Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4801-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4801-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a national 7-day ensemble streamflow forecasting service for Australia
Hapu Arachchige Prasantha Hapuarachchi
CORRESPONDING AUTHOR
Bureau of Meteorology, 700 Collins Street, Docklands, VIC 3008,
Australia
Mohammed Abdul Bari
Bureau of Meteorology, 1 Ord Street, West Perth, WA 6005, Australia
Aynul Kabir
Bureau of Meteorology, 700 Collins Street, Docklands, VIC 3008,
Australia
Mohammad Mahadi Hasan
Bureau of Meteorology, The Treasury Building, Parkes Place West,
Canberra, ACT 2600, Australia
Fitsum Markos Woldemeskel
Bureau of Meteorology, 700 Collins Street, Docklands, VIC 3008,
Australia
Nilantha Gamage
Bureau of Meteorology, 700 Collins Street, Docklands, VIC 3008,
Australia
Patrick Daniel Sunter
Bureau of Meteorology, 700 Collins Street, Docklands, VIC 3008,
Australia
Xiaoyong Sophie Zhang
Bureau of Meteorology, 700 Collins Street, Docklands, VIC 3008,
Australia
David Ewen Robertson
Commonwealth Scientific and Industrial Research Organization, Research
Way, Clayton, VIC 3168, Australia
James Clement Bennett
Commonwealth Scientific and Industrial Research Organization, Research
Way, Clayton, VIC 3168, Australia
Paul Martinus Feikema
Bureau of Meteorology, 700 Collins Street, Docklands, VIC 3008,
Australia
Related authors
No articles found.
Kevin K. W. Cheung, Fei Ji, Nidhi Nishant, Jin Teng, James Bennett, and De Li Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-286, https://doi.org/10.5194/hess-2024-286, 2024
Preprint under review for HESS
Short summary
Short summary
This study evaluates two reanalysis datasets, which are critical in climate, weather research and water resources analysis, for the Australian region in simulating mean precipitation and six selected precipitation extremes. While spatial patterns of mean precipitation are well reproduced, substantial biases exist in precipitation variability, trends and extremes. Caution in applying these datasets is thus advised in terms of the latter aspects.
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023, https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary
Short summary
We used statistical tests to detect annual and seasonal streamflow trends and step changes across Australia. The Murray–Darling Basin and other rivers in the southern and north-eastern areas showed decreasing trends. Only rivers in the Timor Sea region in northern Australia showed significant increasing trends. Our results assist with infrastructure planning and management of water resources. This study was undertaken by the Bureau of Meteorology with its responsibility under the Water Act 2007.
David McInerney, Mark Thyer, Dmitri Kavetski, Richard Laugesen, Fitsum Woldemeskel, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 26, 5669–5683, https://doi.org/10.5194/hess-26-5669-2022, https://doi.org/10.5194/hess-26-5669-2022, 2022
Short summary
Short summary
Streamflow forecasts a day to a month ahead are highly valuable for water resources management. Current practice often develops forecasts for specific lead times and aggregation timescales. In contrast, a single, seamless forecast can serve multiple lead times/timescales. This study shows seamless forecasts can match the performance of forecasts developed specifically at the monthly scale, while maintaining quality at other lead times. Hence, users need not sacrifice capability for performance.
Alexander Kaune, Faysal Chowdhury, Micha Werner, and James Bennett
Hydrol. Earth Syst. Sci., 24, 3851–3870, https://doi.org/10.5194/hess-24-3851-2020, https://doi.org/10.5194/hess-24-3851-2020, 2020
Short summary
Short summary
This paper was developed from PhD research focused on assessing the value of using hydrological datasets in water resource management. Previous studies have assessed how well data can help in predicting river flows, but there is a lack of knowledge of how well data can help in water allocation decisions. In our research, it was found that using seasonal streamflow forecasts improves the available water estimates, resulting in better water allocation decisions in a highly regulated basin.
