tile_depth – gwflow 1 to 2
tile_area – gwflow 10 to 60
tile_k – gwflow 0.5 to 10
CN2 3 cn −7 % to +33 % (relative)
esco – hydro 0 to 1
epco – hydro 0 to 1
perco 4 hydro 0 to 1
awc 6 sol 0 to 1

A
rk

an
sa

s
H

ea
dw

at
er

s
R

iv
er

Ftmp – sno 0 to 5
Mtmp – sno 0 to 5
Mmax – sno 1.4 to 6.9
Mmin – sno 1.4 to 6.9
Tmplag – sno 0.01 to 1.01
Snowd – sno 0.5 to 1
COV50 – sno 0.1 to 1
CN2 2 cn −5 % to +35 % (relative)
rech_del – gwflow 1 to 30
Kaqu # 9 gwflow −90 % to +100 % (relative)
Syaqu # 9 gwflow 0.05 to 0.35
bed_k – gwflow 0.0001 to 1
bed_thick – gwflow 0.2 to 1
bed_depth – gwflow −80 % to +20 % (relative)
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ables through assimilation of measured data into model re-
sults based on correlations between the state variables and the
measurement data. For model parameters that have a strong
influence on model results, the parameter values can also be
updated through this data assimilation. Updates to state vari-
ables and parameters occur in a sequence of update steps.
The EnKF was implemented in a smoother scheme, the en-
semble smoother (ES) (Van Leeuwen and Evensen, 1996),
in which all past states and parameters are updated in a sin-
gle update step using all past measurement data. Chen and
Oliver (2013) modified the ES to perform iteratively using
the Gauss–Levenberg–Marquardt (GLM) algorithm, result-
ing in a significant decrease in computational burden for
models with many parameters.

The iES method starts with an initial ensemble of val-
ues for each parameter (i.e., a prior ensemble). An estima-
tion in relation to a Jacobian matrix of parameter sensitivi-
ties is computed based on the relationships between model
parameters and model output using a range of parameter val-
ues based on the prior parameter ensemble (Chen and Oliver,
2013). The contents of the Jacobian matrix are then used to
update the ensemble of each model parameter by seeking to
minimize model residuals using the GLM algorithm. The re-
sult of the process is a posterior ensemble of model param-
eters that are optimally consistent with measured data. Ta-
ble 4 lists parameters and their ranges used for iES applica-
tion to the four study watersheds with three iterations of the
data assimilation algorithm (250 model runs) in pestpp-ies.
In general, the data assimilation approach assumes prior and
posterior multivariate Gaussian parameter distributions.

3 Results and discussion

We first present hydrologic results for each of the four study
watersheds through application of PEST, followed by the re-
sults of the Morris sensitivity analysis and the iES applica-
tion.

3.1 Hydrologic state variables and fluxes

3.1.1 Streamflow and general water balance

The comparison between observed and simulated monthly
streamflow at 10 locations showed a good model perfor-
mance based on NSE, R2, PBIAS and KGE, as presented
in Fig. 7 and Table 5, which shows the hydrograph of ob-
served and simulated streamflow at four selected gages. By
utilizing a desktop computer, an Intel® CoreTM i7-10700
CPU @ 2.90 GHz with 64 GB RAM, simulation times for
a whole period of simulation (2000–2015) for the four wa-
tersheds with SWAT+ and SWAT+gwflow are presented in
Table 6, including the ranges 3–13 min for base SWAT+
and 7–35 min for SWAT+gwflow. These fast computation
times greatly facilitate calibration, sensitivity analysis and
uncertainty analysis for our regional-scale hydrologic mod-

els. Other physically based holistic hydrologic models could
be used (e.g., HydroGeoSphere, Parflow, mHM), but the
required heterogeneous parameters and long computation
times are often prohibitive for the hundreds and thousands
of simulations runs that are required for the sensitivity anal-
ysis and uncertainty analysis conducted in this study.

3.1.2 General watershed fluxes

Table 7 displays the annual average hydrologic fluxes for
the four study watersheds. Catchment key inflows include
groundwater inflow from adjacent aquifer along the catch-
ment boundary and precipitation. Catchment key outputs
comprise soil lateral flow, surface runoff, evapotranspiration
ET, tile drainage flow, saturation excess flow and stream
seepage.

The internal flows to the watershed include surface wa-
ter irrigation (calculated by SWAT+), pumping irrigation
(computed by gwflow), recharge (computed by gwflow), and
groundwater–reservoir and groundwater–lake exchange (cal-
culated by gwflow). Table 7 also reveals key hydrologic frac-
tions and average annual water yield. Cache has an annual
value of 141 mm for groundwater pumping for irrigation. No-
tably, Winnebago has the highest flow of tile drain (62 mm),
and Nanticoke River demonstrates high fluxes of ground-
water to the stream network with saturation excess flow of
(183 mm).

Arkansas Headwaters and Cache have small net ground-
water discharge to stream (+ 37 sat excess flow− 1.7 mm
seepage=+35.3 mm for Cache) and (−4 mm seep-
age+ 4.6 sat excess flow=+0.6 mm for Arkansas Headwa-
ters) owing to deeper groundwater levels in comparison to
stream stage. The baseflow contribution is moderate (> 0.30)
for Winnebago and Nanticoke rivers and low (< 0.20) for
the other watersheds. The yield fraction, i.e., the ratio of
water yield in the streams to precipitation, ranges from
0.19 (Arkansas Headwaters) to 0.48 (Nanticoke). The
recharge fraction ranges from 0.01 (Arkansas Headwaters)
to 0.08 (Winnebago), with recharge fluxes for several of the
watersheds being similar in magnitude to soil lateral flow
and surface runoff.

