Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
Sara Modanesi
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
DICEA Dept. of Civil and Environmental Engineering, University of
Florence, Via di S. Marta 3, 50139 Firenze, Italy
Christian Massari
CORRESPONDING AUTHOR
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Michel Bechtold
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Hans Lievens
Department of Environment, Ghent University, Coupure links 653, 9000 Ghent, Belgium
Angelica Tarpanelli
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Luca Brocca
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Luca Zappa
Department of Geodesy and Geoinformation, Technische Universität Wien (TU Wien), Wiedner Hauptstraße 8–10, 1040 Vienna, Austria
Gabriëlle J. M. De Lannoy
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Related authors
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023, https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Short summary
We analyzed the water budget of nested karst catchments using simple methods and modeling. By utilizing the available data on precipitation and discharge, we were able to determine the response lag-time by adopting new techniques. Additionally, we modeled snow cover dynamics and evapotranspiration with the use of Earth observations, providing a concise overview of the water budget for the basin and its subbasins. We have made the data, models, and workflows accessible for further study.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575, https://doi.org/10.5194/essd-15-1555-2023, https://doi.org/10.5194/essd-15-1555-2023, 2023
Short summary
Short summary
Irrigation is the main source of global freshwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signals are presented.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Jaime Gaona, Davide Bavera, Guido Fioravanti, Sebastian Hahn, Pietro Stradiotti, Paolo Filippucci, Stefania Camici, Luca Ciabatta, Hamidreza Mossaffa, Silvia Puca, Nicoletta Roberto, and Luca Brocca
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-182, https://doi.org/10.5194/hess-2024-182, 2024
Preprint under review for HESS
Short summary
Short summary
Soil moisture is crucial for the water cycle since it is the frontline of drought. Satellite, model, and in-situ data help identify soil moisture stress but challenged by data uncertainties. This study evaluates trends and data coherence of common active/passive microwave sensors and model-based soil moisture data against in-situ stations across Europe from 2007 to 2022. Data reliability is increasing but combining data types improves soil moisture monitoring capabilities.
Jacopo Dari, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 28, 2651–2659, https://doi.org/10.5194/hess-28-2651-2024, https://doi.org/10.5194/hess-28-2651-2024, 2024
Short summary
Short summary
We have developed the first operational system (10 d latency) for estimating irrigation water use from accessible satellite and reanalysis data. As a proof of concept, the method has been implemented over an irrigated area fed by the Kakhovka Reservoir, in Ukraine, which collapsed on June 6, 2023. Estimates for the period 2015–2023 reveal that, as expected, the irrigation season of 2023 was characterized by the lowest amounts of irrigation.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-2, https://doi.org/10.5194/essd-2024-2, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study outlines the development of annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250) by integrating remote sensing data, irrigated area statistics and surveys, and irrigation suitability map. CIrrMap250 showed superior performance than the existing products. CIrrMap250 revealed that China’s irrigated area has increased by about 180,000 km2 from 2000 to 2020, with the majority being water-unsustainable and occurring in regions facing high to severe water stress.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023, https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Short summary
We analyzed the water budget of nested karst catchments using simple methods and modeling. By utilizing the available data on precipitation and discharge, we were able to determine the response lag-time by adopting new techniques. Additionally, we modeled snow cover dynamics and evapotranspiration with the use of Earth observations, providing a concise overview of the water budget for the basin and its subbasins. We have made the data, models, and workflows accessible for further study.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575, https://doi.org/10.5194/essd-15-1555-2023, https://doi.org/10.5194/essd-15-1555-2023, 2023
Short summary
Short summary
Irrigation is the main source of global freshwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signals are presented.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022, https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary
Short summary
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution of global satellite soil moisture observations to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in, for example, meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Angelica Tarpanelli, Alessandro C. Mondini, and Stefania Camici
Nat. Hazards Earth Syst. Sci., 22, 2473–2489, https://doi.org/10.5194/nhess-22-2473-2022, https://doi.org/10.5194/nhess-22-2473-2022, 2022
Short summary
Short summary
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they were able to observe. Results show that on average 58 % of flood events are potentially observable by Sentinel-1 and only 28 % by Sentinel-2 due to the obstacle of cloud coverage.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Shannon de Roos, Gabriëlle J. M. De Lannoy, and Dirk Raes
Geosci. Model Dev., 14, 7309–7328, https://doi.org/10.5194/gmd-14-7309-2021, https://doi.org/10.5194/gmd-14-7309-2021, 2021
Short summary
Short summary
A spatially distributed version of the field-scale crop model AquaCrop v6.1 was developed for applications at various spatial scales. Multi-year 1 km simulations over central Europe were evaluated against biomass and surface soil moisture products derived from optical and microwave satellite missions, as well as in situ observations of soil moisture. The regional version of the AquaCrop model provides a suitable setup for subsequent satellite-based data assimilation.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Daniele Masseroni, Stefania Camici, Alessio Cislaghi, Giorgio Vacchiano, Christian Massari, and Luca Brocca
Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, https://doi.org/10.5194/hess-25-5589-2021, 2021
Short summary
Short summary
We evaluate 63 years of changes in annual streamflow volume across Europe, using a data set of more than 3000 stations, with a special focus on the Mediterranean basin. The results show decreasing (increasing) volumes in the southern (northern) regions. These trends are strongly consistent with the changes in temperature and precipitation.