Ashley J. Wright, David E. Robertson, Jeffrey P. Walker, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-450, https://doi.org/10.5194/hess-2019-450, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper details the development of a methodology to optimize the weighting of rainfall gauges for hydrologic simulation. In particular, catchments with a low gauge density and/or proportion of observations available are not well suited to this methodology. Application of this methodology with models that are consistent with a conceptual understanding of the rainfall-runoff process yield improvements of 7.1 % in evaluation periods.
Fitsum Woldemeskel, David McInerney, Julien Lerat, Mark Thyer, Dmitri Kavetski, Daehyok Shin, Narendra Tuteja, and George Kuczera
Hydrol. Earth Syst. Sci., 22, 6257–6278, https://doi.org/10.5194/hess-22-6257-2018, https://doi.org/10.5194/hess-22-6257-2018, 2018
Short summary
Short summary
This paper evaluates several schemes for post-processing monthly and seasonal streamflow forecasts using the Australian Bureau of Meteorology's streamflow forecasting system. Through evaluation across 300 catchments, the best-performing scheme has been identified, which is found to substantially improve important aspects of the forecast quality. This finding is significant because the improved forecasts help water managers and users of the service to make better-informed decisions.
Stephen P. Charles, Quan J. Wang, Mobin-ud-Din Ahmad, Danial Hashmi, Andrew Schepen, Geoff Podger, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 3533–3549, https://doi.org/10.5194/hess-22-3533-2018, https://doi.org/10.5194/hess-22-3533-2018, 2018
Short summary
Short summary
Predictions of irrigation-season water availability are important for water-limited Pakistan. We assess a Bayesian joint probability approach, using flow and climate indices as predictors, to produce streamflow forecasts for inflow to Pakistan's two largest dams. The approach produces skilful and reliable forecasts. As it is simple and quick to apply, it can be used to provide probabilistic seasonal streamflow forecasts that can inform Pakistan's water management.
Andrew Schepen, Tongtiegang Zhao, Quan J. Wang, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 1615–1628, https://doi.org/10.5194/hess-22-1615-2018, https://doi.org/10.5194/hess-22-1615-2018, 2018
Short summary
Short summary
Rainfall forecasts from dynamical global climate models (GCMs) require post-processing before use in hydrological models. Existing methods generally lack the sophistication to achieve calibrated forecasts of both daily amounts and seasonal accumulated totals. We develop a new statistical method to post-process Australian GCM rainfall forecasts for 12 perennial and ephemeral catchments. Our method produces reliable forecasts and outperforms the most commonly used statistical method.
James C. Bennett, Quan J. Wang, David E. Robertson, Andrew Schepen, Ming Li, and Kelvin Michael
Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, https://doi.org/10.5194/hess-21-6007-2017, 2017
Short summary
Short summary
We assess a new streamflow forecasting system in Australia. The system is designed to meet the need of water agencies for 12-month forecasts. The forecasts perform well in a wide range of rivers. Forecasts for shorter periods (up to 6 months) are generally informative. Forecasts sometimes did not perform well in a few very dry rivers. We test several techniques for improving streamflow forecasts in drylands, with mixed success.
Sean W. D. Turner, James C. Bennett, David E. Robertson, and Stefano Galelli
Hydrol. Earth Syst. Sci., 21, 4841–4859, https://doi.org/10.5194/hess-21-4841-2017, https://doi.org/10.5194/hess-21-4841-2017, 2017
Short summary
Short summary
This study investigates the relationship between skill and value of ensemble seasonal streamflow forecasts. Using data from a modern forecasting system, we show that skilled forecasts are more likely to provide benefits for reservoirs operated to maintain a target water level rather than reservoirs operated to satisfy a target demand. We identify the primary causes for this behaviour and provide specific recommendations for assessing the value of forecasts for reservoirs with supply objectives.