3.1.3 Monthly hydrologic fluxes

Figure 8 reveals monthly hydrologic flow processes for the
period of 2002–2015 for each watershed. Plots on the left
show results for the entire watershed system, whereas plots
on the right show results for the aquifer system. Key water-
shed inflows are boundary inflow and precipitation, where
watershed outflows are tile drainage, groundwater satura-
tion excess flow, runoff, surface ET and lateral flow, which
showed watershed seasonal fluxes for each basin. The Win-
nebago River is notable for its high flux rates of tile drainage
outflow, groundwater exchange with reservoirs and lakes in
the Arkansas Headwaters River, seasonal pattern of satura-
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Figure 7. Measured and simulated monthly streamflow for SWAT+gwflow models for four selected river gage stations within the four study
watersheds. Statistical model performances (NSE, PBIAS and KGE) are presented for each gage location.

Table 5. Monthly discharge statistical performance for the SWAT+gwflow simulation.

River basin Station Calibration Validation

NSE R2 PBIAS KGE NSE R2 PBIAS KGE

Nanticoke USGS 01488500 0.79 0.79 −3.30 0.85 0.81 0.81 −5.40 0.86
River USGS 01487000 0.72 0.77 11.70 0.83 0.63 0.66 10.80 0.77

Winnebago USGS 05459500 0.90 0.91 1.00 0.86 0.79 0.88 14.30 0.64
River

Cache River USGS 07077380 0.84 0.85 −5.80 0.90 0.73 0.75 4.90 0.86
USGS 07077700 0.77 0.81 13.20 0.76 Not enough observations
USGS 07077555 0.85 0.91 6.90 0.73 0.85 0.92 14.90 0.70

Arkansas USGS 07087050 0.91 0.92 −6.90 0.91 0.94 0.95 −8.60 0.91
Headwaters USGS 07091200 0.91 0.93 3.80 0.90 0.96 0.96 0.60 0.96
River USGS 07094500 0.73 0.84 23.10 0.75 0.84 0.85 7.30 0.84

USGS 07096000 0.81 0.85 18.90 0.80 0.84 0.85 −8.90 0.81

tion excess flow (i.e., groundwater that reaches the river due
to groundwater flooding) in the Nanticoke River, and ground-
water pumping in the Cache River watershed, exhibiting the
unique hydrologic characteristics of each watershed in rela-
tion to groundwater storage and flow.

3.1.4 Groundwater head

Figure 9 contains the statistical performance based on mean
absolute error (MAE) of annual groundwater level for four
study watersheds for the period of 2000–2015. MAE results

show an acceptable error (< 1.5 m residual in groundwa-
ter level) between simulated and measured average annual
groundwater head at each USGS monitoring well site. How-
ever, a few locations have higher error (2.5–3.6 m difference),
although these residuals are small compared to the saturated
thickness of the aquifer.

3.1.5 Spatial variation of groundwater fluxes

Figure 10 shows saturated-thickness maps (that is, vertical
distance between bedrock and water table) for the final year
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Figure 8. Monthly surface water fluxes (mm) (left panels) and groundwater fluxes (mm) (right panels) for the simulation period of 2002–2015
for the four study watersheds.

of simulation (2015) for the study watersheds, with saturated
thickness being similar in spatial pattern to the thickness of
the unconfined aquifer (see Fig. 5) but differing due to spatial
changes in groundwater head within each watershed.

Raster maps of average daily groundwater sink–source
flow processes (Figs. 11–13) demonstrate zones of stress
within the aquifer unit and regions of main inflows into

the stream channel system. Spatial fluxes of recharge,
groundwater–stream interaction (i.e., saturation excess flow)
and groundwater pumping are presented as maps in Figs. 11–
13, respectively. Saturation excess flow occurs where the wa-
ter table is shallow. Groundwater pumping for irrigation is
presented for Nanticoke and Cache since the other two wa-
tersheds do not experience groundwater pumping for irriga-
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Figure 9. Maps showing statistical model performance based on mean absolute error (MAE) (m) for groundwater level for the simulation
period of 2000–2015 in the study watersheds.

tion. Cache has the highest pumping rates due to extensive
irrigation practices in the region.

Within the SWAT+gwflow framework, stream seep-
age and groundwater saturation excess runoff constitute
groundwater–stream interaction. Throughout the stream sys-
tem, seepage to the aquifer occurs, with the highest rates typ-
ically being found along the major rivers because of the large

head difference between the stream and the surrounding wa-
ter table at those locations. High values of saturation excess
runoff can be found in the vicinity of rivers and streams in
areas of shallow groundwater levels.
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Figure 10. Maps of saturated thickness (m) in the four study watersheds.

Table 6. Model run times for simulation period of 2000–2015
for four study areas using standalone SWAT+ and holistic
SWAT+gwflow.

Watershed Base Holistic
SWAT+ SWAT+gwflow
(min: s) (min: s)

Winnebago River 02: 37.10 07: 15.12
Nanticoke River 04: 30.00 11: 50.88
Cache River 12: 49.57 34: 43.75
Arkansas Headwaters River 05: 06.01 13: 23.92

3.2 Sensitivity analysis using the Morris screening
method

The Morris results for parameter influence on streamflow
(Fig. 14) show the most influential parameters for each study
watershed:

1. For Winnebago, there is the percolation coeffi-
cient (Perco1), streambed thickness (bed_thick), hy-
draulic conductivity of the drain perimeter (tile_k) and

streambed hydraulic conductivity (bed_k). These results
indicate that streamflow is controlled principally by pro-
cesses that affect tile drainage and stream–aquifer inter-
actions. This is somewhat surprising as surface runoff is
the dominant flux contributing to streamflow.