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Maria Teresa Brunetti, Massimo Melillo, Stefano Luigi Gariano, Luca Ciabatta, Luca Brocca, Giriraj Amarnath, and Silvia Peruccacci
Hydrol. Earth Syst. Sci., 25, 3267–3279, https://doi.org/10.5194/hess-25-3267-2021, https://doi.org/10.5194/hess-25-3267-2021, 2021
Short summary
Short summary
Satellite and rain gauge data are tested to predict landslides in India, where the annual toll of human lives and loss of property urgently demands the implementation of strategies to prevent geo-hydrological instability. For this purpose, we calculated empirical rainfall thresholds for landslide initiation. The validation of thresholds showed that satellite-based rainfall data perform better than ground-based data, and the best performance is obtained with an hourly temporal resolution.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot
Hydrol. Earth Syst. Sci., 25, 653–669, https://doi.org/10.5194/hess-25-653-2021, https://doi.org/10.5194/hess-25-653-2021, 2021
Short summary
Short summary
Soil moisture is a key variable related to droughts and flood genesis, but little is known about the evolution of soil moisture under climate change. Here, using a simulation approach, we show that changes in soil moisture are driven by changes in precipitation intermittence rather than changes in precipitation intensity or in temperature.
Stefania Camici, Christian Massari, Luca Ciabatta, Ivan Marchesini, and Luca Brocca
Hydrol. Earth Syst. Sci., 24, 4869–4885, https://doi.org/10.5194/hess-24-4869-2020, https://doi.org/10.5194/hess-24-4869-2020, 2020
Short summary
Short summary
The paper performs the most comprehensive European-scale evaluation to date of satellite rainfall products for river flow prediction. In doing so, how errors transfer from satellite-based rainfall products into flood simulation is investigated in depth and, for the first time, quantitative guidelines on the use of these products for hydrological applications are provided. This result can represent a keystone in the use of satellite rainfall products, especially in data-scarce regions.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Christian Massari, Luca Brocca, Thierry Pellarin, Gab Abramowitz, Paolo Filippucci, Luca Ciabatta, Viviana Maggioni, Yann Kerr, and Diego Fernandez Prieto
Hydrol. Earth Syst. Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020, https://doi.org/10.5194/hess-24-2687-2020, 2020
Short summary
Short summary
Rain gauges are unevenly spaced around the world with extremely low gauge density over places like Africa and South America. Here, water-related problems like floods, drought and famine are particularly severe and able to cause fatalities, migration and diseases. We have developed a rainfall dataset that exploits the synergies between rainfall and soil moisture to provide accurate rainfall observations which can be used to face these problems.
Angelika Xaver, Luca Zappa, Gerhard Rab, Isabella Pfeil, Mariette Vreugdenhil, Drew Hemment, and Wouter Arnoud Dorigo
Geosci. Instrum. Method. Data Syst., 9, 117–139, https://doi.org/10.5194/gi-9-117-2020, https://doi.org/10.5194/gi-9-117-2020, 2020
Short summary
Short summary
Soil moisture plays a key role in the hydrological cycle and the climate system. Although soil moisture can be observed by the means of satellites, ground observations are still crucial for evaluating and improving these satellite products. In this study, we investigate the performance of a consumer low-cost soil moisture sensor in the lab and in the field. We demonstrate that this sensor can be used for scientific applications, for example to create a dataset valuable for satellite validation.
Luca Brocca, Paolo Filippucci, Sebastian Hahn, Luca Ciabatta, Christian Massari, Stefania Camici, Lothar Schüller, Bojan Bojkov, and Wolfgang Wagner
Earth Syst. Sci. Data, 11, 1583–1601, https://doi.org/10.5194/essd-11-1583-2019, https://doi.org/10.5194/essd-11-1583-2019, 2019
Short summary
Short summary
SM2RAIN–ASCAT is a new 12-year (2007–2018) global-scale rainfall dataset obtained by applying the SM2RAIN algorithm to ASCAT soil moisture data. The dataset has a spatiotemporal sampling resolution of 12.5 km and 1 d. Results show that the new dataset performs particularly well in Africa and South America, i.e. in the continents in which ground observations are scarce and the need for satellite rainfall data is high. SM2RAIN–ASCAT is available at http://doi.org/10.5281/zenodo.340556.