Ashley Wright, Jeffrey P. Walker, David E. Robertson, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci., 21, 3827–3838, https://doi.org/10.5194/hess-21-3827-2017, https://doi.org/10.5194/hess-21-3827-2017, 2017
Short summary
Short summary
The accurate reduction of hydrologic model input data is an impediment towards understanding input uncertainty and model structural errors. This paper compares the ability of two transforms to reduce rainfall input data. The resultant transforms are compressed to varying extents and reconstructed before being evaluated with standard simulation performance summary metrics and descriptive statistics. It is concluded the discrete wavelet transform is most capable of preserving rainfall time series.
Andrew Schepen, Tongtiegang Zhao, Q. J. Wang, Senlin Zhou, and Paul Feikema
Hydrol. Earth Syst. Sci., 20, 4117–4128, https://doi.org/10.5194/hess-20-4117-2016, https://doi.org/10.5194/hess-20-4117-2016, 2016
Short summary
Short summary
Australian seasonal streamflow forecasts are issued by the Bureau of Meteorology with up to two weeks' delay. Timelier forecast release will enhance forecast value and enable sub-seasonal forecasting. The bureau's forecasting approach is modified to allow timelier forecast release, and changes in reliability and skill are quantified. The results are combined with insights into the forecast production process to recommend a more flexible forecasting system to better meet the needs of users.
Xiaoyong Sophie Zhang, Gnanathikkam E. Amirthanathan, Mohammed A. Bari, Richard M. Laugesen, Daehyok Shin, David M. Kent, Andrew M. MacDonald, Margot E. Turner, and Narendra K. Tuteja
Hydrol. Earth Syst. Sci., 20, 3947–3965, https://doi.org/10.5194/hess-20-3947-2016, https://doi.org/10.5194/hess-20-3947-2016, 2016
Short summary
Short summary
The hydrologic reference stations website (www.bom.gov.au/water/hrs/), developed by the Australia Bureau of Meteorology, is a one-stop portal to access long-term and high-quality streamflow information for 222 stations across Australia. This study investigated the streamflow variability and inferred trends in water availability for those stations. The results present a systematic analysis of recent hydrological changes in Australian rivers, which will aid water management decision making.
Ming Li, Q. J. Wang, James C. Bennett, and David E. Robertson
Hydrol. Earth Syst. Sci., 20, 3561–3579, https://doi.org/10.5194/hess-20-3561-2016, https://doi.org/10.5194/hess-20-3561-2016, 2016
C. Alvarez-Garreton, D. Ryu, A. W. Western, C.-H. Su, W. T. Crow, D. E. Robertson, and C. Leahy
Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, https://doi.org/10.5194/hess-19-1659-2015, 2015
Short summary
Short summary
We assimilate satellite soil moisture into a rainfall-runoff model for improving flood prediction within a data-scarce region. We argue that the spatially distributed satellite data can alleviate the model prediction limitations. We show that satellite soil moisture DA reduces the uncertainty of the streamflow ensembles. We propose new techniques for the DA scheme, including seasonal error characterisation, bias correction of the satellite retrievals, and model error representation.
M. Li, Q. J. Wang, J. C. Bennett, and D. E. Robertson
Hydrol. Earth Syst. Sci., 19, 1–15, https://doi.org/10.5194/hess-19-1-2015, https://doi.org/10.5194/hess-19-1-2015, 2015
J. C. Bennett, Q. J. Wang, P. Pokhrel, and D. E. Robertson
Nat. Hazards Earth Syst. Sci., 14, 219–233, https://doi.org/10.5194/nhess-14-219-2014, https://doi.org/10.5194/nhess-14-219-2014, 2014
D. E. Robertson, D. L. Shrestha, and Q. J. Wang
Hydrol. Earth Syst. Sci., 17, 3587–3603, https://doi.org/10.5194/hess-17-3587-2013, https://doi.org/10.5194/hess-17-3587-2013, 2013
D. L. Shrestha, D. E. Robertson, Q. J. Wang, T. C. Pagano, and H. A. P. Hapuarachchi
Hydrol. Earth Syst. Sci., 17, 1913–1931, https://doi.org/10.5194/hess-17-1913-2013, https://doi.org/10.5194/hess-17-1913-2013, 2013
P. Pokhrel, D. E. Robertson, and Q. J. Wang
Hydrol. Earth Syst. Sci., 17, 795–804, https://doi.org/10.5194/hess-17-795-2013, https://doi.org/10.5194/hess-17-795-2013, 2013
D. E. Robertson, P. Pokhrel, and Q. J. Wang
Hydrol. Earth Syst. Sci., 17, 579–593, https://doi.org/10.5194/hess-17-579-2013, https://doi.org/10.5194/hess-17-579-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Achieving water budget closure through physical hydrological processes modelling: insights from a large-sample study
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Heavy-tailed flood peak distributions: What is the effect of the spatial variability of rainfall and runoff generation?