2. For Nanticoke, there is specific yield (syaqu2),
hydraulic conductivity (kaqu2), streambed thick-
ness (bed_thick) and streambed hydraulic conductiv-
ity (bed_k). These results indicate that groundwater
properties and processes control streamflow, in agree-
ment with the high baseflow fraction (0.32) of the
watershed (Table 7).

3. For Arkansas Headwaters, there is the melt factor for
snow on 21 June (Mmax), snowmelt base tempera-
ture (Mtmp), streambed thickness (bed_thick), snow-
pack temperature lag factor (Tmplag) and curve num-
ber (cn_frstgd). This is not surprising as the streamflow
is dominated by springtime snowmelt patterns.

4. For Cache, there is the soil evaporation compensa-
tion factor (esco), percolation coefficient (Perco2), spe-
cific yield (syaqu4), streambed hydraulic conductiv-

Hydrol. Earth Syst. Sci., 28, 21–48, 2024 https://doi.org/10.5194/hess-28-21-2024



S. A. Abbas et al.: A framework for parameter estimation for holistic hydrologic modeling using SWAT+ 37

Figure 11. Maps of average annual recharge flow (m3 d−1) for the period of 2000–2015 for each of the study watersheds for each grid.

ity (bed_k), curve number (rcsr_gd), available water ca-
pacity (awc3), thickness (bed_thick), plant uptake com-
pensation factor (epco) and recharge delay (rech_del).
Streamflow in this watershed is dominated by processes
that affect surface runoff (421 mm in Table 7) and
groundwater pumping (141 mm).

Morris results for the parameter influence on groundwater
level (Fig. 15) show the most influential parameters for each
study watershed:

1. For Winnebago, there is the streambed hydraulic con-
ductivity (bed_k), indicating the strong influence of
stream–aquifer interactions on groundwater head in the
region.

2. For Nanticoke, there is the specific yield (syaqu2) and
hydraulic conductivity (kaqu2).

3. For Arkansas Headwaters, there is the hydraulic con-
ductivity (kaqu9) and specific yield (syaqu6).

4. For Cache, there is the soil evaporation compensation
factor (esco), curve number (rcsr_gd) and available wa-
ter capacity (awc3 and awc4), indicating the influence
of land surface and soil processes on groundwater head
due to their control on the volume of groundwater that
is pumped from the aquifer.

The estimated time-varying parameter sensitivity calcu-
lated by the Morris method is represented in Fig. 16 for the
most influential parameters in the four watersheds. These val-
ues are a combination of streambed parameters (bed_k), soil
parameters (perc1, esco), snow parameters (Mmax, Mtmp)
and aquifer parameters (syaqu2, kaqu2), depending on the
watershed. The Nanticoke River model is dominated by
aquifer parameters due to shallow groundwater levels and as-
sociated groundwater discharge to the stream network. The
Arkansas River model is dominated by snow parameters due
to mountainous terrain in the Rocky Mountains. These re-
sults indicate that these parameters have a seasonal fluctua-
tion in their influence on streamflow due to the seasonal fluc-

https://doi.org/10.5194/hess-28-21-2024 Hydrol. Earth Syst. Sci., 28, 21–48, 2024



38 S. A. Abbas et al.: A framework for parameter estimation for holistic hydrologic modeling using SWAT+

Figure 12. Maps of average annual saturation excess flow (m3 d−1) for the period of 2000–2015 in each of the four study watersheds for
each grid.

tuations and timing of groundwater levels, snowfall and crop
growth.

The strong influence of streambed parameters (streambed
conductivity, streambed thickness) on system responses in
each of the four study watersheds is expected due to the
coupled surface–subsurface nature of the watersheds. Water
exchange between channels and aquifers increases with in-
creasing conductivity and decreasing thickness. Streambed
parameters have a strong control on streamflow for each of
the four watersheds, whereas they control groundwater head
for only the Winnebago River watershed and the Nanticoke
River watershed due to shallow groundwater levels in rela-
tion to ground surface and channel elevation. For streamflow,
control is either in the direction of channel→ aquifer (seep-
age) or aquifer→ channel (discharge). For the Cache River
watershed, extensive groundwater pumping (see Fig. 13)
can lead to enhanced stream seepage (streamflow deple-

tion) which, as noted by previous studies (Fox and Durn-
ford, 2003; Fox, 2007), can be sensitive to streambed con-
ductivity. In general, the importance of streambed parame-
ters such as conductivity and thickness in the modeling of
surface–groundwater (SW–GW) exchange fluxes has been
noted extensively (Kalbus et al., 2009; Brunner et al., 2017;
Partington et al., 2017), with many studies aiming to quan-
tifying these parameters spatially (e.g., Fox, 2007; Crook et
al., 2008; Wojnar et al., 2013; Shi and Wang, 2023).

3.3 Uncertainty analysis and parameter estimation
using the iES

Figure 17 shows the observed and best estimated monthly
streamflow with prior and posterior prediction uncertainty
bands for the four study watersheds. The plots in the left
column represent prior parameter ensembles (uncalibrated
Monte Carlo results) with wide uncertainty bands. Mean-
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Figure 13. Maps of average annual groundwater pumping for irrigation (m3 d−1) in the Cache and Nanticoke watersheds for each grid cell.

Figure 14. Parameter sensitivity analysis based on the Morris screening method for minimizing streamflow. Only the most sensitive param-
eters are labeled. σ reveals the degree of nonlinearity or factor interaction, and µ∗ is the sensitivity measure. These sensitivity measures are
based on elementary effects and are not related to the scale and magnitude of the input or output quantities; therefore, results show relative
relation between parameters.

while, the plots in the right column show the posterior en-
semble that effectively reduces the uncertainty band. For ex-
ample, in Arkansas Headwaters, the prior ensemble uncer-
tainty band was shifted to the left of the measured stream-
flow, owing to an incorrect characterization of snowmelt tim-

ing and magnitude. However, the posterior ensemble uncer-
tainty band is much narrower and fits the timing and magni-
tude of the measured streamflow.

