Articles | Volume 27, issue 18
https://doi.org/10.5194/hess-27-3351-2023
https://doi.org/10.5194/hess-27-3351-2023
Research article
 | 
21 Sep 2023
Research article |  | 21 Sep 2023

Uncertainty in three dimensions: the challenges of communicating probabilistic flood forecast maps

Valérie Jean, Marie-Amélie Boucher, Anissa Frini, and Dominic Roussel

Related authors

Cold climates, complex hydrology: can a land surface model accurately simulate deep percolation?
Alireza Amani, Marie-Amélie Boucher, Alexandre R. Cabral, Vincent Vionnet, and Étienne Gaborit
Hydrol. Earth Syst. Sci., 29, 2445–2465, https://doi.org/10.5194/hess-29-2445-2025,https://doi.org/10.5194/hess-29-2445-2025, 2025
Short summary
Hybrid forecasting: blending climate predictions with AI models
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023,https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Large-scale snow data assimilation using a spatialized particle filter: recovering the spatial structure of the particles
Jean Odry, Marie-Amélie Boucher, Simon Lachance-Cloutier, Richard Turcotte, and Pierre-Yves St-Louis
The Cryosphere, 16, 3489–3506, https://doi.org/10.5194/tc-16-3489-2022,https://doi.org/10.5194/tc-16-3489-2022, 2022
Short summary
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022,https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Investigating ANN architectures and training to estimate snow water equivalent from snow depth
Konstantin F. F. Ntokas, Jean Odry, Marie-Amélie Boucher, and Camille Garnaud
Hydrol. Earth Syst. Sci., 25, 3017–3040, https://doi.org/10.5194/hess-25-3017-2021,https://doi.org/10.5194/hess-25-3017-2021, 2021
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Theory development
Interdecadal cycles in Australian annual rainfall
Tobias F. Selkirk, Andrew W. Western, and J. Angus Webb
Hydrol. Earth Syst. Sci., 29, 2167–2184, https://doi.org/10.5194/hess-29-2167-2025,https://doi.org/10.5194/hess-29-2167-2025, 2025
Short summary
Synchronization frequency analysis and stochastic simulation of multi-site flood flows based on the complicated vine copula structure
Xinting Yu, Yue-Ping Xu, Yuxue Guo, Siwei Chen, and Haiting Gu
Hydrol. Earth Syst. Sci., 29, 179–214, https://doi.org/10.5194/hess-29-179-2025,https://doi.org/10.5194/hess-29-179-2025, 2025
Short summary
Phosphorus transport in a hotter and drier climate: in-channel release of legacy phosphorus during summer low-flow conditions
Christine L. Dolph, Jacques C. Finlay, Brent Dalzell, and Gary W. Feyereisen
Hydrol. Earth Syst. Sci., 28, 5249–5294, https://doi.org/10.5194/hess-28-5249-2024,https://doi.org/10.5194/hess-28-5249-2024, 2024
Short summary
Have river flow droughts become more severe? A review of the evidence from the UK – a data-rich temperate environment
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-293,https://doi.org/10.5194/hess-2024-293, 2024
Revised manuscript accepted for HESS
Short summary
User-Validated Drought Vulnerability Factors in Forested Cold Climates: Multi-Sectoral Perspectives from Sweden
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-1988,https://doi.org/10.5194/egusphere-2024-1988, 2024
Short summary

Cited articles

Anderson-Berry, L., Achilles, T., Panduck, S., Mackie, B., Canterford, S., Leck, A., and Brid, D.: Sending a message : how signifiant events have influenced the warnings landscape in Australia, Int. J. Disast. Risk Re., 30, 50–17, 2018. a
Belin, P., Verrhiest-Leblanc, G., and Valantin, P.-Y.: Exploitation des outils d’anticipation des phénomènes pour l’aide à l’anticipation, La Houille Blanche, 3-4, 31–38, 2019. a
Beven, K.: Rainfall-runoff modelling: a primer, 2nd edn., Wiley-Blackwell, ISBN 978-0-470-71459-1, 2012.  a
Carr, R., Montz, B., Maxfield, K., Hoekskstra, S., Semmens, K., and Goldman, E.: Effectively communicating risk and uncertainty to the public, B. Am. Meteorol. Soc., 97, 1649–1665, 2016. a, b, c, d, e, f, g
Carr, R., Montz, B., Semmens, K., Maxfield, K., Connolly, S., Ahnert, P., Shedd, R., and Elliott, J.: Major risks, uncertain outcomes : making ensemble forecasts work for multiple audiences, Weather Forecast., 33, 1359–1373, 2018. a, b, c, d, e
Download
Short summary
Flood forecasts are only useful if they are understood correctly. They are also uncertain, and it is difficult to present all of the information about the forecast and its uncertainty on a map, as it is three dimensional (water depth and extent, in all directions). To overcome this, we interviewed 139 people to understand their preferences in terms of forecast visualization. We propose simple and effective ways of presenting flood forecast maps so that they can be understood and useful.
Share