Felix Zaussinger, Wouter Dorigo, Alexander Gruber, Angelica Tarpanelli, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 897–923, https://doi.org/10.5194/hess-23-897-2019, https://doi.org/10.5194/hess-23-897-2019, 2019
Short summary
Short summary
About 70 % of global freshwater is consumed by irrigation. Yet, policy-relevant estimates of irrigation water use (IWU) are virtually lacking at regional to global scales. To bridge this gap, we develop a method for quantifying IWU from a combination of state-of-the-art remotely sensed and modeled soil moisture products and apply it over the United States for the period 2013–2016. Overall, our estimates agree well with reference data on irrigated area and irrigation water withdrawals.
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Luca Ciabatta, Christian Massari, Luca Brocca, Alexander Gruber, Christoph Reimer, Sebastian Hahn, Christoph Paulik, Wouter Dorigo, Richard Kidd, and Wolfgang Wagner
Earth Syst. Sci. Data, 10, 267–280, https://doi.org/10.5194/essd-10-267-2018, https://doi.org/10.5194/essd-10-267-2018, 2018
Short summary
Short summary
In this study, rainfall is estimated starting from satellite soil moisture observation on a global scale, using the ESA CCI soil moisture datasets. The new obtained rainfall product has proven to correctly identify rainfall events, showing performance sometimes higher than those obtained by using classical rainfall estimation approaches.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Xiaodong Gao, Xining Zhao, Luca Brocca, Gaopeng Huo, Ting Lv, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-292, https://doi.org/10.5194/hess-2017-292, 2017
Preprint retracted
Short summary
Short summary
Profile soil moisture is key state variable in the Critical Zone ecology and hydrology. This paper sucessfully used a simple statistical method, the cumulative distribution frequency (CDF) matching method for the first time, to predict profile soil moisture (0–100 cm) from surface measurement (5 cm). The findings here can provide insights into profile soil moisture estimation from remote sensing moisture products.
Wuletawu Abera, Giuseppe Formetta, Luca Brocca, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 21, 3145–3165, https://doi.org/10.5194/hess-21-3145-2017, https://doi.org/10.5194/hess-21-3145-2017, 2017
Short summary
Short summary
This study documents a state-of-the-art estimation of the water budget (rainfall, evapotranspiration, discharge, and soil and groundwater storage) components for the Upper Blue Nile river. The budget uses various JGrass-NewAGE components, satellite data and all ground measurements available. The analysis shows that precipitation of the basin is 1360 ± 230 mm per year. Evapotranspiration accounts for 56 %, runoff is 33 %, and storage varies from minus 10 % to plus 17 % of the annual water budget.
Annelie Säurich, Bärbel Tiemeyer, Axel Don, Michel Bechtold, Wulf Amelung, and Annette Freibauer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-127, https://doi.org/10.5194/bg-2017-127, 2017
Manuscript not accepted for further review
Short summary
Short summary
Drained organic soils are hotspots of CO2 emissions. Due to mineralisation and mixing with mineral soil, the soil organic carbon (SOC) content of large areas of former peatlands decreased drastically. We evaluated potential CO2 emissions from such soils and true peat by aerobic incubation. Surprisingly, CO2 emissions increased in magnitude and variability with stronger disturbance and lower SOC content. This indicates that mixing peat with mineral soil is not a promising mitigation option.
Gabriëlle J. M. De Lannoy and Rolf H. Reichle
Hydrol. Earth Syst. Sci., 20, 4895–4911, https://doi.org/10.5194/hess-20-4895-2016, https://doi.org/10.5194/hess-20-4895-2016, 2016
Short summary
Short summary
The SMOS mission provides various various products to estimate soil moisture. This paper evaluates the performance of assimilating either Level-1-based multi-angle brightness temperature (Tb) observations, Level-1-based single-angle Tb observations, or Level 2 soil moisture retrievals, into the NASA Catchment land surface model.
Xiaodong Gao, Xining Zhao, Luca Brocca, Ting Lv, Gaopeng Huo, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-617, https://doi.org/10.5194/hess-2016-617, 2016
Preprint retracted
Short summary
Short summary
We built observation operators by the CDF matching method. Two-year duration was identified as the optimal data length in prediction accuracy. Application in different climates in USA showed these operators are a robust statistical tool for upscaling soil moisture from surface to profile by using exponential filter as a reference method. The findings here may be applied in the prediction of profile soil moisture from surface measurements via remote sensing techniques.
