Articles | Volume 27, issue 9
https://doi.org/10.5194/hess-27-1841-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1841-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression
Lena Katharina Schmidt
CORRESPONDING AUTHOR
Institute of Environmental Sciences and Geography, University of
Potsdam, Potsdam 14476, Germany
Till Francke
Institute of Environmental Sciences and Geography, University of
Potsdam, Potsdam 14476, Germany
Peter Martin Grosse
Institute of Environmental Sciences and Geography, University of
Potsdam, Potsdam 14476, Germany
Christoph Mayer
Bavarian Academy of Sciences and Humanities, Munich 80539, Germany
Axel Bronstert
Institute of Environmental Sciences and Geography, University of
Potsdam, Potsdam 14476, Germany
Related authors
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Martin Rückamp, Gong Cheng, Karlheinz Gutjahr, Marco Möller, Petri K. E. Pellikka, and Christoph Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3150, https://doi.org/10.5194/egusphere-2025-3150, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The study simulates the 21st-century evolution of Great Aletsch Glacier and Hintereisferner using full-Stokes ice dynamics and surface mass balance under different emission scenarios. Results show significant ice loss, with Hintereisferner expected to disappear by mid-century. Great Aletsch Glacier vanish by the end of the century under high-emission scenarios, but persist under lower-emission scenarios. These trends agree with large-scale models except some variability.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Marie-Therese Schmehl, Yojana Adhikari, Cathrina Balthasar, Anja Binder, Danica Clerc, Sophia Dobkowitz, Werner Gerwin, Kristin Günther, Heinrich Hartong, Thilo Heinken, Carsten Hess, Pierre L. Ibisch, Florent Jouy, Loretta Leinen, Thomas Raab, Frank Repmann, Susanne Rönnefarth, Lilly Rohlfs, Marina Schirrmacher, Jens Schröder, Maren Schüle, Andrea Vieth-Hillebrand, and Till Francke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-313, https://doi.org/10.5194/essd-2025-313, 2025
Preprint under review for ESSD
Short summary
Short summary
We present data recorded by eight institutions within the PYROPHOB project, running from 2020 to 2024 at two forest research sites in northeastern Germany. The aim of the project was to monitor abiotic and biotic parameters of forest regrowth under different management regimes on former wildfire sites. The multitude of collected data allows for detailed analyses of the observables separately, as well as their interaction for a more multidisciplinary view on forest recovery after a wildfire.
Theresa Dobler, Wilfried Hagg, Martin Rückamp, Thorsten Seehaus, and Christoph Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2513, https://doi.org/10.5194/egusphere-2025-2513, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how a glacier in the Austrian Alps moves more slowly over time due to climate change. By combining long-term field data with recent aerial images, we show how thinning reduce glacier flow. Standard satellite methods failed to detect this slow movement, so we used manual tracking to create a reliable map. Our findings help understand changes in glacier behavior in a warming climate.
Nazaré Suziane Soares, Carlos Alexandre Gomes Costa, Till Francke, Christian Mohr, Wolfgang Schwanghart, and Pedro Henrique Augusto Medeiros
EGUsphere, https://doi.org/10.5194/egusphere-2025-884, https://doi.org/10.5194/egusphere-2025-884, 2025
Short summary
Short summary
We use drone surveys to map river intermittency in reaches and classify them into "Wet", "Transition", "Dry" or "Not Determined". We train Random Forest models with 40 candidate predictors, and select altitude, drainage area, distance from dams and dynamic predictors. We separate different models based on dynamic predictors: satellite indices (a) and (b); or (c) accumulated precipitation (30 days). Model (a) is the most successful in simulating intermittency both temporally and spatially.
Akash M. Patil, Christoph Mayer, Thorsten Seehaus, and Alexander R. Groos
EGUsphere, https://doi.org/10.5194/egusphere-2025-615, https://doi.org/10.5194/egusphere-2025-615, 2025
Short summary
Short summary
We studied how snow and ice layers form and change in the Aletsch Glacier using radar and simple models. Our research mapped these layers' density and tracked their history over 12 years. This helps improve the glacier mass balance estimates. Using non-invasive radar techniques and models, we offer a new way to understand glaciers' evolution under regional climate conditions.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848, https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Short summary
The German federal state of Brandenburg is particularly prone to soil moisture droughts. To support the management of related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a collaboration of research institutions and federal state agencies, and it is the first of its kind in Germany to have started operation. In this brief communication, we outline the network design and share first results.