Figure 18 demonstrates the effect of data assimilation on
the parameters more quantitatively, which compares the his-
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Figure 15. Parameter sensitivity analysis based on the Morris screening method for minimizing groundwater level. Only the most sensitive
parameters are labeled. σ reveals the degree of nonlinearity or factor interaction, and µ∗ is the sensitivity measure. These sensitivity measures
are based on elementary effects and are not related to the scale and magnitude of the input or output quantities; therefore, results show relative
relation between parameters.

togram of prior parameter ensembles (gray) with the his-
togram of posterior parameter ensembles (blue) for nine of
the most influential parameters in the four study water-
sheds. The posterior distribution of parameters is narrower
than the prior distribution, which helps in the estimation of
model parameters. The range parameters for curve number–
Cache River (Fig. 18h) and specific yield–Nanticoke River
(Fig. 18c) indicate the largest influence of data assimilation.
Short correlation ranges have been reduced from the poste-
rior.

Figure 19 shows the influence of data assimilation on
the average annual water balance more quantitatively, which
compares the histogram of prior ensembles (gray) with the
histogram of posterior ensembles (blue) for the eight most
important water balance components in the four study water-
sheds. The posterior distribution of parameters is narrower
than the prior distribution, which helps in the estimation of
the water balance component.

In general, the application of the iES can provide ensem-
bles of posterior parameter sets that, when used in the model,
provide simulation results that are in close comparison with
measured data and, due to the use of ensembles, includes
uncertainty in results. When used for scenario analysis and
decision making, these models can employ the posterior en-
sembles of parameters to propagate uncertainty into model

results, therefore serving effectively in the role of decision
support.

In general, ensemble-based data assimilation naturally ac-
commodates parameter correlation, both in the prior param-
eter distribution (as expressed in the prior parameter covari-
ance matrix) and in correlations between parameters that give
correlated responses to historic observations. The former is
addressed simply by providing the requisite covariance ma-
trix or by generating a prior parameter ensemble that is im-
bued with appropriate parameter relations. The latter corre-
lations, those typically referred to as being non-unique, are
handled algorithmically through the truncated singular value
decomposition (SVD) solution as a mechanism to stabilize
the inverse problem, as well as implicitly through the use of
an ensemble that is naturally rank deficient (in that it does
not fully occupy the range space of the parameter space).
The rank-deficient ensemble used to approximate the Jaco-
bian matrix only occupies the dominant singular components
of the full Jacobian – these dominant singular components
are a subspace that includes the parameter combinations that
represent parameters that are non-unique with respect to the
historical observations. It is worth noting that one of the
strengths of an ensemble-based approach to history match-
ing is that the posterior parameter spans this non-uniqueness.
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Figure 16. Estimated sensitivity that changes with time for the streamflow for the key influential parameters of the four study watersheds.
The blue lines represent gwflow parameters, maroon lines are for hydrology parameters, and orange lines represent the snow parameters.

Results for stand-alone SWAT+models, i.e., models without
the gwflow module included, are provided in the Supplement.

4 Summary and conclusions

In this article, we present two methods to include sensitiv-
ity analysis, uncertainty analysis and parameter optimiza-
tion into coupled surface–subsurface hydrologic models us-
ing the SWAT+ model as an example. The method uti-
lizes the gwflow module, which is a spatially distributed,
physically based groundwater flow module coupled to the
SWAT+ model, which utilizes aquifer control volumes (i.e.,
grid cells) to compute daily water balance in an unconfined
aquifer. We present our technique for four different US wa-
tersheds: Winnebago River, Nanticoke River, Cache River
and Arkansas Headwaters. These watersheds were selected
on account of their respective unique hydrologic features:
an extensive network of tile drain (Winnebago), shallow

groundwater (Nanticoke), snowmelt dominance (Arkansas
Headwaters) and extensive groundwater pumping for irri-
gation. The SWAT+gwflow models are calibrated based on
the monthly streamflow and annual groundwater level for
the period of 2000–2008 with a 2-year warm-up period, val-
idated for a period of 2009–2015. The parameter estima-
tion software PEST and PEST++ are used for the calibra-
tion, sensitivity analysis and uncertainty analysis of hydro-
logic models. Additionally, watershed water balance fluxes
are evaluated for the stability of models. All watershed mod-
els showed good statistical performance of streamflow sim-
ulation (10 river gage locations) and groundwater level re-
sults (128 monitoring wells); however, a few wells exhibited
high values of mean absolute error results. Model outputs
comprised saturated thickness (spatial maps), raster maps of
groundwater flow processes (saturation excess flow, stream
seepage, pumping, recharge), which can be utilized to val-
idate the model and recognize areas that need further pa-
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Figure 17. Prior (left panels) and posterior (right panels) prediction uncertainty bounds for streamflow estimation for SWAT+gwflow for
four study watersheds.

rameter estimation; groundwater head (time series and spa-
tial maps of observation locations); and stream discharge. By
combining average annual water balance fluxes, groundwa-
ter head and streamflow data, hydrologic flow processes can
be restricted to realistic ranges. Increased fidelity in process
representation allows these modeling tools to be utilized for
the assessment of water resources under different land use

and climate scenarios over a wide range of hydrologic con-
ditions.