F. Todisco, L. Brocca, L. F. Termite, and W. Wagner
Hydrol. Earth Syst. Sci., 19, 3845–3856, https://doi.org/10.5194/hess-19-3845-2015, https://doi.org/10.5194/hess-19-3845-2015, 2015
Short summary
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.
M. Bechtold, B. Tiemeyer, A. Laggner, T. Leppelt, E. Frahm, and S. Belting
Hydrol. Earth Syst. Sci., 18, 3319–3339, https://doi.org/10.5194/hess-18-3319-2014, https://doi.org/10.5194/hess-18-3319-2014, 2014
S. Manfreda, L. Brocca, T. Moramarco, F. Melone, and J. Sheffield
Hydrol. Earth Syst. Sci., 18, 1199–1212, https://doi.org/10.5194/hess-18-1199-2014, https://doi.org/10.5194/hess-18-1199-2014, 2014
C. Massari, L. Brocca, S. Barbetta, C. Papathanasiou, M. Mimikou, and T. Moramarco
Hydrol. Earth Syst. Sci., 18, 839–853, https://doi.org/10.5194/hess-18-839-2014, https://doi.org/10.5194/hess-18-839-2014, 2014
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013, https://doi.org/10.5194/hess-17-3159-2013, 2013
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Making a case for power-sensitive water modelling: a literature review
Developing water supply reservoir operating rules for large-scale hydrological modelling
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
A generalised ecohydrological landscape classification for assessing ecosystem risk in Australia due to an altering water regime
Determining the threshold of issuing flash flood warnings based on people’s response process simulation
Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem
A scalable and modular reservoir implementation for large scale integrated hydrologic simulations
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Assessment of Upscaling Methodologies for Daily Crop Transpiration using Sap-Flows and Two-Source Energy Balance Models in Almonds under Different Water Status and Production Systems
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Modeling hydropower operations at the scale of a power grid: a demand-based approach
How to account for irrigation withdrawals in a watershed model
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Seasonal forecasting of snow resources at Alpine sites
Operationalizing equity in multipurpose water systems
Evaluation of a new observationally based channel parameterization for the National Water Model
High-resolution drought simulations and comparison to soil moisture observations in Germany
Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus
Net irrigation requirement under different climate scenarios using AquaCrop over Europe
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Drought impact links to meteorological drought indicators and predictability in Spain
Opportunities for seasonal forecasting to support water management outside the tropics
Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks
Are maps of nitrate reduction in groundwater altered by climate and land use changes?
Historical simulation of maize water footprints with a new global gridded crop model ACEA
Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
Robustness of a parsimonious subsurface drainage model at the French national scale
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024, https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 61 scientific articles shows that in the scientific literature little attention is given to the power of water models to influence development processes and outcomes. However, there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling, which means that people are critical about how models are made and with what effects.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024, https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Short summary
The H2Ours game is designed to facilitate knowledge transfer and sharing among stakeholders to trigger commitment and collaborative action to restore hydrological conditions. The adaptability of the H2Ours game was proven in two different landscapes: groundwater recharge in upper to middle sub-watersheds with (over)use of water in the lowland zone and a peatland with drainage, rewetting, oil palm conversion and fire as issues. The game evaluation shows that the H2Ours game meets its purpose.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024, https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
Short summary
The research focuses on a 4-million-inhabitant tropical region supplied by a network of open-water reservoirs where the dry season lasts for 8 months (Jun−Dec). We analysed the impact of four climate change scenarios on the evaporation rate and the associated availability (water yield distributed per year). The worst-case scenario shows that by the end of the century (2071−2099), the evaporation rate in the dry season could increase by 6 %, which would reduce stored water by about 80 %.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024, https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary
Short summary
This study introduces a hybrid data assimilation scheme for precise streamflow predictions during intense rainfall and hurricanes. Tested in real events, it outperforms traditional methods by up to 50 %, utilizing ensemble and climatological background covariances. The adaptive algorithm ensures reliability with a small ensemble, offering improved forecasts up to 18 h in advance, marking a significant advancement in flood prediction capabilities.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-130, https://doi.org/10.5194/hess-2024-130, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing the warnings based on the people’s response process simulation. The results show that adjusting the warning threshold according to the people’s tolerance levels of the failed warnings can improve warning effectiveness, but the prerequisite is to increase the forecasting accuracy and decrease the forecasting variance.