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024, https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Short summary
We present a cluster-based approach for inferring sediment discharge event types from suspended sediment concentration and streamflow. Applying it to a glacierised catchment, we find event magnitude and shape complexity to be the key characteristics separating event types, while hysteresis is less important. The four event types are attributed to compound rainfall–melt extremes, high snowmelt and glacier melt, freeze–thaw-modulated snow-melt and precipitation, and late-season glacier melt.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024, https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique used to obtain estimates of soil water content (SWC) at a horizontal footprint of around 150 m and a vertical penetration depth of up to 30 cm. However, typical CRNS applications require the local calibration of a function which converts neutron counts to SWC. As an alternative, we propose a generalized function as a way to avoid the use of local reference measurements of SWC and hence a major source of uncertainty.
Stefano Gianessi, Matteo Polo, Luca Stevanato, Marcello Lunardon, Till Francke, Sascha E. Oswald, Hami Said Ahmed, Arsenio Toloza, Georg Weltin, Gerd Dercon, Emil Fulajtar, Lee Heng, and Gabriele Baroni
Geosci. Instrum. Method. Data Syst., 13, 9–25, https://doi.org/10.5194/gi-13-9-2024, https://doi.org/10.5194/gi-13-9-2024, 2024
Short summary
Short summary
Soil moisture monitoring is important for many applications, from improving weather prediction to supporting agriculture practices. Our capability to measure this variable is still, however, limited. In this study, we show the tests conducted on a new soil moisture sensor at several locations. The results show that the new sensor is a valid and compact alternative to more conventional, non-invasive soil moisture sensors that can pave the way for a wide range of applications.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 25, 4807–4824, https://doi.org/10.5194/hess-25-4807-2021, https://doi.org/10.5194/hess-25-4807-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil moisture in footprints extending over hectometres in the horizontal and decimetres in the vertical. This study, however, demonstrates the potential of CRNS to obtain spatio-temporal patterns of soil moisture beyond isolated footprints. To that end, we analyse data from a unique observational campaign that featured a dense network of more than 20 neutron detectors in an area of just 1 km2.
Joschka Geissler, Christoph Mayer, Juilson Jubanski, Ulrich Münzer, and Florian Siegert
The Cryosphere, 15, 3699–3717, https://doi.org/10.5194/tc-15-3699-2021, https://doi.org/10.5194/tc-15-3699-2021, 2021
Short summary
Short summary
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high spatial resolution. Twenty-three glaciers within the Ötztal Alps are analyzed. We compare photogrammetric and glaciologic mass balances of the Vernagtferner by using the ELA for our density assumption and an UAV survey for a temporal correction of the geodetic mass balances. The results reveal regions of anomalous mass balance and allow estimates of the imbalance between mass balances and ice dynamics.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Christoph Mayer, Markus Weber, Anja Wendt, and Wilfried Hagg
Polarforschung, 89, 1–7, https://doi.org/10.5194/polf-89-1-2021, https://doi.org/10.5194/polf-89-1-2021, 2021
Short summary
Short summary
Only five small glaciers exist in the German part of the Alps. They are too small to play an important role in the regional hydrological system, but are significant remnants of the earlier glaciation of the northern Alps. Therefore, they have been mapped already in the 19th century and are monitored since about 1950. A survey in 2018 documents the recent status of the glaciers. The synthesis of the long term monitoring and an estimate of the future for these small ice bodies is presented here.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Cited articles
Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006), The Cryosphere, 3, 205–215, https://doi.org/10.5194/tc-3-205-2009, 2009.
Al-Mukhtar, M.: Random forest, support vector machine, and neural networks
to modelling suspended sediment in Tigris River-Baghdad, Environ. Monit.
Assess., 191, 673, https://doi.org/10.1007/s10661-019-7821-5, 2019.
Antoniazza, G. and Lane, S. N.: Sediment yield over glacial cycles: A
conceptual model, Prog. Phys. Geogr. Earth Environ., 58, 842–865,
https://doi.org/10.1177/0309133321997292, 2021.
Ballantyne, C. K.: Paraglacial geomorphology, Quat. Sci. Rev., 21,
1935–2017, https://doi.org/10.1016/S0277-3791(02)00005-7, 2002.