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
State updating in the Xin'anjiang Model: Joint assimilating streamflow and multi-source soil moisture data via Asynchronous Ensemble Kalman Filter with enhanced Error Models
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
A diversity centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
CH-RUN: A data-driven spatially contiguous runoff monitoring product for Switzerland
Simulating the Tone River Eastward Diversion Project in Japan Carried Out Four Centuries Ago
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-230, https://doi.org/10.5194/hess-2024-230, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets, which undermines the robustness of hydrological inferences. This study proposes a Multisource Datasets Correction Framework grounded in Physical Hydrological Processes Modelling to enhance water budget closure, called PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset, and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-211, https://doi.org/10.5194/hess-2024-211, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping better prepare for and respond to floods.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-169, https://doi.org/10.5194/hess-2024-169, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine-learning models are increasingly being applied for flood forecasting. Such models are typically trained to large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets, that maximise the spatiotemproal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Joško Trošelj and Naota Hanasaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-595, https://doi.org/10.5194/egusphere-2024-595, 2024
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms the claims raised by historians that the Eastward Diversion Project of the Tone River in Japan was conducted four centuries ago to increase low flows and subsequent travelling possibilities surrounding the Capitol Edo (Tokyo) using inland navigation. We reconstructed six historical river maps and indirectly validated the historical simulations with reachable ancient river ports via increased low-flow water levels.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Cited articles
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013.
Andréassian, V.: Waters and forests: From historical controversy to
scientific debate, J. Hydrol., 291, 1–27, https://doi.org/10.1016/j.jhydrol.2003.12.015, 2004.
Atkinson, R., Power, R., Lemon, D., O'Hagan, R., Dovey, D., and Kinny, D.:
The Australian Hydrological Geospatial Fabric – Development Methodology and
Conceptual Architecture, Canberra, Australia, 60 pp.,
https://doi.org/10.4225/08/585ac46ee9981, 2008.
Bennett, J. C., Robertson, D. E., Shrestha, D. L., Wang, Q. J., Enever, D.,
Hapuarachchi, P., and Tuteja, N. K.: A System for Continuous Hydrological
Ensemble Forecasting (SCHEF) to lead times of 9 days, J. Hydrol., 219, 2832–2846,
https://doi.org/10.1016/j.jhydrol.2014.08.010, 2014.
Bennett, J. C., Robertson, D. E., Ward, P. G. D. D., Hapuarachchi, H. A. A.
P., and Wang, Q. J. J.: Calibrating hourly rainfall-runoff models with daily
forcings for streamflow forecasting applications in meso-scale catchments,
Environ. Model. Softw., 76, 20–36, https://doi.org/10.1016/j.envsoft.2015.11.006, 2016.
Bennett, J. C., Wang, Q. J., Robertson, D. E., Schepen, A., Li, M., and Michael, K.: Assessment of an ensemble seasonal streamflow forecasting system for Australia, Hydrol. Earth Syst. Sci., 21, 6007–6030, https://doi.org/10.5194/hess-21-6007-2017, 2017.
Bennett, J. C., Robertson, D. E., Wang, Q. J., Li, M., and Perraud, J. M.:
Propagating reliable estimates of hydrological forecast uncertainty to many
lead times, J. Hydrol., 603, 126798, https://doi.org/10.1016/j.jhydrol.2021.126798, 2021.
Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E.,
David, C. H., de Roo, A., Döll, P., Drost, N., Famiglietti, J. S.,
Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S.,
Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E.
H., van de Giesen, N., Winsemius, H., and Wood, E. F.: Hyper-resolution
global hydrological modelling: what is next?, Hydrol. Process., 29, 310–320,
https://doi.org/10.1002/hyp.10391, 2015.
Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of
precipitation and temperature across different climates and spatial scales,
J. Hydrol. Reg. Stud., 21, 126–146, https://doi.org/10.1016/j.ejrh.2018.12.002, 2019.
Buizer, J., Jacobs, K., and Cash, D.: Making short-term climate forecasts
useful: Linking science and action, P. Natl. Acad. Sci. USA, 113, 4597–4602,
https://doi.org/10.1073/pnas.0900518107, 2016.
Charles, S. P., Wang, Q. J., Ahmad, M.-D., Hashmi, D., Schepen, A., Podger, G., and Robertson, D. E.: Seasonal streamflow forecasting in the upper Indus Basin of Pakistan: an assessment of methods, Hydrol. Earth Syst. Sci., 22, 3533–3549, https://doi.org/10.5194/hess-22-3533-2018, 2018.
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The
Schaake shuffle: A method for reconstructing space-time variability in
forecasted precipitation and temperature fields, J. Hydrometeorol., 5, 243–262,
https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004.
Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui,
M., and Hendrickx, F.: Crash testing hydrological models in contrasted
climate conditions: An experiment on 216 Australian catchments, Water
Resour. Res., 48, W05552, https://doi.org/10.1029/2011WR011721, 2012.
Delaney, C. J., Hartman, R. K., Mendoza, J., Dettinger, M., Delle Monache,
L., Jasperse, J., Ralph, F. M., Talbot, C., Brown, J., Reynolds, D., and
Evett, S.: Forecast Informed Reservoir Operations Using Ensemble Streamflow
Predictions for a Multipurpose Reservoir in Northern California, Water
Resour. Res., 56, e2019WR02660, https://doi.org/10.1029/2019WR026604, 2020.
Demargne, J., Wu, L., Regonda, S. K., Brown, J. D., Lee, H., He, M., Seo, D.
J., Hartman, R., Herr, H. D., Fresch, M., Schaake, J., and Zhu, Y.: The
science of NOAA's operational hydrologic ensemble forecast service, B. Am. Meteorol. Soc., 95, 79–98, https://doi.org/10.1175/BAMS-D-12-00081.1, 2014.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global
optimization method for calibrating watershed models, J. Hydrol., 158, 3–4,
https://doi.org/10.1016/0022-1694(94)90057-4, 1994.
Ebert, E. E.: Ability of a poor man's ensemble to predict the probability
and distribution of precipitation, Mon. Weather Rev., 129, 2461–2480,
https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>
2.0.CO;2, 2001.
Efron, B. and Tibshirani, R. J.: An Introduction to the Bootstrap (1st Ed.), Chapman and Hall/CRC, New York, USA, 1994.
Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts, A.
H., Wood, A. W., Salamon, P., Brown, J. D., Hjerdt, N., Donnelly, C., Baugh,
C. A., and Cloke, H. L.: Continental and global scale flood forecasting
systems, WIREs Water, 3, 391–418, https://doi.org/10.1002/wat2.1137, 2016.
Görner, C., Franke, J., Kronenberg, R., Hellmuth, O., and Bernhofer, C.:
Multivariate non-parametric Euclidean distance model for hourly
disaggregation of daily climate data, Theor. Appl. Climatol., 143, 241–265,
https://doi.org/10.1007/s00704-020-03426-7, 2021.
Guo, B., Xu, T., Zhang, J., Croke, B., Jakeman, A., Seo, L., Lei, X., and Liao, W.: A comparative analysis of precipitation estimation methods for streamflow prediction, in: Proceedings - 22nd International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Hobart, Tasmania, Australia, 3-8 December 2017, 43–49, https://doi.org/10.36334/modsim.2017.a1.guo, 2017.