GSA using the Morris screening technique was applied
to SWAT+gwflow models of study watersheds to assess the
governing system factors in relation to surface runoff and
groundwater fluxes. The pestpp-sen tool within the PEST++
environment is utilized to generate parameter values, up-

Hydrol. Earth Syst. Sci., 28, 21–48, 2024 https://doi.org/10.5194/hess-28-21-2024



S. A. Abbas et al.: A framework for parameter estimation for holistic hydrologic modeling using SWAT+ 43

Figure 18. Histogram for prior and posterior for significant parameters for four study watersheds.

date model files for SWAT+gwflow models, run the model
simulations and compute sensitivity indices for the Morris
method. The sensitivity of 23 parameters (including surface
runoff fluxes, actual and potential evapotranspiration fluxes,
groundwater flow fluxes, snow fluxes, and soil water fluxes)
were investigated based on two model responses: minimiz-
ing monthly streamflow and minimizing the mean absolute
error (MAE) of annual groundwater head data.

The iES method was used for the model input uncertainty
for the prior (uncalibrated results) and posterior ensembles,
thus resulting in better uncertainty prediction that will im-
prove the utilization of hydrologic models in decision mak-
ing. This technique is implemented using the pestpp-ies tool
within the PEST++ environment.

From the results, we conclude the following:

1. Winnebago River (extensive presence of tile drainage).
Groundwater-flow-related parameters and soil water pa-
rameters significantly affect streamflow and groundwa-
ter heads, especially percolation coefficient, streambed
thickness, hydraulic conductivity of the drain perimeter
and streambed hydraulic conductivity.

2. Nanticoke River (intensive surface–groundwater inter-
action). Groundwater-flow-related parameters notably
influence streamflow and groundwater heads, specifi-
cally specific yield, hydraulic conductivity, streambed
thickness and streambed hydraulic conductivity.

3. Arkansas Headwaters River (snowmelt-dominant
basin). Snow processes and surface-runoff-flow-
related parameters extensively affect streamflow, while
groundwater flow parameters significantly influence
groundwater heads. Snow parameters include the melt
factor for snow on 21 June, snowmelt base tempera-
ture, streambed thickness, snowpack temperature lag
factor and curve number for surface runoff processes.
Groundwater flow parameters hydraulic conductivity
and specific yield.

4. Cache River (extensive groundwater pumping for irri-
gation). Soil-water-related parameters significantly af-
fect streamflow, including soil evaporation compen-
sation factor and percolation coefficient. Meanwhile,
groundwater flow and surface runoff have parameters
with relatively less influence on stream discharge. For
groundwater head, soil-water-related parameters point-
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Figure 19. Histogram for prior and posterior average annual water balance components (significant components) for four study watersheds.
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Table 7. Mean annual hydrologic flow processes (mm) for
four study watersheds with main flux fraction.

Flux (mm) Winnebago Nanticoke Cache Arkansas
Headwaters

Input

Precipitation 880 1180 1287 425
Boundary inflow 50 143 90 −2.40

Watershed output

Surface runoff 103 256 421 51
Sat excess flow 75 183 37 4.6
Tile flow 62 2.81 0.07 0.0
Stream seepage 26 0.38 1.70 4.0
Soil lateral flow 65 131 47 28
ET 580 790 941 336

Internal flows

Recharge 73 33 90 5.7
Pumping irrigation 0 15.5 141 0.42
GW–lake exchange −0.33 −0.70 −1.6 −4
Surface water irrigation 0 1.00 43 0.14

Fractions

Water yielda 279 573 504 80
Recharge fractionb 0.08 0.03 0.07 0.01
Yield fractionc 0.31 0.48 0.39 0.19
Baseflow fractiond 0.40 0.32 0.07 0.00
ET fractione 0.65 0.66 0.72 0.79

a Water yield= surface runoff+ lateral flow− stream seepage+ saturation excess flow+ tile flow.
b Recharge/precipitation. c Water yield/precipitation. d Net groundwater inflow to streams (sat excess
flow+ tile flow− stream seepage)/water yield. e ET/precipitation.

edly affect streamflow comprising available water ca-
pacity and the soil evaporation compensation factor.

5. The iES method. This represents prior parameter en-
sembles (uncalibrated Monte Carlo results) with wide
uncertainty bands, and the posterior ensemble effec-
tively reduces the uncertainty band. This technique can
give best-estimation parameter ranges, water balance
components, and simulated streamflow and groundwa-
ter heads.

While these SA–UA–PO methods have been demonstrated
here for the SWAT+gwflow model, they can be applied gen-
erally to other coupled surface–subsurface models or even
stand-alone watershed models such as SWAT or SWAT+.

Code availability. SWAT+ (Fortran, 524 files, 3.2 MB) with the
gwflow module is available from Ryan Bailey upon request (rtbai-
ley@colostate.edu). Source files of SWAT+, including the subrou-
tines for the gwflow module, are freely available for download at
https://swat.tamu.edu/software/plus/gwflow/ (SWAT, 2023).
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Čerkasova, N., Umgiesser, G., and Ertürk, A.: Modelling frame-
work for flow, sediments and nutrient loads in a large trans-
boundary river watershed: A climate change impact assess-
ment of the Nemunas river watershed, J. Hydrol., 598, 126422,
https://doi.org/10.1016/j.jhydrol.2021.126422, 2021.

Chen, Y. and Oliver, D.: Ensemble randomized maximum likeli-
hood method as an iterative ensemble smoother, Math. Geosci.,
44, 1–26, https://doi.org/10.1007/s11004-011-9376-z, 2012.

Chen, Y. and Oliver, D.: Levenberg–Marquardt forms of the
iterative ensemble smoother for efficient history matching
and uncertainty quantification, Comput. Geosci., 17, 689–703,
https://doi.org/10.1007/s10596-013-9351-5, 2013.

Crestani, E., Camporese, M., Baú, D., and Salandin, P.: Ensemble
Kalman filter versus ensemble smoother for assessing hydraulic
conductivity via tracer test data assimilation, Hydrol. Earth Sys.t
Sci., 17, 1517–1531, https://doi.org/10.5194/hess-17-1517-2013,
2013.