Bendixen, M., Lønsmann Iversen, L., Anker Bjørk, A., Elberling, B.,
Westergaard-Nielsen, A., Overeem, I., Barnhart, K. R., Abbas Khan, S., Box,
J. E., Abermann, J., Langley, K., and Kroon, A.: Delta progradation in
Greenland driven by increasing glacial mass loss, Nature, 550, 101–104,
https://doi.org/10.1038/nature23873, 2017a.
Bendixen, M., Lønsmann Iversen, L., Anker Bjørk, A., Elberling, B.,
Westergaard-Nielsen, A., Overeem, I., Barnhart, K. R., Abbas Khan, S., Box,
J. E., Abermann, J., Langley, K., and Kroon, A.: Delta progradation in
Greenland driven by increasing glacial mass loss, Nature, 550, 101–104,
https://doi.org/10.1038/nature23873, 2017b.
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.
Bergmann, H. and Reinwarth, O.: Die Pegelstation Vernagtbach (Ötztaler
Alpen) – Planung, Bau und Messergebnisse, Z. Für Gletscherkunde
Glazialgeol., 12, 57–180, 1977.
Bilotta, G. S. and Brazier, R. E.: Understanding the influence of suspended
solids on water quality and aquatic biota, Water Res., 42, 2849–2861,
https://doi.org/10.1016/j.watres.2008.03.018, 2008.
Bogen, J.: The impact of climate change on glacial sediment delivery to
rivers, in: Sediment Dynamics in Changing Environments, Proceedings of a symposium held in Christchurch, New Zealand, December 2008, IAHS Publ., 325, 432–439, 2008.
Braun, L. N., Escher-Vetter, H., Siebers, M., and Weber, M.: Water Balance
of the highly Glaciated Vernagt Basin, Ötztal Alps, in: The water
balance of the alps: what do we need to protect the water resources of the
Alps?, Proceedings of the conference held at Innsbruck university, 28–29 September 2006, Univ. Press, Innsbruck, https://diglib.uibk.ac.at/ulbdok/content/pageview/268995 (last access: 8 May 2023), 2007.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.:
Classification And Regression Trees, Routledge, New York, 368 pp., https://doi.org/10.1201/9781315139470, 1984.
Brooke, S., Chadwick, A. J., Silvestre, J., Lamb, M. P., Edmonds, D. A., and
Ganti, V.: Where rivers jump course, Science, 376, 987–990,
https://doi.org/10.1126/science.abm1215, 2022.
Buckel, J. and Otto, J.-C.: The Austrian Glacier Inventory GI 4 (2015) in
ArcGis (shapefile) format, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.887415, 2018.
Carrivick, J. L. and Heckmann, T.: Short-term geomorphological evolution of
proglacial systems, Geomorphology, 287, 3–28,
https://doi.org/10.1016/j.geomorph.2017.01.037, 2017.
Chiarle, M., Geertsema, M., Mortara, G., and Clague, J. J.: Relations
between climate change and mass movement: Perspectives from the Canadian
Cordillera and the European Alps, Glob. Planet. Change, 202, 103499,
https://doi.org/10.1016/j.gloplacha.2021.103499, 2021.
Costa, A., Molnar, P., Stutenbecker, L., Bakker, M., Silva, T. A., Schlunegger, F., Lane, S. N., Loizeau, J.-L., and Girardclos, S.: Temperature signal in suspended sediment export from an Alpine catchment, Hydrol. Earth Syst. Sci., 22, 509–528, https://doi.org/10.5194/hess-22-509-2018, 2018.
Delaney, I. and Adhikari, S.: Increased Subglacial Sediment Discharge in a
Warming Climate: Consideration of Ice Dynamics, Glacial Erosion, and Fluvial
Sediment Transport, Geophys. Res. Lett., 47, e2019GL085672,
https://doi.org/10.1029/2019GL085672, 2020.
Delaney, I., Bauder, A., Werder, M., and Farinotti, D.: Regional and annual
variability in subglacial sediment transport by water for two glaciers in
the Swiss Alps, Front. Earth Sci., 6, 175,
https://doi.org/10.3929/ethz-b-000305762, 2018.
eHYD: Hydrographic Service, Austria, Bundesministerium für
Landwirtschaft, Regionen und Tourismus [data set], https://ehyd.gv.at/ (last access: 8 May 2023), 2021.
Escher-Vetter, H.: Climate change information derived from long-term
measurements of winter and summer mass balance, in: Extended Abstracts, 29th
International Conference on Alpine Meteorology, Chambéry, France,
465–468, 2007.
