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Abstract. Reliable streamflow forecasts with associated un-
certainty estimates are essential to manage and make bet-
ter use of Australia’s scarce surface water resources. Here
we present the development of an operational 7 d ensem-
ble streamflow forecasting service for Australia to meet the
growing needs of users, primarily water and river managers,
for probabilistic forecasts to support their decision making.
We test the modelling methodology for 100 catchments to
learn the characteristics of different rainfall forecasts from
Numerical Weather Prediction (NWP) models, the effect of
statistical processing on streamflow forecasts, the optimal en-
semble size, and parameters of a bootstrapping technique
for calculating forecast skill. A conceptual rainfall–runoff
model, GR4H (hourly), and lag and route channel routing
model that are in-built in the Short-term Water Information
Forecasting Tools (SWIFT) hydrologic modelling package
are used to simulate streamflow from input rainfall and po-
tential evaporation. The statistical catchment hydrologic pre-
processor (CHyPP) is used for calibrating rainfall forecasts,
and the error reduction and representation in stages (ERRIS)
model is used to reduce hydrological errors and quantify hy-
drological uncertainty. Calibrating raw forecast rainfall with
CHyPP is an efficient method to significantly reduce bias and
improve reliability for up to 7 lead days. We demonstrate that
ERRIS significantly improves forecast skill up to 7 lead days.
Forecast skills are highest in temperate perennially flowing
rivers, while it is lowest in intermittently flowing rivers. A
sensitivity analysis for optimising the number of streamflow

ensemble members for the operational service shows that
more than 200 members are needed to represent the fore-
cast uncertainty. We show that the bootstrapping block size
is sensitive to the forecast skill calculation. A bootstrapping
block size of 1 month is recommended to capture maximum
possible uncertainty. We present benchmark criteria for ac-
cepting forecast locations for the public service. Based on the
criteria, 209 forecast locations out of a possible 283 are se-
lected in different hydro-climatic regions across Australia for
the public service. The service, which has been operational
since 2019, provides daily updates of graphical and tabular
products of ensemble streamflow forecasts along with per-
formance information, for up to 7 lead days.

1 Introduction

Optimal management of water resources requires support
from accurate, reliable, and timely streamflow forecasts to
make decisions. Practical and scientific benefits of predictive
modelling of hydrological processes are evident (Shmueli,
2010) and have long been recognised. Water forecasting
models can make significant contributions to drought mit-
igation and alleviation, optimal management of urban and
agricultural water allocations, basin planning, hydropower
generation, and flood management and mitigation (Buizer et
al., 2016). Skilful streamflow forecasts can significantly con-
tribute to improving reservoir operation, water supply stor-
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age reliability, and environmental allocation (Delaney et al.,
2020). In the long term, these predictive hydrological models
can potentially bring enormous benefits to the environment
and society, ensuring economic growth and environmental
sustainability (Talukder and Hipel, 2020).

Water and flood managers need accurate streamflow fore-
cast information with a useful lead time to make optimal wa-
ter management decisions. The useful lead time can be hours
to years depending on the type of application and actions re-
quired. There is a wide range of modelling techniques, from
conceptual, physically-based, statistical, and stochastic time
series to modern hybrid artificial intelligence (AI) models
that can be used for streamflow forecasting. Conceptual and
physically-based models are more commonly used for short-
and medium-term streamflow forecasting. Statistical models
such as the Bayesian joint probability (BJP) model (Robert-
son and Wang, 2012; Zhao et al., 2016; Charles et al., 2018)
are mostly used for monthly- or seasonal-timescale stream-
flow forecasting. Recently, machine learning tools based on
data pre-processing techniques and swarm intelligence algo-
rithms have been successfully used for short-term stream-
flow forecasting (Niu et al., 2020). Commonly, rainfall fore-
casts from a Numerical Weather Prediction (NWP) model are
used as input to a calibrated hydrological model for stream-
flow forecasting. Over the last few decades, NWP has moved
from deterministic to probabilistic (ensemble) forecasting.
As a result, probabilistic streamflow forecasting has become
increasingly popular across the globe (Pappenberger et al.,
2016; Wu et al., 2020; Roy et al., 2017). Probabilistic fore-
casts provide estimates of uncertainty involved in the fore-
casts that assist users in making informed decisions from the
different scenarios available.

There are several large-scale (continental and global) hy-
drological systems run by communities around the world
(Bierkens et al., 2015; Emerton et al., 2016). The Global
Flood Awareness System (GloFAS) is one such forecasting
system that can skilfully predict extreme events in large river
basins up to 1 month ahead (Alfieri et al., 2013). The Euro-
pean Flood Awareness System (EFAS, Smith et al., 2016),
operational since 2012, is a European Commission initia-
tive developed by the Joint Research Centre (JRC) for river-
ine flood preparedness across Europe. The service aims to
provide harmonised early warnings and hydrological infor-
mation to national agencies across Europe. The US hydro-
logic ensemble forecast service (HEFS), run by the Na-
tional Weather Services (NWS), provides ensemble stream-
flow forecasts that seamlessly span lead times from less than
1 h to several years, and that are spatially and temporally
consistent for river basins across the US (Demargne et al.,
2014). Siddique and Mejia (2017) report that the ensemble
streamflow forecasts in the US mid-Atlantic region remain
skilful for lead times up to 7 d. Post-processing of the fore-
casts increased forecast skills across lead times and spatial
scales. The past research demonstrates that ensemble stream-
flow predictions at different temporal scale is possible, but

the skills vary from one geographical location to another.
These findings give us greater confidence for the develop-
ment of an operational ensemble streamflow forecasting ser-
vice for Australia.

Australia is a land of extremes from droughts to floods
and raging fires. It has a wide range of geographical and
topographical features with a large central arid or semi-
arid zone. The southeast and southwest regions are tem-
perate, and the north has a tropical climate (Stern et al.,
2000). These unique geographical features result in the most
significant inter-annual variability of streamflow, floods,
and droughts compared with other continents (Poff et al.,
2006). During 2001–2009 south-eastern Australia experi-
enced its most severe drought since 1901, known as the “Mil-
lennium Drought” (http://www.bom.gov.au/climate/drought/
knowledge-centre/previous-droughts.shtml, last access: 16
September 2022). The region had the most extended period
of below-median rainfall and, as a result, inflows to major
reservoirs were very low (Van Dijk et al., 2013). In particular,
inflow to reservoirs located within the Murray–Darling River
basin, Australia’s food bowl, was 50 % of the previously
recorded minimum. The drought had wide, long-lasting so-
cietal, economic, and environmental impacts (Bureau of
Meteorology, 2021). As a result, the federal government
passed the Water Act 2007 (https://www.legislation.gov.au/
Details/C2017C00151, last access: 16 September 2022) to
implement a water security plan for the nation. One of
the critical components of implementing the water secu-
rity plan was developing and operationalising streamflow
forecasting services at different temporal scales with spe-
cial emphasis on short-term (hours to days) and medium-
term (months to seasons) forecasts. The Bureau of Meteo-
rology (BoM) launched a seasonal streamflow forecasting
service (Woldemeskel et al., 2018; Feikema et al., 2018)
in 2010 (http://www.bom.gov.au/water/ssf/history.shtml, last
access: 16 September 2022). A 7 d deterministic streamflow
forecasting service (Hapuarachchi et al., 2016) was progres-
sively developed during 2010–2017 and released to the pub-
lic. More recently, stakeholders showed greater interest in
probabilistic streamflow forecasts as it provides information
on the uncertainty involved in the forecasts and supports
users in making informed decisions with associated uncer-
tainties. In response, the BoM launched the 7 d ensemble
streamflow forecasting (SDF) service (http://www.bom.gov.
au/water/7daystreamflow/, last access: 16 September 2022)
in December 2019, upgrading the existing deterministic ser-
vice. The upgraded service provides a set of forecasts to give
an indication of a range of possible streamflow outcomes
based on input forecast rainfall uncertainties for up to 7 d
lead time at an hourly scale at different river gauge stations
with useful skill and reliability.

This paper describes the development of a SDF service,
including the characteristics of different Numerical Weather
Prediction (NWP) model rainfall forecasts, application of
calibration to forecast rainfall, error modelling of streamflow
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forecasts, the optimal ensemble size required to represent the
forecast uncertainty, parameters of a bootstrapping technique
for calculating forecast skill, operational implementation of
the service, and future work. The next sections of the paper
describe the methodology, verification metrics, catchments
and data, results, discussion, and future work.