Gutierrez-Jurado, K. Y., Partington, D., and Shanafield, M.: Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment, Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021, 2021.
Hapuarachchi, H. A. P., Kabir, A., Zhang, S., Tuteja, N., Enever, D., Kent, D., Bari, M., Shin, D., Laugesen, R., and Amirthanathan, G.: Development of an operational system for the 7-day streamflow forecast service in Australia, in: Ozwater, 2016 .
Hegdahl, T. J., Engeland, K., Steinsland, I., and Singleton, A.: The benefits of pre- and postprocessing streamflow forecasts for an operational flood-forecasting system of 119 Norwegian catchments, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-13, 2021.
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015< 0559:DOTCRP>2.0.CO;2, 2000.
Jha, S. K., Shrestha, D. L., Stadnyk, T. A., and Coulibaly, P.: Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment, Hydrol. Earth Syst. Sci., 22, 1957–1969, https://doi.org/10.5194/hess-22-1957-2018, 2018.
Kunnath-Poovakka, A. and Eldho, T. I.: A comparative study of conceptual
rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper
Godavari River basin, India, J. Earth Syst. Sci., 128, 33,
https://doi.org/10.1007/s12040-018-1055-8, 2019.
Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrol. Earth Syst. Sci., 11, 1267–1277, https://doi.org/10.5194/hess-11-1267-2007, 2007.
Li, M., Wang, Q. J., Bennett, J. C., and Robertson, D. E.: Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting, Hydrol. Earth Syst. Sci., 20, 3561–3579, https://doi.org/10.5194/hess-20-3561-2016, 2016.
Li, M., Robertson, D. E., Wang, Q. J., Bennett, J. C., and Perraud, J. M.:
Reliable hourly streamflow forecasting with emphasis on ephemeral rivers, J.
Hydrol., 598, 125739, https://doi.org/10.1016/j.jhydrol.2020.125739, 2021.
McInerney, D., Thyer, M., Kavetski, D., Laugesen, R., Tuteja, N., and
Kuczera, G.: Multi-temporal Hydrological Residual Error Modeling for
Seamless Subseasonal Streamflow Forecasting, Water Resour. Res., 56, e2019WR026979,
https://doi.org/10.1029/2019WR026979, 2020.
Mehrotra, R. and Singh, R. D.: Spatial disaggregation of rainfall data,
Hydrol. Sci. J., 43, 91–102, https://doi.org/10.1080/02626669809492104, 1998.
Moradkhani, H., Hsu, K. L., Gupta, H., and Sorooshian, S.: Uncertainty
assessment of hydrologic model states and parameters: Sequential data
assimilation using the particle filter, Water Resour. Res., 41, W05012,
https://doi.org/10.1029/2004WR003604, 2005.
Niu, W. J., Feng, Z. K., Yang, W. F., and Zhang, J.: Short-term streamflow
time series prediction model by machine learning tool based on data
preprocessing technique and swarm intelligence algorithm, Hydrol. Sci. J., 65, 2590–2603,
https://doi.org/10.1080/02626667.2020.1828889, 2020.
O'Kane, T. J., Naughton, M. J., and Xiao, Y.: The Australian community
climate and earth system simulator global and regional ensemble prediction
scheme, ANZIAM J., 50, 385–398, https://doi.org/10.21914/anziamj.v50i0.1421, 2008.
Pagano, T. C., Wood, A. W., Ramos, M.-H., Cloke, H. L., Pappenberger, F.,
Clark, M. P., Cranston, M., Kavetski, D., Mathevet, T., Sorooshian, S., and
Verkade, J. S.: Challenges of Operational River Forecasting, J.
Hydrometeorol., 15, 1692–1707, https://doi.org/10.1175/jhm-d-13-0188.1, 2014.
Pagano, T. C., Shrestha, D. L., Wang, Q. J., Robertson, D., and
Hapuarachchi, P.: Ensemble dressing for hydrological applications, Hydrol.
Process., 27, 106–116, https://doi.org/10.1002/hyp.9313,
2013.