Escher-Vetter, H. and Siebers, M.: Sensitivity of glacier runoff to summer
snowfall events, Ann. Glaciol., 46, 309–315,
https://doi.org/10.3189/172756407782871251, 2007.
Escher-Vetter, H., Oerter, H., Reinwarth, O., Braun, L. N., and Weber, M.:
Hydrological and meteorological records from the Vernagtferner Basin –
Vernagtbach station, for the years 1970 to 2001, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.775113, 2012.
Escher-Vetter, H., Braun, L. N., and Siebers, M.: Hydrological and
meteorological records from the Vernagtferner Basin – Vernagtbach station,
for the years 2002 to 2012, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.829530, 2014.
Francke, T.: ssc_prediction – Prediction of sedigraphs and
hydrographs from other predictors using RF/QRF, GitHub [code],
https://github.com/TillF/ssc_prediction (last access: 8 May 2023), 2017.
Francke, T., López-Tarazón, J. A., and Schröder, B.: Estimation
of suspended sediment concentration and yield using linear models, random
forests and quantile regression forests, Hydrol. Process., 22, 4892–4904,
https://doi.org/10.1002/hyp.7110, 2008a.
Francke, T., López-Tarazón, J. A., Vericat, D., Bronstert, A., and
Batalla, R. J.: Flood-based analysis of high-magnitude sediment transport
using a non-parametric method, Earth Surf. Proc. Land., 33, 2064–2077,
https://doi.org/10.1002/esp.1654, 2008b.
Gabbud, C. and Lane, S. N.: Ecosystem impacts of Alpine water intakes for
hydropower: the challenge of sediment management, WIREs Water, 3, 41–61,
https://doi.org/10.1002/wat2.1124, 2016.
Guillén-Ludeña, S., Manso, P. A., and Schleiss, A. J.: Multidecadal
Sediment Balance Modelling of a Cascade of Alpine Reservoirs and
Perspectives Based on Climate Warming, Water, 10, 1759,
https://doi.org/10.3390/w10121759, 2018.
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment
evacuation by glaciers: A review of field data and their implications, Global
Planet. Change, 12, 213–235, https://doi.org/10.1016/0921-8181(95)00021-6,
1996.
Hanus, S., Hrachowitz, M., Zekollari, H., Schoups, G., Vizcaino, M., and Kaitna, R.: Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria, Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021, 2021.
Hanzer, F., Förster, K., Nemec, J., and Strasser, U.: Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach, Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, 2018.
Herman, F., De Doncker, F., Delaney, I., Prasicek, G., and Koppes, M.: The
impact of glaciers on mountain erosion, Nat. Rev. Earth Environ., 2,
422–435, https://doi.org/10.1038/s43017-021-00165-9, 2021.
Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, C., and Schlunegger,
F.: River loads and modern denudation of the Alps – A review, Earth-Sci.
Rev., 118, 11–44, https://doi.org/10.1016/j.earscirev.2013.01.001, 2013.
Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L.,
Haeberli, W., Larsen, C., Schneider, D., and Wessels, R.: Recent and future
warm extreme events and high-mountain slope stability, Philos. T. R. Soc. A, 368, 2435–2459,
https://doi.org/10.1098/rsta.2010.0078, 2010.
Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?, Earth Surf. Proc. Land.,
37, 77–91, https://doi.org/10.1002/esp.2223, 2012.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague,
J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G.,
Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without
permanent snow and ice, Earths Future, 5, 418–435,
https://doi.org/10.1002/2016EF000514, 2017.
Hydrographic yearbook of Austria: Hydrographisches Jahrbuch von
Österreich, Hydrographischer Dienst in Österreich, Bundesministerium
für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft Abteilung
VII/3, https://wasser.umweltbundesamt.at/hydjb/ (last access: 8 May 2023), 2016.
Institute of Meteorology and Geophysics: Climate Data Vent, Ötztal Alps,
1935–2011, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.806582, 2013.
Juen, I. and Kaser, G.: Climate Data Vent, Ötztal Alps, 2012–2016, PANGAEA [data
set], https://doi.org/10.1594/PANGAEA.876595, 2017.
Koppes, M., Hallet, B., and Anderson, J.: Synchronous acceleration of ice
loss and glacial erosion, Glaciar Marinelli, Chilean Tierra del Fuego, J.
Glaciol., 55, 207–220, https://doi.org/10.3189/002214309788608796, 2009.