2 Modelling methodology

The adopted hybrid dynamical–statistical streamflow fore-
casting method consists of several components. It includes
NWP calibration, hydrological modelling and hydrological
error modelling, and we firstly introduce the components of
the system. The forecasting system is premised on separat-
ing rainfall forecasting from hydrological modelling. This
includes separating the estimation of uncertainty in rainfall
forecasts from the estimation of uncertainty in hydrological
models. The system is thus a hybrid dynamical–statistical
forecasting system. This setup has several key benefits: it
makes the system highly modular, allowing new models
(e.g. new NWPs) to be substituted into the system with-
out the need to revise other components (e.g. the hydrolog-
ical model). Second, it means that more appropriate tech-
niques can be applied to estimate forecast uncertainty in each
case: for example, error models are better able to handle the
strong autocorrelation in streamflow than statistical calibra-
tion methods typically applied to rainfall forecasts. There are
only a few streamflow forecast systems around the world us-
ing this hybrid technology. The hydrologic ensemble fore-
cast system (HEFS, Demargne et al., 2014) is a hybrid fore-
cast system. It applies a calibration to rainfall and an er-
ror model. However, in an operational setting, it uses “in-
the-loop” flood forecasters to manually do data assimilation,
which may impede the ability to produce reliable ensemble
forecasts. The European Flood Awareness System (EFAS)
and Global Flood Awareness System (GloFAS) use dynami-
cal models only.

Operationalisation of the system requires many practical
scientific questions to be addressed. In this paper we seek to
identify:

a. the minimum ensemble size that can be used while
maintaining robust performance

b. how best to describe forecast skill when only limited
hindcast dataset is available.

Our methods then describe the approach taken to answer
these questions. A verification strategy is critical to answer
the operationalisation questions and provide an assessment
of the forecast performance. We finally describe the verifica-
tion strategy adopted for this study.

2.1 Calibration and evaluation of rainfall forecasts

Three NWP rainfall forecast products (Table 1) are eval-
uated for 100 catchments (at the outlets) in this study to
understand their characteristics and to explore the impact
of calibration. These are the European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric model en-
semble forecasts (Richardson, 2000), Australian Commu-
nity Climate and Earth-System Simulator–global ensemble
(ACCESS–GE2) forecasts (O’Kane et al., 2008), and the
BoM’s poor man’s ensemble (PME) (Ebert, 2001), the en-
semble mean of NWP models from Australia, UK, USA,
Canada, Europe, and Japan. Note that ACCESS-GE2 was a
pre-operational product made available for this study, and a
newer version (ACCESS–GE3) is now available. A catch-
ment is delineated to sub-catchments and finer sub-areas
using a national flow direction map to represent a semi-
distributed model structure. A hydrological model is applied
to each sub-area with average areal rainfall (see Sect. 2.2.1).
The average areal rainfall of each sub-area per each ensemble
member is calculated by taking the area-weighted average
of gridded forecast rainfall for all grid cells intersecting the
sub-area. The average forecast rainfall is post-processed us-
ing the catchment hydrologic pre-processor (CHyPP) model
(Robertson et al., 2013), which is based on a Bayesian
joint probability (BJP) model that defines a spatially vari-
able probabilistic relationship between NWP model forecast
rainfall and observed rainfall. The BJP model relates forecast
rainfall to corresponding observations using a log-sinh trans-
formed bivariate normal distribution. The log-sinh transfor-
mation is applied to normalise observed and forecast rainfall
data and to homogenise their variance. The Schaake shuffle
(Clark et al., 2004) method used in the CHyPP generates spa-
tially and temporally coherent calibrated forecasts by linking
samples from forecast probability distributions at each con-
secutive lead time within the entire hindcast period for each
forecast location within the catchment.

A leave-one-month-out cross-validation procedure (Ha-
puarachchi et al., 2016) is applied to calibrate and validate
the CHyPP model for the data period of 36 months from
2014 to 2016. ACCESS–GE2 hindcast data are limited and
2014–2016 is the common period of data available for the
selected NWP rainfall products. Given that PME is a merged
post-processed product of many global NWP products, it
shows negligible improvement when CHyPP is used on it
(Shrestha et al., 2020). Therefore, the PME forecasts are not
post-processed. We also call a raw super-ensemble, a merged
product of ECMWF, ACCESS–GE2, and PME with 75 mem-
bers (Table 1). The 3 and 6 h NWP data (Table 1) are disag-
gregated to hourly using linear interpolation within CHyPP.
Bennett et al. (2016) showed that even converting daily rain-
fall totals to hourly using linear interpolation produces plau-
sible rainfall–runoff model outputs. By calibrating the fore-
casts with CHyPP, we generate x number of bias-corrected
statistically reliable ensemble members for each rainfall fore-
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cast product, ACCESS–GE2 and ECMWF, and merge them
with PME (total OES members) that is referred to as a post-
processed super-ensemble. The x to be determined is based
on the analysis on optimum ensemble size (present below).
Raw and post-processed rainfall forecasts are evaluated inde-
pendently (Table 2) for different lead times at the catchment
scale for bias, precision, and reliability (see Sect. 2.5 for de-
tails). Note that PME is included here mainly for generating
a deterministic streamflow forecast to embed in the ensemble
plume of the forecast products of the operational service.

2.2 Generating and evaluating streamflow forecasts

2.2.1 Rainfall–runoff model and channel routing

The core hydrologic modelling package used here is the
Short-term Water Information Forecasting Tools (SWIFT)
(Perraud et al., 2015). SWIFT consists of many hydrologic
modelling tools including conceptual hydrologic models,
catchment routing models, channel routing models, stream-
flow error models, and parameter optimisation methods. It
supports deterministic and ensemble hydrologic modelling
for the retrospective evaluation of catchment models using
hindcast data and real-time forecasting. Previous research
conducted in Australia (Perrin et al., 2003; Coron et al.,
2012; Van Esse et al., 2013; Bennett et al., 2016; Kunnath-
Poovakka and Eldho, 2019) and elsewhere have shown that
GR4J (Perrin et al., 2003) and its variants perform at least as
well as other conceptual models in a range of environments
at daily and hourly time-steps. Therefore, the GR4H rainfall–
runoff model (Bennett et al., 2014), an hourly variant of the
daily GR4J model and lag and route channel routing is im-
plemented here.

A nationally consistent flow direction map from the Aus-
tralian Hydrological Geospatial Fabric (Geofabric) (Atkin-
son et al., 2008) is used to delineate each catchment into
sub-catchments which is then further divided into finer sub-
areas based on the flow direction, the coverage of gauging
stations, and hydro-climatic characteristics such as the rain-
fall gradient. It therefore represents a semi-distributed model
structure. A collection of upstream sub-areas makes a sub-
catchment where a streamflow gauge exists at the outlet. For
the 100 catchments, the size of a sub-area varies from 30 to
4000 km2, of which the mean and median values are 600 and
450 km2, respectively. Larger sub-areas are present where
the rainfall gradient is insignificant, and rainfall and water
level gauge networks are sparse. The hydrologic model is ap-
plied to each sub-area. The model is calibrated for each sub-
catchment where all the sub-areas within a sub-catchment
have the same parameters. However, sub-areas within a sub-
catchment have different precipitation and potential evapo-
transpiration. As a result, state variables and runoff in each
sub-area are different from others. Runoff generated in each
sub-area is routed to the catchment outlet using the lag and
route method. The model parameters are calibrated using the

Shuffle Complex Evolution–University of Arizona (SCE–
UA) algorithm (Duan et al., 1994) within the SWIFT pack-
age.

