Articles | Volume 27, issue 19
https://doi.org/10.5194/hess-27-3621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data
Ibrahim Nourein Mohammed
CORRESPONDING AUTHOR
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center,
Mail Code 617.0, Greenbelt, MD 20771, USA
Science Applications International Corporation, 12010 Sunset Hills
Road, Reston, VA 20190, USA
Environmental Sciences and Policy Program, Johns Hopkins University,
555 Pennsylvania Avenue, NW, Washington, DC 20001, USA
Elkin Giovanni Romero Bustamante
Civil and Construction Engineering Department, Brigham Young
University, Provo, UT 84602, USA
John Dennis Bolten
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center,
Mail Code 617.0, Greenbelt, MD 20771, USA
Everett James Nelson
Civil and Construction Engineering Department, Brigham Young
University, Provo, UT 84602, USA
Related authors
No articles found.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Kel N. Markert, Hyongki Lee, Gustavious P. Williams, E. James Nelson, Daniel P. Ames, Robert E. Griffin, and Franz J. Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3491, https://doi.org/10.5194/egusphere-2024-3491, 2024
Short summary
Short summary
Flooding is a major problem and predicting it accurately over large areas is tough. This study tested a new approach to forecast floods across a large region in the United States. By dividing the area into smaller areas to develop the prediction models and then combining, the method successfully simulated surface water extent for both high and low flow periods. The results were more accurate than existing approaches with similar methods which can improve flood forecasting for larger areas.
Cited articles
Acker, J. G. and Leptoukh, G.: Online analysis enhances use of NASA Earth
science data, EOS Trans. AGU, 88, 14–17,
https://doi.org/10.1029/2007EO020003, 2007.
Arnold, J. G. and Fohrer, N.: SWAT2000: Current capabilities and research
opportunities in applied watershed modelling, Hydrol. Process., 19, 563–572,
https://doi.org/10.1002/hyp.5611, 2005.
Berrick, S. W., Leptoukh, G., Farley, J. D., and Hualan, R.: Giovanni: A Web
Service Workflow-Based Data Visualization and Analysis System, IEEE T.
Geosci. Remote, 47, 106–113,
https://doi.org/10.1109/TGRS.2008.2003183, 2009.
Bustamante, E. and Mohammed, I. N.: tethys_nasaaccess, Zenodo [code], https://doi.org/10.5281/zenodo.8422540, 2023.
Bustamante, G. R., Nelson, E. J., Ames, D. P., Williams, G. P., Jones, N.
L., Boldrini, E., Chernov, I., and Sanchez Lozano, J. L.: Water Data
Explorer: An Open-Source Web Application and Python Library for Water
Resources Data Discovery, Water, 13, 1850,
https://doi.org/10.3390/w13131850, 2021.
Dinku, T., Hailemariam, K., Maidment, R., Tarnavsky, E., and Connor, S.:
Combined use of satellite estimates and rain gauge observations to generate
high-quality historical rainfall time series over Ethiopia, Int. J.
Climatol., 34, 2489–2504, https://doi.org/10.1002/joc.3855, 2014.
Dinku, T., Thomson, M. C., Cousin, R., del Corral, J., Ceccato, P., Hansen,
J., and Connor, S. J.: Enhancing National Climate Services (ENACTS) for
development in Africa, Clim. Dev., 10, 664–672,
https://doi.org/10.1080/17565529.2017.1405784, 2018.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Gan, T., Tarboton, D. G., Dash, P., Gichamo, T. Z., and Horsburgh, J. S.:
Integrating hydrologic modeling web services with online data sharing to
prepare, store, and execute hydrologic models, Environ. Modell. Softw., 130,
104731, https://doi.org/10.1016/j.envsoft.2020.104731, 2020.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.:
GPM IMERG Early Precipitation L3 1 day 0.1 degree x 0.1 degree V06,
GES DISC [data set], https://doi.org/10.5067/GPM/IMERGDE/DAY/06, 2019.
Khattar, R., Hales, R., Ames, D. P., Nelson, E. J., Jones, N. L., and
Williams, G.: Tethys App Store: Simplifying deployment of web applications
for the international GEOGloWS initiative, Environ. Modell. Softw., 146,
105227, https://doi.org/10.1016/j.envsoft.2021.105227, 2021.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land-surface water and energy fluxes for
general-circulation models, J. Geophys. Res., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Lynnes, C., Strub, R., Seiler, E., Joshi, T., and MacHarrie, P.: Mirador: A
Simple Fast Search Interface for Global Remote Sensing Data Sets, IEEE
T. Geosci. Remote, 47, 92–96,
https://doi.org/10.1109/TGRS.2008.2002646, 2009.