Kormann, C., Bronstert, A., Francke, T., Recknagel, T., and Graeff, T.:
Model-Based Attribution of High-Resolution Streamflow Trends in Two Alpine
Basins of Western Austria, Hydrology, 3, 7,
https://doi.org/10.3390/hydrology3010007, 2016.
Kuhn, M., Nickus, U., and Pellet, F.: Precipitation Patterns in the Inner
Ötztal, 17. Internationale Tagung für Alpine Meteorologie, Offenbach
am Main, https://doi.org/10013/epic.41205.d002, 1982.
Kuhn, M., Helfricht, K., Ortner, M., Landmann, J., and Gurgiser, W.: Liquid
water storage in snow and ice in 86 Eastern Alpine basins and its changes
from 1970–97 to 1998–2006, Ann. Glaciol., 57, 11–18,
https://doi.org/10.1017/aog.2016.24, 2016.
Lalk, P., Haimann, M., and Habersack, H.: Monitoring, Analyse und
Interpretation des Schwebstofftransportes an österreichischen
Flüssen, Österr. Wasser- Abfallwirtsch., 66, 306–315,
https://doi.org/10.1007/s00506-014-0175-x, 2014.
Land Tirol: Digital terrain model of Tyrol, 10 m resolution, EPSG 31254, Land Tirol [data set], https://www.data.gv.at/katalog/dataset/land-tirol_tirolgelnde (last access; 8 May 2023), 2016.
Land Tirol: tiris OGD map service “Wasser”, Land Tirol [data set],
https://www.data.gv.at/katalog/dataset/0b5d6529-d88c-46c0-84f7-b37282e96ce8 (last access; 8 May 2023), 2021.
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J.-N.:
Sediment export, transient landscape response and catchment-scale
connectivity following rapid climate warming and Alpine glacier recession,
Geomorphology, 277, 210–227,
https://doi.org/10.1016/j.geomorph.2016.02.015, 2017.
Lane, S. N., Bakker, M., Costa, A., Girardclos, S., Loizeau, J.-L., Molnar,
P., Silva, T., Stutenbecker, L., and Schlunegger, F.: Making stratigraphy in
the Anthropocene: climate change impacts and economic conditions controlling
the supply of sediment to Lake Geneva, Sci. Rep., 9, 8904,
https://doi.org/10.1038/s41598-019-44914-9, 2019.
Laser- und Luftbildatlas Tirol: https://lba.tirol.gv.at/public/karte.xhtml,
last access: 17 June 2022.
Leggat, M. S., Owens, P. N., Stott, T. A., Forrester, B. J., Déry, S.
J., and Menounos, B.: Hydro-meteorological drivers and sources of suspended
sediment flux in the pro-glacial zone of the retreating Castle Creek
Glacier, Cariboo Mountains, British Columbia, Canada, Earth Surf. Proc.
Land., 40, 1542–1559, https://doi.org/10.1002/esp.3755, 2015.
Li, D., Li, Z., Zhou, Y., and Lu, X. X.: Substantial Increases in the Water
and Sediment Fluxes in the Headwater Region of the Tibetan Plateau in
Response to Global Warming, Geophys. Res. Lett., 47, e2020GL087745,
https://doi.org/10.1029/2020GL087745, 2020.
Li, D., Lu, X., Overeem, I., Walling, D. E., Syvitski, J., Kettner, A. J.,
Bookhagen, B., Zhou, Y., and Zhang, T.: Exceptional increases in fluvial
sediment fluxes in a warmer and wetter High Mountain Asia, Science, 374,
599–603, https://doi.org/10.1126/science.abi9649, 2021.
Li, D., Lu, X., Walling, D. E., Zhang, T., Steiner, J. F., Wasson, R. J.,
Harrison, S., Nepal, S., Nie, Y., Immerzeel, W. W., Shugar, D. H., Koppes,
M., Lane, S., Zeng, Z., Sun, X., Yegorov, A., and Bolch, T.: High Mountain
Asia hydropower systems threatened by climate-driven landscape instability,
Nat. Geosci., 15, 520–530, https://doi.org/10.1038/s41561-022-00953-y,
2022.
Lindeløv, J. K.: mcp: An R Package for Regression With Multiple Change
Points, OSF Preprints [code], https://doi.org/10.31219/osf.io/fzqxv, 2020.