Mohsen Amini Fasakhodi, Hakan Djuma, Ioannis Sofokleous, Marinos Eliades, and Adriana Bruggeman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-107, https://doi.org/10.5194/hess-2024-107, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study examined the water use of pine and cypress trees in a semi-arid Mediterranean forest environment. We applied a widely used land surface model (Noah-MP) to simulate the water balance of the ecosystem. We found good modeling results for soil moisture. However, the model underestimated the transpiration of the trees during the dry summer months. These findings indicate that more research is needed to improve the modeling of ecosystem responses to climate and land use change.
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2024-965, https://doi.org/10.5194/egusphere-2024-965, 2024
Short summary
Short summary
This article describes the addition of reservoirs to the hydrologic model, ParFlow. ParFlow is particularly good at helping us understand some of the broader drivers behind different parts of the water cycle. By having reservoirs in such a model we hope to be better able to understand both our impacts on the environment, and how to adjust our management of reservoirs to changing conditions.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Héctor Nieto, and Joaquim Bellvert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-5, https://doi.org/10.5194/hess-2024-5, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Remote sensing can be a helpful tool for monitoring crop transpiration (T) for agricultural water management. Since remote sensing provides instantaneous data, upscaling techniques are required to estimate T on a daily scale. This study assesses optimal image acquisition times and four upscaling approaches to estimate daily T. The results indicate that the main errors derive from measurement time and water stress levels, which can be mitigated by choosing a proper upscaling approach.
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024, https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Short summary
The current unreasonable inter-basin water transfer operation leads to the problem of spatial and temporal imbalances in water allocation. This paper defines a water deficit evenness index and incorporates it into a joint optimization model for the Jiangsu section of the South-to-North Water Diversion Project considering ecology and economy. At the same time, the lake storage capacity performs well, and the water transfer efficiency of the river is significantly improved.
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024, https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
EGUsphere, https://doi.org/10.5194/egusphere-2023-3106, https://doi.org/10.5194/egusphere-2023-3106, 2024
Short summary
Short summary
Hydrological modeling is valuable for estimating the possible impacts of climate change on hydropower generation. In this study, we present a more comprehensive approach to model the management of hydroelectric reservoirs. The total power-grid demand is distributed to the various power plants according to their reservoir states to compute their release. The method is tested on France, and demonstrates that it succeeds in reproducing the observed behavior of reservoirs.
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024, https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Short summary
This study aims to take into account irrigation withdrawals in a watershed model. The model we used combines agriculture and hydrological modeling. Two different crop models were compared, the first based on air temperature and the second based on Sentinel-2 satellite data. Results show that including remote sensing data leads to better emergence dates. Both methods allow us to simulate the daily irrigation withdrawals and downstream flow with a good accuracy, especially during low-flow periods.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023, https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Short summary
To facilitate the meaningful participation of stakeholders in water management, model choice is crucial. We show how system dynamics models (SDMs), which are very visual and stakeholder-friendly, can be automatically combined with physically based hydrological models that may be more appropriate for modelling the water processes of a human–water system. This allows building participatory SDMs with stakeholders and delegating hydrological components to an external hydrological model.
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023, https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Short summary
This study develops an integrated socio-hydrological modeling framework that can simulate the entire flood management processes, including flood inundation, flood management policies, public responses, and evacuation activities. The model is able to holistically examine flood evacuation performance under the joint impacts of hydrological conditions, management policies (i.e., shelter location distribution), and human behaviors (i.e., evacuation preparation time and route-searching strategy).
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023, https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
Short summary
Forecasts may be valuable for user decisions, but current practice to quantify it has critical limitations. This study introduces RUV (relative utility value, a new metric that can be tailored to specific decisions and decision-makers. It illustrates how critical this decision context is when evaluating forecast value. This study paves the way for agencies to tailor the evaluation of their services to customer decisions and researchers to study model improvements through the lens of user impact.
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023, https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Short summary
Riparian vegetation has been identified as a strategy to control rising stream temperatures by shading streams. Riparian vegetation is included within a sub-basin-scale hydrological model and evaluated for full and efficient restoration scenarios. Results showed average temperature reductions of 0.91 and 0.86 °C for full and efficient riparian restoration, respectively. Notwithstanding the similar benefits, efficient restoration was 14.4 % cheaper than full riparian vegetation restoration.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023, https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Short summary
Participatory decision-making is a well-established approach to address the increasing pressure on water systems that searches for system-wise efficient solutions but often does not quantify how the resulting benefits are distributed across stakeholders. In this work, we show how including equity principles into the design of water system operations enriches the solution space by generating more compromise solutions that balance efficiency and justice.