Pappenberger, F., Pagano, T. C., Brown, J. D., Alfieri, L., Lavers, D. A.,
Berthet, L., Bressand, F., Cloke, H. L., Cranston, M., Danhelka, J.,
Demargne, J., Demuth, N., de Saint-Aubin, C., Feikema, P. M., Fresch, M. A.,
Garçon, R., Gelfan, A., He, Y., Hu, Y.-Z., Janet, B., Jurdy, N.,
Javelle, P., Kuchment, L., Laborda, Y., Langsholt, E., Le Lay, M., Li, Z.
J., Mannessiez, F., Marchandise, A., Marty, R., Meißner, D., Manful, D.,
Organde, D., Pourret, V., Rademacher, S., Ramos, M.-H., Reinbold, D.,
Tibaldi, S., Silvano, P., Salamon, P., Shin, D., Sorbet, C., Sprokkereef,
E., Thiemig, V., Tuteja, N. K., van Andel, S. J., Verkade, J. S.,
Vehviläinen, B., Vogelbacher, A., Wetterhall, F., Zappa, M., Van der
Zwan, R. E., and Thielen-del Pozo, J.: Hydrological Ensemble Prediction
Systems Around the Globe, in: Handbook of Hydrometeorological Ensemble
Forecasting, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-40457-3_47-1, 2016.
Paturel, J. E., Servat, E., and Vassiliadis, A.: Sensitivity of conceptual
rainfall-runoff algorithms to errors in input data – case of the GR2M model,
J. Hydrol., 168, 111–125, https://doi.org/10.1016/0022-1694(94)02654-T, 1995.
Perraud, J. M., Bridgart, R., Bennett, J. C., and Robertson, D.: Swift2: High performance software for short-medium term ensemble streamflow forecasting research and operations, in: Proceedings – 21st International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Gold Coast, Australia, 29 Nov–4 Dec 2015, 2458–2464, https://doi.org/10.36334/modsim.2015.l15.perraud, 2015.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a
parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289,
https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Poff, N. L. R., Olden, J. D., Pepin, D. M., and Bledsoe, B. P.: Placing
global stream flow variability in geographic and geomorphic contexts, River
Res. Appl., 22, 149–166, https://doi.org/10.1002/rra.902, 2006.
Raupach, M. R., Briggs, P. R., Haverd, V., King, E. A., Paget, M., and
Trudinger, C. M.: Australian Water Availability Project (AWAP): CSIRO Marine
and Atmospheric Research Component: Final Report for Phase 3: CAWCR
Technical Report No. 13, Centre for Australian Weather and Climate Research, http://hdl.handle.net/102.100.100/115368?index=1 (last access: 26 September 2022), 2009.
Richardson, D. S.: Skill and relative economic value of the ECMWF ensemble
prediction system, Q. J. Roy. Meteor. Soc., 126, 649–667,
https://doi.org/10.1002/qj.49712656313, 2000.
Robertson, D. E. and Wang, Q. J.: A Bayesian approach to predictor selection
for seasonal streamflow forecasting, J. Hydrometeorol., 13, 155–171,
https://doi.org/10.1175/JHM-D-10-05009.1, 2012.
Robertson, D. E., Shrestha, D. L., and Wang, Q. J.: Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting, Hydrol. Earth Syst. Sci., 17, 3587–3603, https://doi.org/10.5194/hess-17-3587-2013, 2013.
Robinson, J., Leahy, C., Boronkay, A., and Pierotti, S.: Introducing the Bureau’S New Hydrological Forecasting System, in: Floodplain Management Association National Conference, 1–16, 2016.
Rogelis, M. C. and Werner, M.: Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas, Hydrol. Earth Syst. Sci., 22, 853–870, https://doi.org/10.5194/hess-22-853-2018, 2018.
Roy, T., Serrat-Capdevila, A., Valdes, J., Durcik, M., and Gupta, H.: Design
and implementation of an operational multimodel multiproduct real-time
probabilistic streamflow forecasting platform, J. Hydroinfo., 19, 911–919, https://doi.org/10.2166/hydro.2017.111, 2017.