Madsen, H., Lawrence, D., Lang, M., Martinkova, M., and Kjeldsen, T. R.:
Review of trend analysis and climate change projections of extreme
precipitation and floods in Europe, J. Hydrol., 519, 3634–3650,
https://doi.org/10.1016/j.jhydrol.2014.11.003, 2014.
Mallakpour, I. and Villarini, G.: A simulation study to examine the
sensitivity of the Pettitt test to detect abrupt changes in mean, Hydrol.
Sci. J., 61, 245–254, https://doi.org/10.1080/02626667.2015.1008482, 2016.
Mao, L., Comiti, F., Carrillo, R., and Penna, D.: Sediment Transport in Proglacial Rivers, in: Geomorphology of Proglacial Systems, Geography of the Physical Environment, edited by: Heckmann, T. and Morche, D., Springer, Cham, 199–217, https://doi.org/10.1007/978-3-319-94184-4_12, 2019.
Mather, A. L. and Johnson, R. L.: Quantitative characterization of stream
turbidity-discharge behavior using event loop shape modeling and power law
parameter decorrelation, Water Resour. Res., 50, 7766–7779,
https://doi.org/10.1002/2014WR015417, 2014.
Meinshausen, N.: Quantile Regression Forests, J. Mach. Learn. Res., 7,
983–999, 2006.
Merten, G., Capel, P., and Minella, J. P. G.: Effects of suspended sediment
concentration and grain size on three optical turbidity sensors, J. Soils
Sediments, 14, 1235–1241, https://doi.org/10.1007/s11368-013-0813-0, 2014.
Micheletti, N. and Lane, S. N.: Water yield and sediment export in small,
partially glaciated Alpine watersheds in a warming climate, Water Resour.
Res., 52, 4924–4943, https://doi.org/10.1002/2016WR018774, 2016.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R.
D., and Veith, T. L.: Model Evaluation Guidelines for Systematic
Quantification of Accuracy in Watershed Simulations, T. ASABE, 50,
885–900, https://doi.org/10.13031/2013.23153, 2007.
Murphy, K. P.: Machine Learning: A Probabilistic Perspective, MIT Press,
1102 pp., ISBN 978-0-262-01802-9, 2012.
Naeser, T.: Schwebstoffuntersuchungen am Gletscherbach des Vernagtferners in
den Zentralen Ötztaler Alpen, Diploma thesis,
Ludwig-Maximilians-Universität München, München, 92 pp., http://www.vernagtferner.de/Download/DANaeser.pdf (last access: 8 May 2023), 2002.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nones, M.: Dealing with sediment transport in flood risk management, Acta
Geophys., 67, 677–685, https://doi.org/10.1007/s11600-019-00273-7, 2019.
Pettitt, A. N.: A Non-Parametric Approach to the Change-Point Problem, J. R.
Stat. Soc. Ser. C-Appl., 28, 126–135,
https://doi.org/10.2307/2346729, 1979.
Pilla, R. M. and Williamson, C. E.: Earlier ice breakup induces changepoint
responses in duration and variability of spring mixing and summer
stratification in dimictic lakes, Limnol. Oceanogr., 67, S173–S183,
https://doi.org/10.1002/lno.11888, 2022.
Pilz, T., Delgado, J. M., Voss, S., Vormoor, K., Francke, T., Costa, A. C., Martins, E., and Bronstert, A.: Seasonal drought prediction for semiarid northeast Brazil: what is the added value of a process-based hydrological model?, Hydrol. Earth Syst. Sci., 23, 1951–1971, https://doi.org/10.5194/hess-23-1951-2019, 2019.
Pohlert, T.: trend: Non-Parametric Trend Tests and Change-Point Detection, R
package version 1.1.2, CRAN [code], https://CRAN.R-project.org/package=trend (last access: 10 May 2023), 2020.
R Core Team: R: A language and environment for statistical computing, CRAN [code], https://www.R-project.org/ (last access: 10 May 2023), 2018.
Rottler, E., Francke, T., Bürger, G., and Bronstert, A.: Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle, Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020, 2020.
Rottler, E., Vormoor, K., Francke, T., Warscher, M., Strasser, U., and
Bronstert, A.: Elevation-dependent compensation effects in snowmelt in the
Rhine River Basin upstream gauge Basel, Hydrol. Res., 52, 536–557,
https://doi.org/10.2166/nh.2021.092, 2021.