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022, https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary
Short summary
Measurements of channel characteristics are important for accurate forecasting in the NOAA National Water Model (NWM) but are scarcely available. We seek to improve channel representativeness in the NWM by updating channel geometry and roughness parameters using a large, previously unpublished, dataset of approximately 48 000 gauges. We find that the updated channel parameterization from this new dataset leads to improvements in simulated streamflow performance and channel representation.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anahi Ocampo-Melgar, Pilar Barría, Cristián Chadwick, and Cesar Rivas
Hydrol. Earth Syst. Sci., 26, 5103–5118, https://doi.org/10.5194/hess-26-5103-2022, https://doi.org/10.5194/hess-26-5103-2022, 2022
Short summary
Short summary
This article examines how a hydrological model exploring the causes of a lake desiccation was turned into a 5-step participatory process to better adjust the model to address questions that were causing suspicions and conflicts in the community. Although the process was key in finding a combination of strategies that were of moderate impact and higher local acceptability, we address the challenges of such collaboration in modeling when conflict is deeply embedded in the context.
Ashish Shrestha, Felipe Augusto Arguello Souza, Samuel Park, Charlotte Cherry, Margaret Garcia, David J. Yu, and Eduardo Mario Mendiondo
Hydrol. Earth Syst. Sci., 26, 4893–4917, https://doi.org/10.5194/hess-26-4893-2022, https://doi.org/10.5194/hess-26-4893-2022, 2022
Short summary
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022, https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Short summary
Many western Africans encounter serious floods every year. The FANFAR project co-designed a pre-operational flood forecasting system (FEWS) with 50 key western African stakeholders. Participatory multi-criteria decision analysis (MCDA) helped prioritize a FEWS that meets their needs: it should provide accurate, clear, and timely flood risk information and work reliably in tough conditions. As a theoretical contribution, we propose an assessment framework for transdisciplinary hydrology research.
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022, https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
Short summary
To fully realize the potential of seasonal streamflow forecasts in the hydropower industry, we need to understand the relationship between reservoir design specifications, forecast skill, and value. Here, we rely on realistic forecasts and simulated hydropower operations for 753 dams worldwide to unfold such relationship. Our analysis shows how forecast skill affects hydropower production, what type of dams are most likely to benefit from seasonal forecasts, and where these dams are located.
Herminia Torelló-Sentelles and Christian L. E. Franzke
Hydrol. Earth Syst. Sci., 26, 1821–1844, https://doi.org/10.5194/hess-26-1821-2022, https://doi.org/10.5194/hess-26-1821-2022, 2022
Short summary
Short summary
Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments on how these indicators are linked to impacts are still lacking. Our results show that meteorological indices are best linked to impact occurrences.
Leah A. Jackson-Blake, François Clayer, Elvira de Eyto, Andrew S. French, María Dolores Frías, Daniel Mercado-Bettín, Tadhg Moore, Laura Puértolas, Russell Poole, Karsten Rinke, Muhammed Shikhani, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 26, 1389–1406, https://doi.org/10.5194/hess-26-1389-2022, https://doi.org/10.5194/hess-26-1389-2022, 2022
Short summary
Short summary
We explore, together with stakeholders, whether seasonal forecasting of water quantity, quality, and ecology can help support water management at five case study sites, primarily in Europe. Reliable forecasting, a season in advance, has huge potential to improve decision-making. However, managers were reluctant to use the forecasts operationally. Key barriers were uncertainty and often poor historic performance. The importance of practical hands-on experience was also highlighted.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Ida Karlsson Seidenfaden, Torben Obel Sonnenborg, Jens Christian Refsgaard, Christen Duus Børgesen, Jørgen Eivind Olesen, and Dennis Trolle
Hydrol. Earth Syst. Sci., 26, 955–973, https://doi.org/10.5194/hess-26-955-2022, https://doi.org/10.5194/hess-26-955-2022, 2022
Short summary
Short summary
This study investigates how the spatial nitrate reduction in the subsurface may shift under changing climate and land use conditions. This change is investigated by comparing maps showing the spatial nitrate reduction in an agricultural catchment for current conditions, with maps generated for future projected climate and land use conditions. Results show that future climate flow paths may shift the catchment reduction noticeably, while implications of land use changes were less substantial.