Maurer, E. P. and Hidalgo, H. G.: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods, Hydrol. Earth Syst. Sci., 12, 551–563, https://doi.org/10.5194/hess-12-551-2008, 2008.
McDonald, S., Mohammed, I. N., Bolten, J. D., Pulla, S., Meechaiya, C.,
Markert, A., Nelson, E. J., Srinivasan, R., and Lakshmi, V.: Web-based
decision support system tools: The Soil and Water Assessment Tool Online
visualization and analyses (SWATOnline) and NASA earth observation data
downloading and reformatting tool (NASAaccess), Environ. Modell. Softw.,
120, 104499, https://doi.org/10.1016/j.envsoft.2019.104499, 2019.
McStraw, T. C., Pulla, S. T., Jones, N. L., Williams, G. P., David, C. H.,
Nelson, J. E., and Ames, D. P.: An Open-Source Web Application for Regional
Analysis of GRACE Groundwater Data and Engaging Stakeholders in Groundwater
Management, J. Am. Water Resour. As., 58, 1002–1016,
https://doi.org/10.1111/1752-1688.12968, 2022.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Clim. Change,
109, 213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Mohammed, I. N.: NASAaccess Home, OSF [data set], https://doi.org/10.17605/OSF.IO/CTJ2K, 2023a.
Mohammed, I.: NASAacess, Zenodo [code], https://doi.org/10.5281/zenodo.8422392, 2023b.
Mohammed, I. N., and Bast, D.: r-nasaaccess, Zenodo [code], https://doi.org/10.5281/zenodo.8422508, 2023.
Mohammed, I. N., Bolten, J., Srinivasan, R., and Lakshmi, V.: Improved
hydrological decision support system for the Lower Mekong River Basin using
satellite-based earth observations, Remote Sens., 10, 885–901,
https://doi.org/10.3390/rs10060885, 2018.
Mohammed, I. N., Bolten, J. D., Souter, N. J., Shaad, K., and Vollmer, D.:
Diagnosing challenges and setting priorities for sustainable water resource
management under climate change, Sci. Rep., 12, 796–810,
https://doi.org/10.1038/s41598-022-04766-2, 2022.
NASA: NASA Open Source Agreement v1.3, https://opensource.org/license/nasa1-3-php/ (last access: 6 October 2023), 2023.
National Academies of Sciences Engineering and Medicine: Open Science
by Design: Realizing a Vision for 21st Century Research, National Academies
Press, Washington, DC, 232 pp., https://doi.org/10.17226/25116, 2018.
Nelson, E. J., Pulla, S. T., Matin, M. A., Shakya, K., Jones, N., Ames, D.
P., Ellenburg, W. L., Markert, K. N., David, C. H., Zaitchik, B. F., Gatlin,
P., and Hales, R.: Enabling Stakeholder Decision-Making With Earth
Observation and Modeling Data Using Tethys Platform, Front. Environ. Sci.,
7, 148–162, https://doi.org/10.3389/fenvs.2019.00148, 2019.
Nsengiyumva, G., Dinku, T., Cousin, R., Khomyakov, I., Vadillo, A.,
Faniriantsoa, R., and Grossi, A.: Transforming Access to and Use of Climate
Information Products Derived from Remote Sensing and In Situ Observations,
Remote Sens., 13, 4721, https://doi.org/10.3390/rs13224721, 2021.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Qiao, X., Li, Z., Ames, D. P., Nelson, E. J., and Swain, N. R.: Simplifying
the deployment of OGC web processing services (WPS) for environmental
modelling – Introducing Tethys WPS Server, Environ. Modell. Softw., 115,
38–50, https://doi.org/10.1016/j.envsoft.2019.01.021, 2019.
R Development Core Team: R: A language and environment for statistical
computing, R Found. for Stat. Comput., https://CRAN.R-project.org (last access: 6 October 2023), 2022.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/bams-85-3-381, 2004.
Saah, D., Johnson, G., Ashmall, B., Tondapu, G., Tenneson, K., Patterson,
M., Poortinga, A., Markert, K., Quyen, N. H., San Aung, K., Schlichting, L.,
Matin, M., Uddin, K., Aryal, R. R., Dilger, J., Lee Ellenburg, W.,
Flores-Anderson, A. I., Wiell, D., Lindquist, E., Goldstein, J., Clinton,
N., and Chishtie, F.: Collect Earth: An online tool for systematic reference
data collection in land cover and use applications, Environ. Modell. Softw.,
118, 166–171, https://doi.org/10.1016/j.envsoft.2019.05.004, 2019.