2.2.2 Hydrological error modelling

In addition to errors contributing to streamflow forecasts
from observed and forecast rainfall (see Sect. 3.2), there
are errors in both hydrological model structure and in cali-
brated model parameters. For an operational forecasting ser-
vice, it is essential to reduce the forecast uncertainty due
to these errors as much as possible to provide highly reli-
able and accurate forecasts to users. Using the Error Rep-
resentation And Reduction In Stages (ERRIS) (Bennett et
al., 2021; Li et al., 2021) method, we explore the impact of
error modelling on streamflow forecasts. ERRIS is applied
to address different statistical properties of the forecast er-
ror in four stages: (i) hydrological model forecast and data
normalisation, (ii) non-linear bias correction, (iii) restricted
autoregressive (AR) model updating, and (iv) adjustment of
residual distribution. After the hydrologic model and routing
model parameters are calibrated, the ERRIS parameters are
calibrated for each sub-catchment from upstream to down-
stream. In simulation mode, observed discharge is passed
downstream at each sub-catchment outlet. If the observed
discharge is missing, post-processed streamflow is used in-
stead of observed. In forecast mode, post-processed stream-
flow is passed downstream. Note that ERRIS accounts only
for uncertainty from the hydrological modelling component
of the system, and not uncertainties in rainfall forecasts. For
the streamflow forecasts to be reliable overall, uncertainty
from ERRIS must sum to the uncertainty from rainfall fore-
casts.

2.2.3 Cross-validation and forecast verification

A leave-two-year-out cross-validation approach (Ha-
puarachchi et al., 2016) is implemented for all catchment
models using observed hourly data from 2007 to 2016. The
first year of the leave-out period in each iteration is used for
model validation. The purpose of the second year is to avoid
propagating any hydrological effects from the validation
period into the model calibration to make it independent
(Hapuarachchi et al., 2016). A longer leave-out period is
preferred, but this would shorten the available data for model
calibration. The duration of 2 yr is determined as appropriate
after considering the limited data available. This approach
is applied to all catchment models (Fig. 1a). Once a model
is validated, we use the whole dataset to calibrate the model
to obtain the final parameter set for each sub-catchment.
Raw and post-processed streamflow forecasts are generated
using the post-processed super-ensemble rainfall forecasts
(Table 2) for the 36 months from 2014 to 2016 (Fig. 1b).
Streamflow forecasts before and after error modelling are
independently evaluated for different lead times at the
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Table 1. Raw rainfall forecast products.

Product Lead time Ensemble Spatial resolution Temporal resolution
(h) members (km) (h)

ECMWF 360 51 20 3 (0–144 lead),
6 (144–360 lead)

PME 228 1 50 3
ACCESS–GE2 240 24 60 3
Super-ensemble 240 75 Areal average 1

outlets of the selected 100 catchments for bias, accuracy,
and reliability, as described in Sect. 2.5.

2.3 Determination of optimal ensemble size

It is essential to optimise computational efficiency and stor-
age requirements of an operational system without com-
promising forecast quality. We conduct a sensitivity analy-
sis using six catchments, located in different hydroclimatic
regions, to estimate the smallest ensemble size that does
not significantly reduce critical measures of forecast perfor-
mance. We set the maximum ensemble size to 1000 members
based on the operational computational capacity. ACCESS–
GE2 and ECMWF are calibrated to generate 1000 forecast
rainfall members for each product using the hindcast data
from 2014 to 2016 (1096 d). Then we generate a 1000-
member error-corrected (ERRIS) streamflow forecast from
the rainfall hindcast. We randomly selectm (> 1000) ensem-
ble members from the 1000-member streamflow ensemble
dataset (without removing ensemble members) and repeat
the process 100 times. In this exercise, m is 50, 100, 200,
300, and 500. Alternatively, different number of ensemble
member (m) samples can be generated independently and
analysed. However, this would require extensive computa-
tional resources that were unavailable to us. Another method
is to dress the ensembles (Pagano et al., 2013) to create more
members for each forecast time. However, we want to en-
sure that the forecasts are true ensembles – i.e. each ensem-
ble member can be summed across time to produce reliable
forecasts of accumulations (e.g. 7 d streamflow totals). “En-
semble dressing” methods (Pagano et al., 2013; Verkade et
al., 2017) that simply add noise to a given lead time are not
suitable for this type of calculation. We calculate the contin-
uous ranked probability score (CRPS, see Sect. 2.5) for the
randomly selected samples and compare them with the CRPS
of the original 1000-member sample. The optimal ensemble
size is decided considering the computational efficiency and
the statistical characteristics of the randomly selected sam-
ples compared to the original 1000-member sample.

2.4 Streamflow forecast quality assessment

Skill score (see Sect. 2.5.3) is a measure of expected fore-
cast skill for a particular forecast location over a specified

period. The CRPS is the metric used in this study. Stream-
flow forecast skill is calculated using a bootstrapping tech-
nique (Efron and Tibshirani, 1994) to obtain fair and reliable
skill statistics. The bootstrapping is implemented to provide
an understanding of the possible range of skills that might
be realised over a long period of record when only a short
record of hindcasts is available. We also calculate the reli-
ability for verifying forecast quality. A sensitivity analysis
is conducted as described below to (i) select the optimum
block size used in the bootstrapping method; and (ii) check
the effect of the number of bootstrapping iterations on fore-
cast skill. The steps taken are:

1. ACCESS–GE2 and ECMWF are calibrated to generate
x forecast rainfall ensemble members of each product
using the hindcast data from 2014 to 2016 (1096 d). For
each day, there is an hourly rainfall forecast to 7 d lead-
time.

2. Calibrated ACCESS–GE2, ECMWF, and raw PME
forecast ensembles are merged to generate an OES-
member super-ensemble.

3. From the rainfall super-ensemble in (2), generate OES
members of hourly streamflow forecasts. This dataset
has the dimension of OES× 24 lt× d data points where
lt= 7 is lead time (days) and d= 1096 (days).

4. Since we calculate the forecast skill per lead days, the
hourly streamflow data are aggregated to daily values.
CRPS per day is calculated using the OES ensemble
members to generate a matrix MC with the dimension
of lt× d CRPS values.

5. Data in MC per lead days are bootstrapped to cal-
culate forecast skill. We randomly and iteratively se-
lect a block of data from the MC for each lead days
p times such that the total data points are equal to d
and calculate the continuous ranked probability skill
score (CRPSS, see Sect. 2.5). For an initial investiga-
tion, block sizes explored in this study are a week and
a month. From now on, we refer to the block sizes w-
block for a week and m-block for a month. For example,
if the block size is a month, then p is 36 (i.e. 1096/aver-
age no. days per month).

https://doi.org/10.5194/hess-26-4801-2022 Hydrol. Earth Syst. Sci., 26, 4801–4821, 2022
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Table 2. Forecast evaluation experiments.

Rainfall Ensemble Rainfall evaluation Streamflow evaluation

product members (raw) Raw Calibrated Raw ERRIS

ECMWF 50 Yes Yes
ACCESS–GE2 24 Yes Yes
Super-ensemble 75 Yes Yes Yes Yes

Figure 1. Rainfall and streamflow forecast evaluation framework: (a) cross-validation and (b) forecast verification.

6. Repeat step (4) for k times where k is 100, 200, 500, and
1000.

We do not select a block size of 1 d as the high autocorre-
lation of daily samples means they are not sufficiently inde-
pendent.

2.5 Verification metrics

2.5.1 Bias

It is important to assess model bias to ensure the model is
not consistently underestimating or overestimating stream-
flow. Bias (Bias) can be positive (underestimation) or neg-
ative (overestimation), and is calculated for each lead time
using

Bias (%)=

n∑
i=1
(Gi − Si)

n∑
i=1
Gi

× 100, (1)

where G is observed value (rainfall or streamflow), S is sim-
ulated/forecast (median of the ensemble) value, and n is total
number of observations.

2.5.2 Nash–Sutcliffe efficiency (NSE)

The Nash–Sutcliffe efficiency (NSE) quantifies the relative
magnitude of residual variance compared to the measured
data variance by

NSE= 1−

n∑
i=1
(Gi − Si)

2

n∑
i=1

(
Gi −G

)2 , (2)

where G is mean observed streamflow. In this study, NSE is
used to assess the quality of GR4H streamflow simulations
(deterministic), not forecasts.

2.5.3 Continuous ranked probability skill score
(CRPSS)

Continuous ranked probability score (CRPS) measures the
error of all ensemble members with respect to observations
by integrating the squared distance between forecast and ob-
served cumulative distribution functions (Hersbach, 2000),
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and is given by

CRPS=
1
T

T∑
t=1

x=∞∫
x=−∞

(F
f
t (x)−F

o
t (x))

2dx (3)

Relative CRPS(%)= RE=
CRPS

G
× 100, (4)

where F is the cumulative distribution function (CDF),
F
f
t (x) is the forecast probability CDF for the t th fore-

cast case, F o
t (x) is the observed probability CDF (Heavi-

side function), and T is the number of forecasts. Smaller
CRPS values are better, and CRPS tends to increase with in-
creased (positive or negative) forecast bias. For a determin-
istic forecast, the CRPS is replaced with the mean absolute
error (MAE), which is the limiting value of CRPS when fore-
cast spread tends to zero. The relative CRPS is represented
as percentage of daily observations. Relative CRPS standard-
ises errors to allow easy comparison between catchments.

