Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4801-2022
https://doi.org/10.5194/hess-26-4801-2022
Research article
 | 
29 Sep 2022
Research article |  | 29 Sep 2022

Development of a national 7-day ensemble streamflow forecasting service for Australia

Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema

Related authors

From gridded runoff to streamflow: application of statistical post-processing to generate seasonal streamflow forecasts
Christopher A. Pickett-Heaps, Patrick Sunter, Wendy Sharples, Michael Pegios, Catherine Wilson, Alex Cornish, Richard Laugesen, and Elisabetta Carrara
EGUsphere, https://doi.org/10.5194/egusphere-2025-1379,https://doi.org/10.5194/egusphere-2025-1379, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Better continental-scale streamflow predictions for Australia: LSTM as a land surface model post-processor and standalone hydrological model
Ashkan Shokri, James C. Bennett, David E. Robertson, Jean-Michel Perraud, Andrew J. Frost, and Eric A. Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-805,https://doi.org/10.5194/egusphere-2025-805, 2025
Short summary
Uncovering a Key Predictors for Enhancing Daily Streamflow Simulation Using Machine Learning
Arash Aghakhani, David E. Robertson, and Valentijn R. N. Pauwels
EGUsphere, https://doi.org/10.5194/egusphere-2025-553,https://doi.org/10.5194/egusphere-2025-553, 2025
Short summary
Comparison of BARRA and ERA5 in Replicating Mean and Extreme Precipitation over Australia
Kevin K. W. Cheung, Fei Ji, Nidhi Nishant, Jin Teng, James Bennett, and De Li Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-286,https://doi.org/10.5194/hess-2024-286, 2024
Revised manuscript accepted for HESS
Short summary
Regional significance of historical trends and step changes in Australian streamflow
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023,https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary

Cited articles

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. 
Andréassian, V.: Waters and forests: From historical controversy to scientific debate, J. Hydrol., 291, 1–27, https://doi.org/10.1016/j.jhydrol.2003.12.015, 2004. 
Atkinson, R., Power, R., Lemon, D., O'Hagan, R., Dovey, D., and Kinny, D.: The Australian Hydrological Geospatial Fabric – Development Methodology and Conceptual Architecture, Canberra, Australia, 60 pp., https://doi.org/10.4225/08/585ac46ee9981, 2008. 
Bennett, J. C., Robertson, D. E., Shrestha, D. L., Wang, Q. J., Enever, D., Hapuarachchi, P., and Tuteja, N. K.: A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days, J. Hydrol., 219, 2832–2846, https://doi.org/10.1016/j.jhydrol.2014.08.010, 2014. 
Bennett, J. C., Robertson, D. E., Ward, P. G. D. D., Hapuarachchi, H. A. A. P., and Wang, Q. J. J.: Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications in meso-scale catchments, Environ. Model. Softw., 76, 20–36, https://doi.org/10.1016/j.envsoft.2015.11.006, 2016. 
Download
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Share