Sanchez Lozano, J., Romero Bustamante, G., Hales, R. C., Nelson, E. J.,
Williams, G. P., Ames, D. P., and Jones, N. L.: A Streamflow Bias Correction
and Performance Evaluation Web Application for GEOGloWS ECMWF Streamflow
Services, Hydrology, 8, 71–91, https://doi.org/10.3390/hydrology8020071, 2021.
Swain, N. R., Latu, K., Christensen, S. D., Jones, N. L., Nelson, E. J.,
Ames, D. P., and Williams, G. P.: A review of open source software solutions
for developing water resources web applications, Environ. Modell. Softw.,
67, 108–117, https://doi.org/10.1016/j.envsoft.2015.01.014, 2015.
Swain, N. R., Christensen, S. D., Snow, A. D., Dolder, H.,
Espinoza-Dávalos, G., Goharian, E., Jones, N. L., Nelson, E. J., Ames,
D. P., and Burian, S. J.: A new open source platform for lowering the
barrier for environmental web app development, Environ. Modell. Softw., 85,
11–26, https://doi.org/10.1016/j.envsoft.2016.08.003, 2016.
Tague, C. L. and Band, L. E.: RHESSys: Regional Hydro-Ecologic Simulation
System – An object-oriented approach to spatially distributed modeling of
carbon, water, and nutrient cycling, Earth Interact., 8, 1–42,
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2, 2004.
Talia, D., Trunfio, P., and Marozzo, F.: Chapter 5 – Research Trends in Big
Data Analysis, in: Data Analysis in the Cloud, edited by: Talia, D.,
Trunfio, P., and Marozzo, F., Elsevier, Boston, 123–138,
https://doi.org/10.1016/B978-0-12-802881-0.00005-6, 2016.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Teng, W., Rui, H., Vollmer, B., de Jeu, R., Fang, F., Lei, G.-D., and
Parinussa, R.: NASA Giovanni, in: Remote Sensing of the Terrestrial Water
Cycle, 331–346, https://doi.org/10.1002/9781118872086.ch20, 2014.
Teng, W., Rui, H., Strub, R., and Vollmer, B.: Optimal Reorganization of
NASA Earth Science Data for Enhanced Accessibility and Usability for the
Hydrology Community, J. Am. Water Resour. As., 52, 825–835,
https://doi.org/10.1111/1752-1688.12405, 2016.
Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B.: Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping, Hydrol. Earth Syst. Sci., 16, 3309–3314, https://doi.org/10.5194/hess-16-3309-2012, 2012.
Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., and Nemani, R.:
NASA Global Daily Downscaled Projections, CMIP6, Sci. Data, 9, 262–267,
https://doi.org/10.1038/s41597-022-01393-4, 2022.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J.,
Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N. B., and Wilson, J. S.: The
Future of Hydrology: An Evolving Science for a Changing World, Water Resour.
Res., 46, 1–10, https://doi.org/10.1029/2009wr008906, 2010.
Wei, J., Yang, W., Albayrak, A., Zhao, P., Zeng, J., Shen, S., Johnson, J.,
and Kempler, S.: Characterize Aerosols from MODIS/MISR/OMI/MERRA-2: Dynamic
Image Browse Perspective, AGU Fall Meeting 2016, San Francisco, CA, 12–16 December,
https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/175017 (last access: 6 October 2023), 2016.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed
hydrology-vegetation model for complex terrain, Water Resour. Res., 30,
1665–1679, https://doi.org/10.1029/94WR00436, 1994.
Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: Long-range
experimental hydrologic forecasting for the eastern United States, J.
Geophys. Res.-Atmos., 107, 4429, https://doi.org/10.1029/2001jd000659, 2002.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
Implications of Dynamical and Statistical Approaches to Downscaling Climate
Model Outputs, Clim. Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
Xu, H., Berres, A., Liu, Y., Allen-Dumas, M. R., and Sanyal, J.: An overview
of visualization and visual analytics applications in water resources
management, Environ. Modell. Softw., 153, 105396,
https://doi.org/10.1016/j.envsoft.2022.105396, 2022.
Executive editor
This paper presents an open-source software package for earth observation data accessing, reformatting, and visualization. This tool can be useful to the broad science community and stakeholders for effective use of remote sensing products. It lowers the technical barriers and simplifies the process of accessing earth observation data. It works for multiple operating platforms.
This paper presents an open-source software package for earth observation data accessing,...
Short summary
We present an open-source platform in response to the NASA Open-Source Science Initiative for accessing and presenting quantitative remote-sensing earth observation,and climate data. With our platform scientists, stakeholders and concerned citizens can engage in the exploration, modeling, and understanding of data. We envisioned this platform as lowering the technical barriers and simplifying the process of accessing and leveraging additional modeling frameworks for data.
We present an open-source platform in response to the NASA Open-Source Science Initiative for...