Skill is a measure of relative improvement of the forecast
over a reference forecast. The continuous ranked probability
skill score (CRPSS) is given by

CRPSS= 1−
CRPSforecast

CRPSreference
, (5)

where CRPSreference is the reference forecast. For this study,
we use climatology as the reference forecast. Data from 1990
to 2016 are used for climatological streamflow calculation.
For any given day of the year, the climatology value is the
median of the period from 2 weeks before that day to 2 weeks
after (i.e. 29 d) over the climatology period excluding the
forecast year.

2.5.4 Probability integral transform (PIT) uniform
probability plots

We use the probability integral transform uniform probability
(PIT) diagram to assess the reliability of ensemble forecasts
(Laio and Tamea, 2007). PIT is uniformly distributed for reli-
able forecasts. It is the CDF of the forecasts Ft (ft ) evaluated
at observations Gt and is given by

PITt = Ft (Gt ). (6)

The empirical CDF of the PIT values falls on the 1 : 1 line
when the forecasts are perfectly reliable. Deviation from the
1 : 1 line indicates a less reliable forecast. To summarise and
compare PIT values for many catchments, we use PIT-alpha
(Renard et al., 2010) according to

α = 1−
2
T

T∑
t=1

∣∣∣∣PIT∗t −
t

T + 1

∣∣∣∣ , (7)

where PIT∗t is the sorted PITt . An α value of 0 indicates
the lowest reliability and 1 indicates perfect reliability. As
the minimum rainfall amount measurable by tipping bucket
rain gauges is 0.2 mm, we have set rainfall values less than
0.2 mm as censored data for PIT calculation.

3 Catchment selection and data

3.1 Catchment selection

Australia has several climate zones as defined by Köppen
Climate Classification (Stern et al., 2000), including equa-
torial, tropical, and subtropical regions in the north, and tem-
perate regions in the south. The vast interior regions are cov-
ered by grassland and desert. There are 13 drainage divisions
(Fig. 2), and mean annual rainfall (Fig. 13) for these divi-
sions varies from 276 to 2816 mm (Table 3) calculated using
data for the period from 1990 to 2016. Annual average poten-
tial evaporation (PE) is generally higher than annual average
rainfall in most areas. Therefore, streamflow generation pro-
cesses are mainly controlled by water-limited environments
(Milly et al., 2005) except for the Tasmania division. The
pattern of rainfall–runoff and PE distribution within a year
across different drainage divisions vary significantly. In the
southern part of Australia, the wet season begins in June–July
and ends in December–January, while in the northern part of
Australia, the wet season starts in November–December and
ends in March–April (Bureau of Meteorology, 2021).

For development of the SDF service, we select 100 catch-
ments in consultation with the state and federal government
entities, and water management agencies in different juris-
dictions, and consider their strategic value (high economic,
environmental, and social significance), data availability, and
other factors that support developing a useful model. Most
catchments are in the coastal regions (Fig. 2), covering most
of Australia’s populated centres. For the operational service,
283 potential forecast locations are identified within the se-
lected catchments. There are no forecast locations selected
in the South-western Plateau, Lake Eyre, and North-western
Plateau divisions (Fig. 2), because there is no significant user
demand, and the gauging network is very sparse. Testing and
verification of the modelling methodology is done for the
outlets of the selected 100 catchments. The same method-
ology is implemented for modelling all forecast locations
within a given catchment.

3.2 Observed data

This study collates relevant historical observations for con-
sistent retrospective analyses across all catchments from
the BoM’s databases. Hourly observed streamflow (1990 to
2016) and rainfall data (2007 to 2016) are extracted from the
BoM’s internal databases and external data provided by wa-
ter agencies. Due to the limited availability of hourly rain-
fall data before 2007, the daily rainfall data are extracted
from the Australian Water Availability Project (AWAP, Rau-
pach et al., 2009) and disaggregated to hourly time-steps by
linear interpolation. The disaggregated hourly rainfall data
(from 1990 to 2006) are used for hydrological model warm-
up since the quality of disaggregated rainfall data is low at
the hourly scale. It is shown that disaggregated daily rain-

https://doi.org/10.5194/hess-26-4801-2022 Hydrol. Earth Syst. Sci., 26, 4801–4821, 2022



4808 H. A. P. Hapuarachchi et al.: Development of a national 7-day streamflow forecasting service

Figure 2. Map of Australia showing forecast locations, catchment boundaries, and drainage divisions.

Table 3. Drainage divisions (see Fig. 2) and catchment attributes.

Drainage division No. of No. of forecast Area (km2) Mean annual PE (mm) Aridity index
catchments locations rainfall (mm)

Min Max Min Max Min Max Min Max

North east coast 11 22 240 35 985 549 2816 1504 1973 0.28 1.79
South east coast 18 48 88 13 700 605 1328 988 1431 0.46 1.34
Tasmania 14 28 227 3445 584 1530 758 978 0.65 2.02
Murray–Darling Basin 35 76 364 43 720 462 1270 1048 1909 0.25 1.08
South Australia Gulf 3 4 345 701 570 825 1243 1293 0.44 0.66
South west coast 9 21 26 18 971 407 1034 1199 1625 0.29 0.70
Pilbara–Gascoyne 1 3 – 71 222 – 276 – 2103 – 0.13
Tanami–Timor Sea coast 5 19 658 83 100 707 1567 2179 2259 0.32 0.72
Carpentaria coast 4 5 6020 17 148 463 1062 2092 2252 0.22 0.47

Note: statistics are calculated for the period from 1990 to 2016 using data from all forecast locations in the operational service. Catchment mean annual rainfall is
calculated using the hourly rainfall at sub-area centroids computed by interpolating the rainfall of the nearest four gauges. Min and max rainfall and PE, and the aridity
index, are calculated from the mean values of rainfall and PE of the catchments within a drainage division. The Pilbara–Gascoyne division has only one catchment,
thus min=max. Three drainage divisions with no forecast locations are not included in the table.

falls can provide good estimates of states in hourly hydro-
logical models (Bennett et al., 2016). The rainfall and stream-
flow observations go through a comprehensive quality check-
ing using a semi-automated workflow by visualising stream-
flow and nearby rainfall station data side by side. This allows
the modeller to identify the connection between rainfall and
streamflow (i.e. there should be a high rainfall event for high
discharge). This approach assists the modeller to confidently
make necessary corrections to the observed data. Rainfall

data are checked for extreme values, by comparing with data
from different sources, and then removing any suspicious
values. Streamflow is further checked for rating issues, the
rate of change, and continuous zero values because in some
locations, missing values are replaced with zeros. Then the
quality checked data are visually checked (plots) for further
quality assurance. The corrections/modifications made to the
original data are recorded (a data file) for future reference by
other users of the dataset.

Hydrol. Earth Syst. Sci., 26, 4801–4821, 2022 https://doi.org/10.5194/hess-26-4801-2022



H. A. P. Hapuarachchi et al.: Development of a national 7-day streamflow forecasting service 4809

The average areal observed rainfall for each sub-area is
calculated using the inverse distance squared weighted aver-
aging method, where the distance is calculated between the
rainfall gauge and the sub-area centroid. Monthly gridded PE
data (1990 to 2016) at each sub-area centroid are extracted
from the AWAP. PE is first disaggregated to daily values by
assuming that monthly mean PE occurs in the middle day of
each month, then linearly interpolating between these mid-
monthly values. Note that this PE disaggregation method ig-
nores the patterns of diurnal cycle and any correlation (nega-
tive) with rainfall. However, we note that the method is ade-
quate for this study as Andréassian (2004) showed that GR4J
is less sensitive to changes in PE inputs. To generate stream-
flow forecasts, we use climatological averages of PE calcu-
lated over the period 1990 to 2016.