Santander Meteorology Group: fume: FUME package, R package version 1.0,
CRAN [code], https://CRAN.R-project.org/package=fume (last access: 10 May 2023), 2012.
Savi, S., Comiti, F., and Strecker, M. R.: Pronounced increase in slope
instability linked to global warming: A case study from the eastern European
Alps, Earth Surf. Proc. Land., 46, 1328–1347, https://doi.org/10.1002/esp.5100, 2020.
Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrol. Process.,
21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.
Schmidt, L. K. and Hydrographic Service of Tyrol, Austria: Discharge and
suspended sediment time series of 2006–2020 of gauges Vent Rofenache and
Tumpen in the glacierized high alpine Ötztal, Tyrol, Austria, B2SHARE [data set], https://b2share.eudat.eu/records/be13f43ce9bb46d8a7eedb7b56df3140, 2021.
Schmidt, L. K., Grosse, P. M., and Francke, T.: A Quantile Regression
Forests approach for sedigraph-reconstruction and sediment yield calculation,
B2SHARE [data set], https://b2share.109960a9fb42427b9d0a85b998b9d18c, 2022a.
Schmidt, L. K., Francke, T., Rottler, E., Blume, T., Schöber, J., and Bronstert, A.: Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria, Earth Surf. Dynam., 10, 653–669, https://doi.org/10.23728/B2SHARE.78CDC99C8D454D8894C, 2022b.
Schmieder, J., Garvelmann, J., Marke, T., and Strasser, U.: Spatio-temporal
tracer variability in the glacier melt end-member – How does it affect
hydrograph separation results?, Hydrol. Process., 32, 1828–1843,
https://doi.org/10.1002/hyp.11628, 2018.
Schöber, J. and Hofer, B.: The sediment budget of the glacial streams in
the catchment area of the Gepatsch reservoir in the Ötztal Alps in the
period 1965–2015, in: ICOLD (International Comission on Large Dam Systems)
Proceedings, Twenty-Sixth International Congress on Large Dams, Vienna,
Austria, ISBN 9780429465086, 2018.
Schöber, J., Schneider, K., Helfricht, K., Schattan, P., Achleitner, S.,
Schöberl, F., and Kirnbauer, R.: Snow cover characteristics in a
glacierized catchment in the Tyrolean Alps - Improved spatially distributed
modelling by usage of Lidar data, J. Hydrol., 519, 3492–3510,
https://doi.org/10.1016/j.jhydrol.2013.12.054, 2014.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968.
Singh, A. T., Sharma, P., Sharma, C., Laluraj, C. M., Patel, L., Pratap, B.,
Oulkar, S., and Thamban, M.: Water discharge and suspended sediment dynamics
in the Chandra River, Western Himalaya, J. Earth Syst. Sci., 129, 206,
https://doi.org/10.1007/s12040-020-01455-4, 2020.
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M. H.:
Rapid glacier retreat and downwasting throughout the European Alps in the
early 21 st century, Nat. Commun., 11, 3209,
https://doi.org/10.1038/s41467-020-16818-0, 2020.
Strasser, U., Marke, T., Braun, L., Escher-Vetter, H., Juen, I., Kuhn, M., Maussion, F., Mayer, C., Nicholson, L., Niedertscheider, K., Sailer, R., Stötter, J., Weber, M., and Kaser, G.: The Rofental: a high Alpine research basin (1890–3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations, Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, 2018.
Tahmasebi, P., Kamrava, S., Bai, T., and Sahimi, M.: Machine learning in
geo- and environmental sciences: From small to large scale, Adv. Water
Resour., 142, 103619, https://doi.org/10.1016/j.advwatres.2020.103619, 2020.
Tschada, H. and Hofer, B.: Total solids load from the catchment area of the
Kaunertal hydroelectric power station: the results of 25 years of operation,
in: Hydrology of Mountainous Regions–II: Artificial Reservoirs, Water and
Slopes (Proceedings of two Lausanne Symposia), IAHS Publication, Lausanne,
Switzerland, 8, 1990.
Turowski, J. M., Rickenmann, D., and Dadson, S. J.: The partitioning of the
total sediment load of a river into suspended load and bedload: a review of
empirical data, Sedimentology, 57, 1126–1146,
https://doi.org/10.1111/j.1365-3091.2009.01140.x, 2010.
van Tiel, M., Kohn, I., Loon, A. F. V., and Stahl, K.: The compensating
effect of glaciers: Characterizing the relation between interannual
streamflow variability and glacier cover, Hydrol. Process., 34, 553–568,
https://doi.org/10.1002/hyp.13603, 2019.