Crook, N., Binley, A., Knight, R., Robinson, D., Zarnetske, J.,
and Haggerty, R.: Electrical resistivity imaging of the architec-
ture of substream sediments, Water Resour. Res., 44, W00D13,
https://doi.org/10.1029/2008WR006968, 2008.

Devak, M. and Dhanya, C.: Sensitivity analysis of hydrological
models: Review and way forward, J. Water Clim., 8, 557–575,
https://doi.org/10.2166/wcc.2017.149, 2017.

Dieter, C., Maupin, M., Caldwell, R., Harris, M., Ivahnenko,
T., Lovelace, J., Barber, N., and Linsey, K.: Water availabil-
ity and use science program: Estimated use of water in the
United States in 2015 (Circular 1441), US Geological Survey,
https://doi.org/10.3133/cir1441, 2018.

Doherty, J.: PEST model-independent parameter estimation user
manual, Watermark Numerical Computing, Brisbane, Australia,
3338–3349, https://www.epa.gov/sites/default/files/documents/
PESTMAN.PDF (last access: 16 June 2023), 2004.

Doherty, J.: PEST, Model-independent Parameter Estimation: User
Manual, 7th Edn., Watermark Numerical Computing, Brisbane,
Australia, 3338–3349, https://pesthomepage.org/documentation
(last access: 16 June 2023), 2020.

Doherty, J. and Hunt, R.: Two statistics for evaluating parame-
ter identifiability and error reduction, J. Hydrol., 366, 119–127,
https://doi.org/10.1016/j.jhydrol.2008.12.018, 2009.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast
error statistics, J. Geophys. Res.-Oceans, 99, 10143–10162,
https://doi.org/10.1029/94JC00572, 1994.

Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B.,
Gochis, D., Downer, C. W., Camporese, M., Davison, J. H.,
Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Re-
strepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D.: An
overview of current applications, challenges, and future trends in
distributed process-based models in hydrology, J. Hydrol., 537,
45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016.

Fox, G.: Estimating streambed conductivity: guidelines for
stream-aquifer analysis tests, T. ASABE, 50, 107–113,
https://doi.org/10.13031/2013.22416, 2007.

Fox, G. and Durnford, D.: Unsaturated hyporheic zone flow
in stream/aquifer conjunctive systems, Adv. Water Resour.,

Hydrol. Earth Syst. Sci., 28, 21–48, 2024 https://doi.org/10.5194/hess-28-21-2024

https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf
https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf
https://doi.org/10.1111/1752-1688.12890
https://doi.org/10.1007/s11269-010-9584-1
https://doi.org/10.1007/s11269-010-9584-1
https://doi.org/10.6084/m9.figshare.c.5918738.v2
https://doi.org/10.1002/hyp.10933
https://doi.org/10.3390/hydrology7040075
https://doi.org/10.1016/j.envsoft.2022.105589
https://doi.org/10.1016/j.envsoft.2012.09.011
https://doi.org/10.1016/j.catena.2019.104082
https://doi.org/10.1080/02626667.2014.965172
https://doi.org/10.1111/1752-1688.12482
https://doi.org/10.1002/qj.2236
https://doi.org/10.1002/2017RG000556
https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1016/j.jhydrol.2021.126422
https://doi.org/10.1007/s11004-011-9376-z
https://doi.org/10.1007/s10596-013-9351-5
https://doi.org/10.5194/hess-17-1517-2013
https://doi.org/10.1029/2008WR006968
https://doi.org/10.2166/wcc.2017.149
https://doi.org/10.3133/cir1441
https://www.epa.gov/sites/default/files/documents/PESTMAN.PDF
https://www.epa.gov/sites/default/files/documents/PESTMAN.PDF
https://pesthomepage.org/documentation
https://doi.org/10.1016/j.jhydrol.2008.12.018
https://doi.org/10.1029/94JC00572
https://doi.org/10.1016/j.jhydrol.2016.03.026
https://doi.org/10.13031/2013.22416


S. A. Abbas et al.: A framework for parameter estimation for holistic hydrologic modeling using SWAT+ 47

26, 989–1000, https://doi.org/10.1016/S0309-1708(03)00087-3,
2003.

Gesch, D., Evans, G., Oimoen, M., and Arundel, S.: The na-
tional elevation dataset, American Society for Photogrammetry
and Remote Sensing, 83–110, https://pubs.usgs.gov/publication/
70201572 (last access: 16 June 2023), 2018.

Ghaffari, G., Keesstra, S., Ghodousi, J., and Ahmadi, H.: SWAT-
simulated hydrological impact of land-use change in the Zan-
janrood basin, Northwest Iran, Hydrol. Process., 24, 892–903,
https://doi.org/10.1002/hyp.7530, 2010.

Helton, J.: Uncertainty and sensitivity analysis techniques for use
in performance assessment for Radioactive Waste Disposal, Re-
liab. Eng. Syst. Safe., 42, 327–367, https://doi.org/10.1016/0951-
8320(93)90097-i, 1993.

Herzog, A., Hector, B., Cohard, J., Vouillamoz, J., Lawson, F. M.,
Peugeot, C., and De Graaf, I.: A parametric sensitivity analy-
sis for prioritizing regolith knowledge needs for modeling water
transfers in the West African critical zone, Vadose Zone J., 20,
e20163, https://doi.org/10.1002/vzj2.20163, 2021.

Horton, J., San Juan, C., and Stoeser, D.: The state geologic
map compilation (SGMC) geodatabase of the conterminous
United States, ver. 1.1, August 2017 (Data Series 1052), USGS,
https://doi.org/10.3133/ds1052, 2017.