4 Results

We cross-validate parameters for GR4H, channel routing,
and ERRIS for each of the 100 catchment models. In the
model validation, 97 of 100 forecast locations exceed the
NSE value of 0.6. Catchments with NSE values lower than
0.6 contain intermittent or ephemeral rivers (Table 4). This
may be partially due to the lack of representation of non-
linear dynamics in the ephemeral catchment hydrologic pro-
cesses, including the interaction between groundwater and
stream channel, in the GR4H conceptual model. Below, we
present detailed results of the experiments (Table 2) to iden-
tify the optimal ensemble size, effects of statistical process-
ing, optimal parameters for the bootstrapping method, and
acceptance criteria for selecting forecast locations for the op-
erational service.

4.1 Optimal ensemble size

The number of ensemble members required to maintain an
acceptable forecast skill (see acceptance criteria in Sect. 4.5)
is important for an operational service as the service will
generate a large volume of data through daily updates for
100 catchments. Optimal ensemble size is a balance between
preserving the statistical properties while not creating un-
duly large data volumes. We implement the methodology de-
scribed in Sect. 2.3 to find the optimal ensemble size. The
results are consistent across all the selected catchments, so
for simplicity, we present results for one catchment. Figure 3
shows the sensitivity of ensemble size on streamflow fore-
cast accuracy (CRPS) with reference to a 1000-member sam-
ple for the Tully Catchment (Queensland – QLD). Stream-
flow forecasts using the ACCESS–GE2 and ECMWF prod-
ucts show similar accuracy for the same sample size (Fig. 3a
and b). Generally, the forecast accuracy is proportional to the
ensemble size. However, the relative increment of forecast
accuracy is inversely proportional to the ensemble size. The
overall results indicate that having more than 200 members

can preserve greater than 98 % statistical properties of simu-
lated streamflow time series. Noting that multi-model rainfall
forecasts provide complementary benefits, and improve the
streamflow forecast quality and the robustness of the opera-
tional forecast system when the reporting of an NWP prod-
uct is delayed or unavailable, we recommend using 200 cal-
ibrated members (x = 200, Sect. 2.4) of each rainfall fore-
cast product (ACCESS–GE2 and ECMWF), for generating
streamflow forecasts for the operational service. Merging
calibrated ACCESS–GE2 and ECMWF products will not
negatively impact on the forecast accuracy (see Sect. 4.3)
since they show similar forecast accuracy for the same sam-
ple size. The recommendation of 200 calibrated ensemble
members from each of the two rainfall forecast products is
drawn considering the results shown in Fig. 3, particularly to
meet the operational computational efficiency and resources
availability at the BoM. In the rest of the paper, we use cali-
brated ACCESS–GE2 and ECMWF, and raw PME merged
product called super-ensemble (OES= 401 members), for
streamflow forecast evaluation. The streamflow forecast skill
of the super-ensemble is present in Sect. 4.3.

4.2 Effect of rainfall calibration

Results for the rainfall evaluation across lead times, day 1
to day 7 (daily total), are presented using boxplot diagrams
(Figs. 4–6). For each lead time, there are six boxes repre-
senting two raw rainfall products, ECMWF and ACCESS–
GE2, and the super-ensemble, and their respective calibrated
rainfall products. Figure 4 shows the bias (%) of different
raw and calibrated rainfall forecast products for different lead
times for the 100 catchments. Bias (%) is calculated for the
ensemble median. Among the raw rainfall forecast products,
the ECMWF forecasts show smaller bias across most catch-
ments. The bias of ACCESS–GE2 for different catchments
is found to be more variable compared to ECMWF. For
raw rainfall, bias increases with lead time, whereas for cal-
ibrated rainfall, the bias variation with increasing lead time
is marginal. Calibrated rainfall forecasts show a significant
improvement of bias across all catchments and lead times,
irrespective of rainfall product, location, and catchment size
as indicated by the greatly reduced variation in bias. Also,
the calibrated super-ensemble is less biased across the catch-
ments than the calibrated ACCESS–GE2 or ECMWF alone
(Fig. 4). The bias correction using the CHyPP modelling ap-
proach is more sophisticated than only correcting mean bias
of the rainfall ensemble. CHyPP utilises different marginal
distributions, and log-sinh transformed bivariate normal dis-
tribution for the raw NWP rainfall forecasts and observed
data, which allows for a non-linear bias correction (Robert-
son et al., 2013) resulting in much reduced variability of bias
in the calibrated forecast rainfall.

Figure 5 shows reliability (PIT-alpha) of the different rain-
fall products. Among the raw rainfall forecast products, as-
cending order of the reliability across most catchments for
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Figure 3. Sensitivity of ensemble size to forecast accuracy with reference to a 1000-member sample for rainfall forecasts (a) ACCESS–GE2
and (b) ECMWF for the Tully River at Euramo site (QLD).

Figure 4. Bias (%) of raw and calibrated (using CHyPP) forecast rainfall products, ACCESS–GE2, ECMWF, and the super-ensemble for the
100 catchments.

all lead times is ACCESS–GE2, ECMWF, and the super-
ensemble. Similar to bias (%), calibration substantially im-
proves forecast reliability for all lead times for the tested
rainfall products regardless of different catchment character-
istics. Overall, calibration improves bias and reliability for
all lead times.

The CRPS (error) value is highly related to catchment
characteristics. For example, catchments having consider-
ably long dry periods have numerically low average daily
CRPS values. Therefore, we present the relative CRPS er-
ror (RE) where it is estimated by dividing CRPS by the mean
rainfall and converting to a percentage value. Figure 6 shows
the distribution of RE for raw and calibrated rainfall forecast
products with lead time, where lower error values are better.
As expected, RE for all rainfall forecast products (raw and
calibrated) increases with lead time while the spread of the
error distribution for raw rainfall reduces with lead time. A
narrower spread of error distribution over the forecast hori-
zon is observed for all calibrated rainfall products compared

to the raw data. Calibration reduces RE at shorter lead times
but makes it slightly higher than raw rainfall at long lead
times, while increasing the reliability significantly (Fig. 5).
Normally calibrated rainfall values are closer to climatology
values at long lead times giving more weight to improving
the reliability. This is an inherent characteristic of the CHyPP
methodology and there is a trade-off between sharpness and
reliability. Further research is needed to explore how to keep
the balance between the sharpness and reliability of the cali-
brated forecast rainfall at long lead times.

4.3 Effect of streamflow error modelling

Figure 7 shows bias (%) of streamflow generated before and
after error modelling using the ERRIS model with the fore-
cast rainfall super-ensemble (calibrated) for 100 catchments.
Bias (%) is calculated for the ensemble median. The bias
increases with lead time for both raw and ERRIS-corrected
streamflow forecasts. ERRIS-corrected streamflow forecasts
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Figure 5. Reliability (PIT-alpha) of different rainfall products (raw and calibrated using CHyPP), ACCESS–GE2, ECMWF, and the super-
ensemble for the 100 catchments.

Figure 6. Relative CRPS (% of daily observations) of different rainfall products (raw and calibrated using CHyPP), ACCESS–GE2, ECMWF,
and the super-ensemble for the 100 catchments.

(PSFs) demonstrate relatively low bias consistently across
all the lead times compared to the raw streamflow forecasts
(RSFs) though the magnitude of reduction varies across the
continent. PSFs show significantly reduced bias at short lead
times for all forecast locations. For lead-day 1, median bias is
less than 25 % for all the forecast locations (Fig. 7a), whereas
for lead-day 7, the median bias is less than 40 % for about
40 % of forecast locations (Fig. 7b).

The reliability of streamflow forecasts across all catch-
ments is significantly improved consistently over the lead
times with ERRIS (Fig. 8a), but the improvement is more
prominent for the first 3 d. This improvement could partially
be attributed to (i) the effect of streamflow error modelling

using ERRIS, and (ii) the improvement in the reliability and
reduction of bias in rainfall forecasts. However, the reliabil-
ity across different catchments, which are located in different
hydroclimatic regions (Fig. 4), varies significantly; PIT-alpha
is > 75 % for more than 80 % of the catchments (Fig. 8b). A
wide range of reliability across different forecast locations
indicate that ERRIS performance highly relates to specific
catchment hydro-climatic characteristics (Table 4).

Forecast skill (CRPSS) reduces with lead time for both
raw and error-modelled streamflow forecasts (Fig. 9). The
degree of improvement of forecast skill provided by error
modelling decreases with lead time (Fig. 9a). For lead-day 1,
all the forecast locations exceed 50 % CRPSS (Fig. 9b) for
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Figure 7. (a) Median bias (%) before (raw) and after streamflow error modelling with ERRIS for the 100 forecast locations, and (b) percent-
age of forecast locations exceeding median bias (%) for ERRIS-corrected streamflow forecasts for different lead times.