Shmueli, G.: To explain or to predict?, Stat. Sci., 25, 289–310,
https://doi.org/10.1214/10-STS330, 2010.
Siddique, R. and Mejia, A.: Ensemble streamflow forecasting across the U.S.
Mid-Atlantic Region with a distributed hydrological model forced by GEFS
reforecasts, J. Hydrometeorol., 18, 1905–1928, https://doi.org/10.1175/JHM-D-16-0243.1,
2017.
Smith, P. J., Pappenberger, F., Wetterhall, F., Thielen del Pozo, J.,
Krzeminski, B., Salamon, P., Muraro, D., Kalas, M., and Baugh, C.: Chapter
11 - On the Operational Implementation of the European Flood Awareness
System (EFAS), edited by: Adams, T. E. and Pagano, T. C. B. T.-F. F.,
Academic Press, Boston, 313–348,
https://doi.org/10.1016/B978-0-12-801884-2.00011-6, 2016.
Specq, D., Batté, L., Déqué, M., and Ardilouze, C.: Multimodel
Forecasting of Precipitation at Subseasonal Timescales Over the Southwest
Tropical Pacific, Earth Sp. Sci., 7, e2019EA001003, https://doi.org/10.1029/2019EA001003,
2020.
Stern, H., De Hoedt, G., and Ernst, J.: Objective classification of Australian climates, Aust. Meteorol. Mag., 49, 87–96, 2000.
Talukder, B. and Hipel, K. W.: Diagnosis of sustainability of trans-boundary
water governance in the Great Lakes basin, World Dev., 129, 104855,
https://doi.org/10.1016/j.worlddev.2019.104855, 2020.
Tomkins, K. M.: Uncertainty in streamflow rating curves: Methods, controls
and consequences, Hydrol. Process., 24, 464–481, https://doi.org/10.1002/hyp.9567, 2014.
Van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., De Jeu, R. A. M., Liu,
Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought
in southeast Australia (2001–2009): Natural and human causes and
implications for water resources, ecosystems, economy, and society, Water
Resour. Res., 49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.
van Esse, W. R., Perrin, C., Booij, M. J., Augustijn, D. C. M., Fenicia, F., Kavetski, D., and Lobligeois, F.: The influence of conceptual model structure on model performance: a comparative study for 237 French catchments, Hydrol. Earth Syst. Sci., 17, 4227–4239, https://doi.org/10.5194/hess-17-4227-2013, 2013.
Velasco-Forero, C., Pudashine, J., Curtis, M., and Seed, A.: Probabilistic
precipitation nowcast for flash flooding purposes across Australia:
verification of a new version of Short-Term Ensemble Prediction System
(STEPS), in: EGU General Assembly Conference Abstracts, EGU21-13673, 2021.
Verkade, J. S., Brown, J. D., Davids, F., Reggiani, P., and Weerts, A. H.:
Estimating predictive hydrological uncertainty by dressing deterministic and
ensemble forecasts; a comparison, with application to Meuse and Rhine, J.
Hydrol., 555, 257–277,
https://doi.org/10.1016/j.jhydrol.2017.10.024, 2017.
Woldemeskel, F., McInerney, D., Lerat, J., Thyer, M., Kavetski, D., Shin, D., Tuteja, N., and Kuczera, G.: Evaluating post-processing approaches for monthly and seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 22, 6257–6278, https://doi.org/10.5194/hess-22-6257-2018, 2018.
Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall, F., and Robertson,
D. E.: Ensemble flood forecasting: Current status and future opportunities, 62, e1432,
https://doi.org/10.1002/wat2.1432, 2020.
Zhao, T., Schepen, A., and Wang, Q. J.: Ensemble forecasting of sub-seasonal
to seasonal streamflow by a Bayesian joint probability modelling approach,
J. Hydrol., 541, 839–849, https://doi.org/10.1016/j.jhydrol.2016.07.040, 2016.
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Methodology for developing an operational 7-day ensemble streamflow forecasting service for...