Izady, A., Joodavi, A., Ansarian, M., Shafiei, M., Majidi, M.,
Davary, K., Ziaei, A. N., Ansari, H., Nikoo, M. R., Al-
Maktoumi, A., Chen, M., and Abdalla, O.: A scenario-based
coupled SWAT-MODFLOW decision support system for Ad-
vanced Water Resource Management, J. Hydroinform., 24, 56–
77, https://doi.org/10.2166/hydro.2021.081, 2022.

Jiang, S., Jomaa, S., and Rode, M.: Modelling inorganic nitrogen
leaching in nested mesoscale catchments in central Germany.
Ecohydrology, 7, 1345–1362, https://doi.org/10.1002/eco.1462,
2014.

Kalbus, E., Schmidt, C., Molson, J. W., Reinstorf, F., and Schirmer,
M.: Influence of aquifer and streambed heterogeneity on the dis-
tribution of groundwater discharge, Hydrol. Earth Syst. Sci., 13,
69–77., https://doi.org/10.5194/hess-13-69-2009, 2009.

Koo, H., Chen, M., Jakeman, A., and Zhang, F.: A global sensi-
tivity analysis approach for identifying critical sources of un-
certainty in non-identifiable, spatially distributed environmental
models: A holistic analysis applied to SWAT for input datasets
and model parameters, Environ. Model. Softw., 127, 104676,
https://doi.org/10.1016/j.envsoft.2020.104676, 2020.

Leta, O., Nossent, J., Velez, C., Shrestha, N., Van Griensven,
A., and Bauwens, W.: Assessment of the different
sources of uncertainty in a SWAT model of the River
Senne (Belgium), Environ. Model. Softw., 68, 129–146,
https://doi.org/10.1016/j.envsoft.2015.02.010, 2015.

Liu, H., Jia, Y., Niu, C., Su, H., Wang, J., Du, J., Khaki, M., Hu, P.,
and Liu, J.: Development and validation of a physically-based,
national-scale hydrological model in China, J. Hydrol., 590,
125431, https://doi.org/10.1016/j.jhydrol.2020.125431, 2020.

Moore, R. and Dewald, T.: The road to nhdp lus – advancements in
digital stream networks and associated catchments, J. Am. Wa-
ter Resour. Assoc., 52, 890–900, https://doi.org/10.1111/1752-
1688.12389, 2016.

Morris, M.: Factorial sampling plans for preliminary com-
putational experiments, Technometrics, 33, 161–174,
https://doi.org/10.2307/1269043, 1991.

Neitsch, S., Arnold, J., Kiniry, J., and Williams, J.: Soil and Wa-
ter Assessment Tool Theoretical Documentation version 2009,
Texas Water Resources Institute, https://swat.tamu.edu/media/
99192/swat2009-theory.pdf (last access: 16 June 2023), 2011.

Nossent, J., Elsen, P., and Bauwens, W.: Sobol’ sensitivity analysis
of a complex environmental model, Environ. Model. Softw., 26,
1515–1525, https://doi.org/10.1016/j.envsoft.2011.08.010, 2011.

Olaya-Abril, A., Parras-Alcántara, L., Lozano-García, B., and
Obregón-Romero, R.: Soil Organic Carbon Distribution in
Mediterranean areas under a climate change scenario via multi-
ple linear regression analysis, Sci. Total Environ., 592, 134–143,
https://doi.org/10.1016/j.scitotenv.2017.03.021, 2017.

Partington, D., Therrien, R., Simmons, C., and Brunner, P.:
Blueprint for a coupled model of sedimentology, hydrology,
and hydrogeology in streambeds, Rev. Geophys., 55, 287–309,
https://doi.org/10.1002/2016RG000530, 2017.

Pianosi, F., Iwema, J., Rosolem, R., and Wagener, T.: A
multimethod global sensitivity analysis approach to sup-
port the calibration and evaluation of Land Surface
Models, Sens. Anal. Earth Obs. Model., 2017, 125–144,
https://doi.org/10.1016/b978-0-12-803011-0.00007-0, 2017.

Plischke, E., Borgonovo, E., and Smith, C.: Global sensitivity mea-
sures from given data. European Eur, J. Oper. Res., 226, 536–
550, https://doi.org/10.1016/j.ejor.2012.11.047, 2013.

Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke,
A., Gerten, D., Gosling, S. N., Grillakis, M., Gudmundsson, L.,
Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L.,
Schewe, J., Müller Schmied, H., Stacke, T., Telteu, C.-E., Thiery,
W., Veldkamp, T., Zhao, F., and Wada, Y.: Global terrestrial
water storage and drought severity under climate change, Nat.
Clim. Change, 11, 226–233, https://doi.org/10.1038/s41558-
020-00972-w, 2021.

Qiu, J., Yang, Q., Zhang, X., Huang, M., Adam, J. C., and Malek,
K.: Implications of water management representations for wa-
tershed hydrologic modeling in the Yakima River Basin, Hydrol
Earth Syst. Sci., 23, 35–49, https://doi.org/10.5194/hess-23-35-
2019, 2019.

Rode, M., Suhr, U., and Wriedt, G.: Multi-objective cali-
bration of a river water quality model—Information
content of calibration data, Ecol. Model., 204, 129–142,
https://doi.org/10.1016/j.ecolmodel.2006.12.037, 2007.

Ryken, A., Bearup, L., Jefferson, J., Constantine, P., and Maxwell,
R.: Sensitivity and model reduction of simulated snow pro-
cesses: Contrasting observational and parameter uncertainty
to improve prediction, Adv. Water Resour., 135, 103473,
https://doi.org/10.1016/j.advwatres.2019.103473, 2020.