Figure 8. (a) Reliability (PIT) before and after streamflow applying ERRIS for the 100 forecast locations, and (b) percentage of forecast
locations exceeding PIT (%) for ERRIS-corrected streamflow forecasts for different lead times.

error-modelled streamflow. Positive CRPSS means the fore-
cast is considered better than using climatology. For lead-day
7, CRPSS is positive for 60 % of the forecast locations and it
is 80 % for lead-day 6. Out of about 40 % forecast locations
where CRPSS is negative for lead-days 7, most are located
where observation networks are sparse, and the rivers are in-
termittent or ephemeral due to dry climates. Further details
are present in the discussion section.

4.4 Streamflow forecast skill

Forecast skills for hydrologic models are generally low for
extreme events that rarely occur, and only a few extreme
events are present in a relatively short period (e.g. 3 yr)
within the dataset used here. Bootstrapping allows explo-
ration of model forecast skill for a combination of various
conditions, such as prolonged wet and/or dry periods, where
the sequence of events (e.g. continuously a few wet or dry
events) could be absent in the original dataset. Bootstrapped
samples of the 3 yr dataset might contain more or fewer wet
or dry periods than in the original 3 yr dataset, thus providing
a better indication of skill variability across a more realisti-
cally varying sample. We test the methodology described in
Sect. 2.4 for six catchments. Similar results are found for all
the catchments. For the explanation of results, Fig. 10 shows
bootstrapped forecast skill for the Acheron River at the Tag-
gerty site for different number of iterations and block sizes.
Forecast skill (CRPSS) is sensitive to block size (Fig. 10),
and it reduces with lead time for both the weekly-block (w-
block) and the monthly-block (m-block) sample sizes. Fore-
cast skill calculated using w-block (Fig. 10a) shows less vari-

ation and narrower spread with lead time than when m-block
is used (Fig. 10b). For the catchments we tested, the fore-
cast skill is independent of the number of iterations for the
w-block size (Fig. 10a). For the m-block size (Fig. 10b), the
forecast skill varies with the number of iterations. There is
marginal variation in the spread of the skill for iterations 500
and 1000 compared with iterations 100 and 200. This im-
plies that the m-block size captures uncertainty in the fore-
casts slightly better than the w-block size. Also, the m-block
requires fewer computation resources. Therefore, we adopt
an m-block size for calculating the forecast skill for the oper-
ational service. There is no significant variation of the results
for a different number of iterations for both block sizes. This
result may be partially attributed to the small sample size of
forecast data. To make sure we properly capture uncertainties
in skill score calculation, we adopt 500 iterations for the op-
erational service. Note that the block size may be catchment-
dependent, e.g. on catchment characteristics such as geomor-
phology, hydro-climatology, and upstream area. An alterna-
tive way of defining a block could be by identifying wet, dry,
and normal periods from the original dataset for bootstrap-
ping. However, this process is unique to each catchment, and
it is time-consuming to implement for an operational service.
Further research is required to investigate block size depen-
dency on catchment characteristics.

4.5 Acceptance criteria

It is essential for an operational service to maintain a certain
standard for the quality of products provided to the users.
In consultation with key stakeholders, we developed criteria
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Figure 9. (a) CRPSS (%) of streamflow for raw and ERRIS-corrected forecasts, and (b) percentage of forecast locations (total 100) exceeding
CRPSS (%) for ERRIS-corrected streamflow forecasts for different lead times.

Figure 10. Bootstrapped forecast skill for the Acheron River at the Taggerty site for different number of iterations and block sizes – (a) weekly
and (b) monthly.

based on model performance and forecast skill for accepting
forecast locations for the operational service. The first crite-
rion is that the Nash–Sutcliffe efficiency (NSE) of simulated
streamflow is 0.6 or greater (Chew and McMahon, 1993) for
a forecast location in the model validation (see Sect. 2.2.3).
This requirement was adopted in consultation with the stake-
holders to maintain the service standard. It ensures the hy-
drological model is robust and produces acceptable results
with observed data. If the first criterion is met, then fore-
cast skill (CRPSS), with reference to climatology, should be
consecutively positive up to 3 d lead time (Fig. 11). We cal-
culate model performance metrics for each forecast location,
and only if the criteria for a forecast location are satisfied, it
is added to the public service. Poor quality forecasts possi-
bly lead to miscommunicating the flow conditions with the
public. It impacts the reputation of the service and the organ-
isation. If only the first criterion is satisfied, we consider re-
leasing the forecasts only to registered users based on stake-
holder requirements and the social and economic importance
of forecasts at the location. Some water agencies use their
own tools to generate streamflow forecasts. Therefore, con-
sistently maintaining the forecast quality is important for a
national operational service. If the first criterion is not met,
then the forecast location is unsuitable for the service, and
further revision of the model is required. We modelled 283
potential forecast locations in 100 catchments for the current
service, and of these, 209 forecast locations in 99 catchments
pass the acceptance criteria and are released to the public. On
users’ request, we relaxed the acceptance criteria for the lo-

cations with social and economic significance. A further 17
forecast locations (including one additional catchment) with
forecast skill slightly below the acceptance benchmark are
released to registered users only.

5 Description of the operational forecast system

We developed the operational 7-day ensemble streamflow
forecasting system based on the evidence derived from the
above results. We designed the SDF forecast system to
use multi-model rainfall forecasts to improve the quality of
streamflow forecasts and minimise the potential risk of sys-
tem failure due to the absence of NWP rainfall input. The
rainfall forecasts used in the SDF service are ECMWF and
PME (Fig. 12). We also planned to use the ACCESS–GE
product for the service and conducted an extensive evaluation
as presented in this paper. However, the operational delivery
of the ACCESS–GE had been delayed, and therefore it is to
be included in the service in the near future. In the absence
of ACCESS–GE data, the CHyPP model is used to calibrate
ECMWF forecasts and generate 400 (instead of 200 as de-
scribed in Sect. 4.1) bias-corrected and statistically reliable
hourly rainfall forecast members. We combine calibrated
ECMWF and PME rainfall forecasts and input them into the
SWIFT model to generate 401 members of hourly stream-
flow forecasts (Fig. 12) in the operational system. Ensemble
streamflow forecasts are fed into a product generator to pro-
duce plots, tables, and data files, and publish in a web portal
(http://www.bom.gov.au/water/7daystreamflow/, last access:
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Figure 11. Forecast skill (CRPSS %) and reliability (PIT-alpha %) for the 209 forecast locations in the operational public service.

16 September 2022). In addition to the web plots, users can
extract data through the web portal and ingest forecast data to
their operational systems via a File Transfer Protocol (FTP)
link. The forecasts are generated daily in the BoM’s oper-
ational platform, Hydrological Forecasting System (HyFS)
(Robinson et al., 2016). It is the central national platform that
supports flood forecasting and warning as well in Australia.
HyFS is a Delft–FEWS-based (flood early warning system)
forecasting environment (see https://publicwiki.deltares.nl/
display/FEWSDOC/Home, last access: 16 September 2022).
HyFS allows ingestion and processing of real-time obser-
vations and Numerical Weather Prediction (NWP) model
rainfall forecasts, running routine workflows, model internal
state management, and forecast visualisation. The process is
fully automated (Fig. 12), and forecasts are updated daily be-
tween 10:00 and 00:00 AEST.