Veh, G., Lützow, N., Kharlamova, V., Petrakov, D., Hugonnet, R., and
Korup, O.: Trends, Breaks, and Biases in the Frequency of Reported Glacier
Lake Outburst Floods, Earths Future, 10, e2021EF002426,
https://doi.org/10.1029/2021EF002426, 2022.
Vercruysse, K., Grabowski, R. C., and Rickson, R. J.: Suspended sediment
transport dynamics in rivers: Multi-scale drivers of temporal variation,
Earth-Sci. Rev., 166, 38–52,
https://doi.org/10.1016/j.earscirev.2016.12.016, 2017.
Vergara, I., Garreaud, R., and Ayala, Á.: Sharp Increase of Extreme
Turbidity Events Due To Deglaciation in the Subtropical Andes, J. Geophys.
Res.-Earth, 127, e2021JF006584, https://doi.org/10.1029/2021JF006584,
2022.
Vormoor, K., Lawrence, D., Heistermann, M., and Bronstert, A.: Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes, Hydrol. Earth Syst. Sci., 19, 913–931, https://doi.org/10.5194/hess-19-913-2015, 2015.
Weber, M. and Prasch, M.: Influence of the Glaciers on Runoff Regime and Its
Change, in: Regional Assessment of Global Change Impacts, edited by: Mauser,
W. and Prasch, M., Springer International Publishing, Cham, 493–509, https://doi.org/10.1007/978-3-319-16751-0_56, 2016.
Wijngaard, R. R., Helfricht, K., Schneeberger, K., Huttenlau, M., Schneider,
K., and Bierkens, M. F. P.: Hydrological response of the Ötztal
glacierized catchments to climate change, Hydrol. Res., 47, 979–995,
https://doi.org/10.2166/nh.2015.093, 2016.
World Glacier Monitoring Service: Fluctuations of Glaciers Database, WGMS
[data set], https://doi.org/10.5904/wgms-fog-2021-05, 2021.
Yadav, V., Ghosh, S., Mueller, K., Karion, A., Roest, G., Gourdji, S. M.,
Lopez-Coto, I., Gurney, K. R., Parazoo, N., Verhulst, K. R., Kim, J.,
Prinzivalli, S., Fain, C., Nehrkorn, T., Mountain, M., Keeling, R. F.,
Weiss, R. F., Duren, R., Miller, C. E., and Whetstone, J.: The Impact of
COVID-19 on CO2 Emissions in the Los Angeles and Washington DC/Baltimore
Metropolitan Areas, Geophys. Res. Lett., 48, e2021GL092744,
https://doi.org/10.1029/2021GL092744, 2021.
Yue, S. and Wang, C.: The Mann-Kendall Test Modified by Effective Sample
Size to Detect Trend in Serially Correlated Hydrological Series, Water
Resour. Manag., 18, 201–218,
https://doi.org/10.1023/B:WARM.0000043140.61082.60, 2004.
Yue, S., Kundzewicz, Z. W., and Wang, L.: Detection of Changes, in: Changes
in Flood Risk in Europe, edited by: Kundzewicz, Z. W., IAHS Press,
Wallingford, 387–408, ISBN 9780203098097, 2012.
Zhang, T., Li, D., Kettner, A. J., Zhou, Y., and Lu, X.: Constraining
Dynamic Sediment-Discharge Relationships in Cold Environments: The
Sediment-Availability-Transport (SAT) Model, Water Resour. Res., 57,
e2021WR030690, https://doi.org/10.1029/2021WR030690, 2021.
Zhang, T., Li, D., East, A. E., Walling, D. E., Lane, S., Overeem, I.,
Beylich, A. A., Koppes, M., and Lu, X.: Warming-driven erosion and sediment
transport in cold regions, Nat. Rev. Earth Environ., 3, 832–851,
https://doi.org/10.1038/s43017-022-00362-0, 2022.
Zimmermann, A., Francke, T., and Elsenbeer, H.: Forests and erosion:
Insights from a study of suspended-sediment dynamics in an overland
flow-prone rainforest catchment, J. Hydrol., 428–429, 170–181,
https://doi.org/10.1016/j.jhydrol.2012.01.039, 2012.
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
We present a suitable method to reconstruct sediment export from decadal records of...