Santos, L., Andersson, J., and Arheimer, B.: Evaluation of
parameter sensitivity of a rainfall-runoff model over a
global catchment set, Hydrolog. Sci. J., 67, 342–357,
https://doi.org/10.1080/02626667.2022.2035388, 2022.

Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H.,
and Dai, Y.: Mapping the global depth to bedrock for land
surface modeling, J. Adv. Model. Earth Syst., 9, 65–88,
https://doi.org/10.1002/2016ms000686, 2017.

Shi, W. and Wang, Q.: An Analytical Model of Multi-
layered Heat Transport to Estimate Vertical Streambed Fluxes
and Sediment Thermal Properties, J. Hydrol., 625, 129963,
https://doi.org/10.1016/j.jhydrol.2023.129963, 2023.

https://doi.org/10.5194/hess-28-21-2024 Hydrol. Earth Syst. Sci., 28, 21–48, 2024

https://doi.org/10.1016/S0309-1708(03)00087-3
https://pubs.usgs.gov/publication/70201572
https://pubs.usgs.gov/publication/70201572
https://doi.org/10.1002/hyp.7530
https://doi.org/10.1016/0951-8320(93)90097-i
https://doi.org/10.1016/0951-8320(93)90097-i
https://doi.org/10.1002/vzj2.20163
https://doi.org/10.3133/ds1052
https://doi.org/10.2166/hydro.2021.081
https://doi.org/10.1002/eco.1462
https://doi.org/10.5194/hess-13-69-2009
https://doi.org/10.1016/j.envsoft.2020.104676
https://doi.org/10.1016/j.envsoft.2015.02.010
https://doi.org/10.1016/j.jhydrol.2020.125431
https://doi.org/10.1111/1752-1688.12389
https://doi.org/10.1111/1752-1688.12389
https://doi.org/10.2307/1269043
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
https://doi.org/10.1016/j.envsoft.2011.08.010
https://doi.org/10.1016/j.scitotenv.2017.03.021
https://doi.org/10.1002/2016RG000530
https://doi.org/10.1016/b978-0-12-803011-0.00007-0
https://doi.org/10.1016/j.ejor.2012.11.047
https://doi.org/10.1038/s41558-020-00972-w
https://doi.org/10.1038/s41558-020-00972-w
https://doi.org/10.5194/hess-23-35-2019
https://doi.org/10.5194/hess-23-35-2019
https://doi.org/10.1016/j.ecolmodel.2006.12.037
https://doi.org/10.1016/j.advwatres.2019.103473
https://doi.org/10.1080/02626667.2022.2035388
https://doi.org/10.1002/2016ms000686
https://doi.org/10.1016/j.jhydrol.2023.129963


48 S. A. Abbas et al.: A framework for parameter estimation for holistic hydrologic modeling using SWAT+

Sith, R., Watanabe, A., Nakamura, T., Yamamoto, T., and Nadaoka,
K.: Assessment of water quality and evaluation of best man-
agement practices in a small agricultural watershed adjacent to
Coral Reef area in Japan, Agr. Water Manage., 213, 659–673,
https://doi.org/10.1016/j.agwat.2018.11.014, 2019.

Skinner, K. and Maupin, M.: Point-source nutrient loads to streams
of the conterminous United States, 2012 (No. 1101), US Geolog-
ical Survey, https://doi.org/10.3133/ds1101, 2019.

Soil Survey Staff: Gridded soil survey geo-
graphic (gSSURGO) database for the contermi-
nous United States, https://data.nal.usda.gov/dataset/
gridded-soil-survey-geographic-database-gssurgo (last ac-
cess: 1 July 2020), 2014.

SWAT – Soil & Water Assessment Tool: gwflow module for
SWAT+, https://swat.tamu.edu/software/plus/gwflow/ (last ac-
cess: 22 December 2023), 2023.

Valayamkunnath, P., Barlage, M., Chen, F., Gochis, D., and
Franz, K.: Mapping of 30-meter resolution tile-drained crop-
lands using a geospatial modeling approach, Sci. Data, 7, 257,
https://doi.org/10.1038/s41597-020-00596-x, 2020.

Van Leeuwen, P. and Evensen, G.: Data assimilation and in-
verse methods in terms of a probabilistic formulation, Mon.
Weather Rev., 124, 2898–2913, https://doi.org/10.1175/1520-
0493(1996)124<2898:DAAIMI>2.0.CO;2, 1996.

Wang, Y., Bian, J., Zhao, Y., Tang, J., and Jia, Z.: Assessment of
future climate change impacts on nonpoint source pollution in
snowmelt period for a cold area using SWAT, Sci. Rep., 8, 1–13,
https://doi.org/10.1038/s41598-018-20818-y, 2018.

Wei, X., Bailey, R., and Tasdighi, A.: Using the SWAT model in
intensively managed irrigated watersheds: Model modification
and Application, J. Hydrol. Eng., 23, 04018044-1–04018044-17,
https://doi.org/10.1061/(asce)he.1943-5584.0001696, 2018.

White, J.: A model-independent iterative ensemble smoother
for efficient history-matching and uncertainty quantification in
very high dimensions, Environ. Model. Softw., 109, 191–201,
https://doi.org/10.1016/j.envsoft.2018.06.009, 2018.

White, J., Hunt, R., Fienen, M., and Doherty, J.: Approaches to
Highly Parameterized Inversion: PEST++ Version 5, a Software
Suite for Parameter Estimation, Uncertainty Analysis, Manage-
ment Optimization and Sensitivity Analysis, US Geological Sur-
vey Techniques and Methods 7C26, US Geological Survey, p. 52,
https://doi.org/10.3133/tm7C26, 2020.

White, M. J., Arnold, J. G., Bieger, K., Allen, P. M., Gao, J.,
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