6 Discussion and future work

6.1 Interpretation of forecast skill

Model performance statistics of validation and forecast ver-
ification for lead-day 3 for 283 potential forecast locations
in the seven jurisdictions of Australia are shown in Table 4.
Figure 13 shows the forecast skills (CRPSS %) of the po-
tential forecast locations for lead-days 1 and 3 with the
mean annual rainfall in the background. In model valida-
tion, South Australia (SA) models have the poorest NSE
compared to other jurisdictions. Overall, 40 % of forecast
locations in South Australia and 23 % in Western Australia
fail the first acceptance criterion (NSE> 0.6) while it is less
than 12 % for other jurisdictions. We note that some fore-
cast locations in Western Australia (WA), Tasmania (TAS),
and inland areas of New South Wales (NSW), Queensland
(QLD), and Victoria (VIC) show poor NSE. These areas
have intermittently flowing rivers due to arid or semi-arid
climates (see the aridity index in Table 3). Much of con-
tinental Australia to the west of the Great Dividing Range
(an area of > 5 million km2) where the mean annual rain-
fall is < 400 mm (Fig. 13) is sparsely populated and char-

acterised by intermittent and ephemeral streamflows. There-
fore, the observation network is also sparse and there is not
enough benefit to justify the cost for expanding the observa-
tion network. Ephemeral rivers are subject to strongly non-
linear relationships that are less well understood in rainfall
and runoff, and are inherently more challenging to model
than perennial catchments (Gutierrez-Jurado et al., 2021).
The forecast skill (CRPSS %) is also poor for SA, inland
parts of NSW, and QLD (mean annual rainfall < 400 mm),
and some parts of VIC and TAS (Fig. 12). For these ar-
eas, the forecast skill significantly drops from lead-days 1
to 3. This is partially due to the poor quality of rainfall fore-
casts (Shresta et al., 2013). Arid regions are generally char-
acterised by high rainfall variability, and often these rainfalls
are underestimated by NWP models. It may be difficult for
NWP models to replicate the complex meteorological pro-
cesses that drive the high rainfall variability with limited ob-
servations. Therefore, improving forecast skill in ephemeral
catchments is likely to remain challenging.

NWP rainfall calibration using CHyPP reduces bias and
increases reliability across all catchments (Figs. 4, 5). In do-
ing so, there is a compromise in relative CRPS – an im-
provement in shorter lead times but there is no discernible
improvement – or in some cases, a slight decline, at longer
lead times (Fig. 6). However, relative improvements in fore-
cast skill in ephemeral catchments are less prominent com-
pared with perennial catchments. Similar results were found
by Li et al. (2021). These results are discussed with many
stakeholders across the country as part of development of the
operational service. A clear message from them is that re-
liable streamflow forecasts are more important than precise
forecasts for long lead times to downstream users and will be
beneficial to their decision-making.

Streamflow forecast skill calculated using the bootstrap-
ping technique appears to be realistic for most forecast loca-
tions. This gives some confidence that we can expect similar
performance under operational conditions. However, in this
study, bootstrapping is only able to sample within the evalua-
tion period, which is 3 yr from 2014 to 2016. The years 2014
and 2015 were average to dry years for most of the selected
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Figure 12. Operational forecast system (HyFS workflow level).

Table 4. Hydrologic model performance statistics for 283 forecast locations.

Jurisdiction No. of forecast Validation Forecast (for lead-days 3)

locations NSE (%) CRPSS (%) PIT-alpha (%)

5 % Median 95 % Max 5 % Median 95 % Max 5 % Median 95 % Max

NSW 69 48 80 95 98 −22 29 53 61 59 80 89 91
NT 17 65 87 97 99 25 43 68 69 64 79 87 87
QLD 42 56 82 97 98 −763 18 45 60 46 77 89 89
SA 9 −56 66 81 84 −344 3 10 12 9 79 93 93
TAS 33 41 79 94 97 3 24 41 44 59 83 94 95
VIC 72 48 77 95 98 2 37 62 77 65 79 92 95
WA 39 19 83 97 98 10 41 78 92 30 77 89 93

Note: y% is yth percentile, NSW: New South Wales, NT: Northern Territory, QLD: Queensland, SA: South Australia, TAS: Tasmania, VIC: Victoria, and WA: Western Australia.
CRPSS and PIT-alpha values are the median of the respective bootstrapped samples.

catchments, which are located along Australia’s coastal re-
gions (Fig. 2). The year 2016 was a wet year for South Aus-
tralia, Victoria, and Tasmania, where about a half of the se-
lected catchments are located. Overall, there were only a few
wet events in the evaluation dataset. Therefore, we recom-
mend that users are cautious when interpreting the forecast
skill for wet events. A more extended period of data, with
balanced wet and dry events, is recommended for a better
evaluation of streamflow forecast skill. In addition, short-
term verification statistics on a daily basis will be useful for
users for better decision-making.

We demonstrate with various performance measures that
calibration adds value to raw NWP rainfall forecasts, and
the relative improvement is different for each product. For
example, raw ECMWF rainfall is less biased compared to
ACCESS–GE2 (Fig. 4). Therefore, the selection of rainfall
forecast products for the operational forecasting system may
affect the quality of streamflow forecasts (see Sect. 6). In this
study, our criteria for selecting NWP rainfall forecast prod-
ucts are availability of the product at the BoM, hindcast pe-

riod, and ease of use (i.e. format, extent, file size). Where a
range of suitable products are available, we recommend con-
ducting a thorough evaluation before selecting NWP prod-
ucts to use.

6.2 Uncertainties in forecasts

Input data (observations and forecasts) and hydrological
model structural uncertainties contribute to the streamflow
forecast uncertainties. We try to minimise input data uncer-
tainty by calibrating NWP rainfall forecasts using the CHyPP
model, and minimise the hydrologic uncertainty by applying
the ERRIS error model to simulated discharge. We demon-
strate that calibrated NWP rainfall forecasts improve stream-
flow forecast skill. Similar results are found in Canada and
South America (Rogelis and Werner, 2018; Jha et al., 2018).
However, uncertainties may also arise from the observed data
used to calibrate parameters in the hydrologic models. The
most common issues are precision of the instruments that
measure the water level (stage) and rainfall, derivation of the
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Figure 13. Forecast skill, CRPSS (%) for the 283 forecast locations (a) for lead-days 1 and (b) for lead-days 3. The mean annual rainfall
(mm) in Australia is shown in the background.

stage–discharge relationship (rating tables), the accuracy of
gauged rainfall interpolation methods (e.g. inverse distance
squared weighted averaging), and data disaggregation meth-
ods. Measurement and rating curve uncertainties in stream-
flow, particularly for low and high flows, bring additional
complexities in model calibration/validation and ultimately
model performance (Tomkins, 2014).

Although there are many complex methods available for
climate data disaggregation (Breinl and Di Baldassarre,
2019; Görner et al., 2021; Mehrotra and Singh, 1998), for
simplicity, we use a simple method, linear interpolation for
disaggregating daily rainfall and PE data to hourly. PE varies
with the diurnal cycle and usually shows some degree of
(negative) correlation with rainfall that could have been con-
sidered in the disaggregation. However, we note that the im-
pact of rainfall uncertainty has been shown to be more signif-
icant than PE in hydrological modelling (Paturel et al., 1995;
Guo et al., 2017). The sparseness of the rainfall observation
network in much of inland Australia (particularly in the in-
land desert regions and in northwest Australia) remains a
challenge for the development of any streamflow forecasting
system.

6.3 Streamflow error modelling method

Modelling hydrological errors using the ERRIS model sig-
nificantly reduces the bias and improves the forecast skill
(Fig. 7). Improvements in forecast skill depend on location,
season, and lead time (Hegdahl et al., 2021; Jha et al., 2018).
However, calibration of ERRIS is sensitive to the quality of
observations (Li et al., 2016). ERRIS uses a log-sinh trans-
formation to normalise streamflow prediction errors, and the
transformation amplifies errors related to low simulated flow
and modulating errors related to high simulated flow. There-

fore, if there are large uncertainties in low streamflow ob-
servations, these will result in large residual variances in the
transformed space and lead to large forecast uncertainties.
As a result, forecasts may be reliable, but have low precision
particularly at long lead times.

The ERRIS model applies corrections to hydrological
model output, but it does not address the underlying cause
of the forecast errors. Relatively simple error models like
ERRIS try to characterise prediction errors that arise from
many different causes and persist over many different time
horizons. For example, error models may try to address:
(i) long-term or average forecast errors related to the hydro-
logical model calibration, (ii) forecast errors that persist for
intermediate time periods of days to months that may arise
from the effects of errors in magnitude of catchment rainfall
estimates for a significant event, and (iii) transient errors re-
lated to incorrectly assumed diurnal pattern in potential evap-
otranspiration or small errors in the timing of catchment rain-
fall. On the other hand, data assimilation methods seek to
address underlying causes of some hydrological simulation
errors, particularly those that persist over long and interme-
diate timeframes, by updating model state variables (initial
conditions) and forcing, so that model predictions better re-
flect observations. However, implementation of a data assim-
ilation method for probabilistic streamflow forecasting using
a hydrological model is challenging due to (i) the complex-
ity in inter-dependencies of uncertainty contributing sources
such as an ensemble of model forcing data, (ii) model state
variables and/or model parameters, and (iii) compromise in
landscape water balance which may lead to long-term biases
in streamflow forecasts (Moradkhani et al., 2005; Li et al.,
2016). In a forecasting context, the objective is to ensure that
the initial condition set in a hydrological model better reflects
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reality and therefore forecast errors are likely to be smaller.
However, even after updating state variables, hydrological
model predictions are unlikely to be perfect, and therefore
a role for an error model such as ERRIS in an operational
system is still worth exploring. Decreased dependence on er-
ror corrections through weaker bias corrections, lower au-
tocorrelation parameters, and lower residual variances when
ERRIS is calibrated using updated streamflow forecasts by a
data assimilation technique may improve the overall stream-
flow forecast skill. Further exploration for implementing data
assimilation for the service is planned.

6.4 Challenges in operational forecasting and
opportunities

Over the last two decades, the number of studies in ensemble
streamflow forecasting has increased significantly. However,
applications of ensemble forecasting vary significantly in
terms of geographical distribution, forecast horizon, method-
ology, and evaluation. This could partially be due to the evo-
lution of ensemble streamflow forecasting science from re-
search to operations. There are many challenges in the large-
scale operational adoption of ensemble streamflow forecast-
ing (Pagano et al., 2014; Wu et al., 2020). Some of these
challenges for ensemble streamflow forecasting research, op-
erational application, adoption, and benefit to the community
are:

Best use of the available data. In Australia, observed rain-
fall at a sub-daily timescale is available for most stations.
Length of the sub-daily rainfall records vary from one sta-
tion to another – to a maximum of 50 yr. However, the num-
ber of rainfall stations is declining over time, and some of
the catchments already have a sparse network. Measurement
of PE data is rare across the country. Simulated monthly
PE data from the AWAP (Raupach et al., 2009) is disaggre-
gated to hourly for hydrological model application. Stream-
flow gauging stations where the automated facility is avail-
able for reporting in real time are ingested into the BoM
system. These observed data are the backbone of the hydro-
logical model construction, calibration, validation, and fore-
casting. Any improvements in measurement and rating curve
uncertainties may result in better performance in streamflow
forecasting. Updating measurement stations with automation
facilities may result in better quality data which could be use-
ful for more skilful forecasting. This study demonstrates that
improvements in NWP rainfall forecasts directly contributes
to improvements in streamflow. Any further improvements
in NWP rainfall forecasts will result in more accurate and re-
liable streamflow predictions. Possible improvements in dif-
ferent flow regimes, particularly low and high flows, will be
explored in the future. Endeavours should also be undertaken
to explore emerging science, including merging radar rainfall
with NWP forecasts (Velasco-Forero et al., 2021).

Extending the forecast horizon. In addition to the 7 d ahead
forecasts, the Bureau also provides operational seasonal pre-

dictions (http://www.bom.gov.au/water/ssf/index.shtml, last
access: 16 September 2022) from 1 to 3 months ahead
(Woldemeskel et al., 2018). Potentially the gap between these
two forecast ranges could be minimised by extending the 7 d
streamflow forecasts to multi-week forecasts. Rainfall fore-
cast data to at least 30 d ahead are now available, and the
multi-model ensemble approach could be used to increase the
predictability and reliability of these rainfall forecasts (Specq
et al., 2020). The potential use of the rainfall forecast data for
extending the streamflow forecasts to 30 d ahead could be ex-
plored in the future. A novel Multi-Temporal Hydrological
Residual Error (MuTHRE) model (McInerney et al., 2020)
has been recently developed to enable reliable streamflow
forecasting beyond one week. The model has been tested
for 11 catchments to generate sub-seasonal forecasts (lead
time 1–30 d) using the GR4J hydrologic model and cali-
brated rainfall forecasts from the ACCESS–seasonal NWP
model (McInerney et al., 2020). They found that forecast
performance was improved compared to the current seasonal
streamflow forecasts in terms of sharpness, volumetric bias,
and skill. This approach could be further explored for wider-
scale applications across Australia for seamless streamflow
forecasting.

Forecasting in managed river systems. At present, the
BoM’s operational streamflow forecasting services do not
receive real-time and future water releases from dams and
reservoirs. Therefore, the 7 d streamflow forecasting service
is developed for catchments with minimal or no anthro-
pogenic influences (e.g. releases from storage, extractions).
Catchments in this study (Fig. 2) are all upstream of dams,
reservoirs, or weirs, and have no significant water extraction
or irrigation return flows. Further investigation to account for
these anthropogenic processes will lead to greater expansion
and application of the forecast service. Research should be
conducted to understand how these anthropogenic influences
impact the forecasts, and incorporate practical and innovative
solutions into the hydrological forecasting models.

Effective communication. The 7 d ensemble streamflow
forecasting service produces large volumes of information.
Therefore, key messages must be conveyed clearly and effi-
ciently for correct interpretation, allowing for well-informed
decision-making and common understanding among end-
user communities. The user communities in Australia range
from experts in water management in decision-making en-
tities to those with no experience in using ensemble fore-
cast products. To effectively communicate forecasts with end
users in mind, the BoM consults widely and frequently with
stakeholders, considers their needs, and provides clear and
effective forecast visualisations, including the website and
forecast products. The BoM continually improves the fore-
cast products through stakeholder consultation and feedback.

Maintaining operational service. Maintaining the opera-
tional 7 d streamflow forecasting service is a big task – and
requires a well-trained, dedicated team of staff with expert
knowledge of the catchments, and experience with hydro-
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logic model application and forecast system configuration.
Particularly, if poor quality observed rainfall and discharge
data are used in a model, we find discontinuity in the out-
put when transitioning from simulation to forecast due to the
instability of the ERRIS model. If this occurs, the model is
taken temporarily out of the service by the monitoring team,
and the user community is notified through the website. Los-
ing in-house modelling or systems expertise due to limited
funding or incentives may result in suboptimal forecast qual-
ity and end-user benefits.

Each of these challenges shares a real-world perspective
and its relative importance varies across different geographi-
cal regions of Australia. It opens ongoing research and devel-
opment opportunities, resulting in a greater update of ensem-
ble streamflow forecasting for operational decision-making.

7 Summary and conclusions

We present the development of a 7 d ensemble streamflow
forecasting service for Australia (http://www.bom.gov.au/
water/7daystreamflow/, last access: 16 September 2022). The
service has been operational since December 2019 and pro-
vides daily updates of streamflow forecasts up to 7 lead days
for 209 forecast locations in 99 catchments for the public
and an additional 17 forecast locations including one catch-
ment to the registered users. The forecast system is capa-
ble of ingesting and calibrating multi-model ensemble NWP
rainfall forecasts using the CHyPP model, which combines
a Bayesian joint probability model and the Schaake Shuffle
method. Calibrated ensemble rainfall forecasts are fed into a
hydrological modelling package, SWIFT, which then gener-
ates error-corrected ensemble streamflow forecasts.

We show that calibrating NWP rainfall forecasts using the
CHyPP model significantly reduces bias and improves relia-
bility. Error modelling of streamflow forecasts using ERRIS
further improves their accuracy and reliability. A sensitivity
analysis for optimising the number of streamflow ensemble
members for the operational service shows that more than
200 members are needed to represent the forecast uncer-
tainty. We show that the bootstrapping block size is sensitive
to the forecast skill calculation and a month is better than
a week as the monthly block size allows to capture max-
imum possible uncertainty. Acceptance criteria are defined
based on model validation and verification results for select-
ing locations with an adequate forecast quality for the op-
erational service. The acceptance criteria are defined as an
NSE greater than 0.6 in model validation, and a median of
bootstrapped model verification skill (CRPSS) that is posi-
tive (greater than zero) for consecutive 3 d lead time. Incor-
poration of ACCESS–GE3 rainfall forecasts into the opera-
tional service is planned, and continued stakeholder feedback
will be used to guide further enhancements of the service.

Code and data availability. Code and software used in the opera-
tional service are not available for the public. However, the output
results can be provided on request via the the “Feedback” page of
the 7-day ensemble streamflow forecast website: http://www.bom.
gov.au/water/7daystreamflow/ (last access: 16 September 2022).
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