Oleksandr Mialyk, Joep F. Schyns, Martijn J. Booij, and Rick J. Hogeboom
Hydrol. Earth Syst. Sci., 26, 923–940, https://doi.org/10.5194/hess-26-923-2022, https://doi.org/10.5194/hess-26-923-2022, 2022
Short summary
Short summary
As the global demand for crops is increasing, it is vital to understand spatial and temporal patterns of crop water footprints (WFs). Previous studies looked into spatial patterns but not into temporal ones. Here, we present a new process-based gridded crop model to simulate WFs and apply it for maize in 1986–2016. We show that despite the average unit WF reduction (−35 %), the global WF of maize production has increased (+50 %), which might harm ecosystems and human livelihoods in some regions.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021, https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Short summary
The rapid increase in economic development and urbanization is contributing to the imbalances and conflicts between water supply and demand and further deteriorates river ecological health, which intensifies their interactions and causes water unsustainability. This paper proposes a methodology for sustainable development of water resources, considering socioeconomic development, food safety, and ecological protection, and the dynamic interactions across those water users are further assessed.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021, https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021, https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Short summary
This study proposes a multiple-dependence model for estimating streamflow at partially gaged sites. The evaluations are conducted on a case study of the eastern USA and show that the proposed model is suited for infilling missing values. The performance is further evaluated with six other infilling models. Results demonstrate that the proposed model produces more reliable streamflow estimates than the other approaches. The model can be applicable to other hydro-climatological variables.
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021, https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary
Short summary
The growing water crisis in Central Asia and the complex water politics of the region's transboundary rivers are a hot topic for research, while the dynamic changes of water politics in Central Asia have yet to be studied in depth. Based on the Gini coefficient, water political events and social network analysis, we analyzed the matching degree between water and socio-economic elements and the dynamics of hydropolitics in transboundary river basins of Central Asia.
Cited articles
Abolafiaâ Rosenzweig, R., Livneh, B., Small, E. E., and Kumar, S. V.: Soil Moisture Data Assimilation to Estimate Irrigation Water Use, J. Adv. Model. Earth Syst., 11, 3670–3690, https://doi.org/10.1029/2019MS001797, 2019.
Albergel, C., Munier, S., Bocher, A., Bonan, B., Zheng, Y., Draper, C., Leroux, D. J., and Calvet, J.-C.: LDAS-Monde sequential assimilation of satellite derived observations applied to the contiguous US: An ERA-5 driven reanalysis of the land surface variables, Remote Sens., 10, 1627, https://doi.org/10.3390/rs10101627, 2018.
Alter, R. E., Im, E.-S., and Eltahir, E. A.: Rainfall consistently enhanced
around the Gezira Scheme in East Africa due to irrigation, Nat. Geosci.,
8, 763–767, https://doi.org/10.1038/ngeo2514, 2015.
Ambika, A. K., Wardlow, B., and Mishra, V.: Remotely sensed high resolution
irrigated area mapping in India for 2000 to 2015, Sci. Data, 3, 160118,
https://doi.org/10.1038/sdata.2016.118, 2016.
Attema, E. P. W. and Ulaby, F. T.: Vegetation modelled as a water cloud,
Radio Sci., 13, 357–364, https://doi.org/10.1029/RS013i002p00357, 1978.
Azimi, S., Dariane, A. B., Modanesi, S., Bauer-Marschallinger, B., Bindlish,
R., Wagner, W., and Massari, C.: Assimilation of Sentinel 1 and SMAP–based
satellite soil moisture retrievals into SWAT hydrological model: the impact
of satellite revisit time and product spatial resolution on flood
simulations in small basins, J. Hydrol., 581, 124367, https://doi.org/10.1016/j.jhydrol.2019.124367, 2020.
Baghdadi, N., Hajj, M. E., Zribi, M., and Bousbih, S.: Calibration
of the water cloud model at C-band for winter crop fields and grasslands, Remote Sens.-Basel, 9, 969, https://doi.org/10.3390/rs9090969, 2017.
Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S.,
Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., and Wagner,
W.: Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing
Assets and Overcoming Obstacles, IEEE T. Geosci. Remote, 57, 520–539,
https://doi.org/10.1109/TGRS.2018.2858004, 2018.
Bazzi, H., Baghdadi, N., Ienco, D., ElHajj, M., Zribi, M., Belhouchette, H.,
Escorihuela, M. J., and Demarez, V.: Mapping Irrigated Areas Using
Sentinel-1 Time Series in Catalonia, Spain, Remote Sens.-Basel, 11, 1836,
https://doi.org/10.3390/rs11151836, 2019.
Bechtold, M., De Lannoy, G. J. M., Reichle, R. H., Roose, D., Balliston, N.,
Burdun, I., Devito, K., Kurbatova, J., Strack, M., and Zarov, E. A.: Improved
groundwater table and L-band brightness temperature estimates for Northern
Hemisphere peatlands using new model physics and SMOS observations in a
global data assimilation framework, Remote Sens. Environ., 246,
111805, https://doi.org/10.1016/j.rse.2020.111805, 2020.
Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F.,
Gruber, A., and Fernández-Prieto, D.: How much water is used for
irrigation? A new approach exploiting coarse resolution satellite soil
moisture products, Int. J. Appl. Earth Obs., 73, 752–766, https://doi.org/10.1016/j.jag.2018.08.023, 2018.
Brombacher, J., de Oliveira Silva, I. R., Degen, J., and Pelgrum, H.: A
novel evapotranspiration based irrigation quantification method using the
hydrological similar pixels algorithm, Agr. Water Manage., 267,
107602, https://doi.org/10.1016/j.agwat.2022.107602, 2022.
Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., and
Smets, B.: Copernicus global land cover layers – collection 2, Remote
Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020 (data
available at: https://lcviewer.vito.be/2015, last access: 13 September 2022).
Busschaert, L., de Roos, S., Thiery, W., Raes, D., and De Lannoy, G. J. M.: Net irrigation requirement under different climate scenarios using AquaCrop over Europe, Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, 2022.
Ceppi, A., Ravazzani, G., Corbari, C., Salerno, R., Meucci, S., and Mancini, M.: Real-time drought forecasting system for irrigation management, Hydrol. Earth Syst. Sci., 18, 3353–3366, https://doi.org/10.5194/hess-18-3353-2014, 2014.
Chen, F. and Dudhia, J.: Coupling an advanced land surface hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., Duan,
Q. Y., Ek, M., and Betts, A.: Modeling of land surface evaporation by four
schemes and comparison with fife observations, J. Geophys. Res.-Atmos., 101,
7251–7268, https://doi.org/10.1029/95JD02165, 1996.
Dari, J., Brocca, L., Quintana-Seguí, P., Escorihuela, M. J., Stefan,
V., and Morbidelli, R.: Exploiting High-Resolution Remote Sensing Soil
Moisture to Estimate Irrigation Water Amounts over a Mediterranean Region,
Remote Sens.-Basel, 12, 2593, https://doi.org/10.3390/rs12162593, 2020.
Dari, J., Quintana-Seguí, P., Escorihuela, M.J., Stefan, V., Brocca,
L., and Morbidelli, R.: Detecting and mapping irrigated areas in a
Mediterranean environment by using remote sensing soil moisture and a land
surface model, J. Hydrol., 596, 126129, https://doi.org/10.1016/j.jhydrol.2021.126129, 2021.
Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A.,
Yueh, S., Jagdhuber, T., Chen, F., Crow, W., O'Neill, P. E., Walker, J. P.,
Berg, A., Bosch, D. D., Caldwell, T., Cosh, M. H., Collins, C. H., Lopez-Baeza,
E., and Thibeault, M.: The SMAP and Copernicus Sentinel 1A/B microwave
active-passive high resolution surface soil moisture product, Remote Sens.
Environ. 233, 111380, https://doi.org/10.1016/j.rse.2019.111380, 2019.
De Lannoy, G. J. and Reichle, R. H.: Global assimilation of multiangle and
multipolarization SMOS brightness temperature observations into the GEOS-5
catchment land surface model for soil moisture estimation, J.
Hydrometeorol., 17, 669–691, https://doi.org/10.1175/JHM-D-15-0037.1, 2016a.
De Lannoy, G. J. M. and Reichle, R. H.: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model, Hydrol. Earth Syst. Sci., 20, 4895–4911, https://doi.org/10.5194/hess-20-4895-2016, 2016b.
De Lannoy, G. J. M., Reichle, R. H., and Vrugt, J. A.: Uncertainty
quantification of GEOS-5 L-band radiative transfer model parameters using
Bayesian inference and SMOS observations, Remote Sens. Environ., 148,
146–157, https://doi.org/10.1016/j.rse.2014.03.030, 2014.
De Rosnay, P., Polcher, J., Laval, K., and Sabre, M.: Integrated
parameterization of irrigation in the land surface model ORCHIDEE.
Validation over Indian Peninsula, Geophys. Res. Lett., 30, 1986,
https://doi.org/10.1029/2003GL018024, 2003.
De Santis, D., Biondi, D., Crow, W. T., Camici, S., Modanesi, S., Brocca, L.,
and Massari, C.: Assimilation of Satellite Soil Moisture Products for River
Flow Prediction: An Extensive Experiment in Over 700 Catchments Throughout
Europe, Water Resour. Res., 57, e2021WR029643,
https://doi.org/10.1029/2021WR029643, 2021.
Drouard, M., Kornhuber, K., and Woollings, T.: Disentangling dynamic
contributions to summer 2018 anomalous weather over Europe, Geophys. Res. Lett., 46, 12537–12546, https://doi.org/10.1029/2019GL084601, 2019.
Druel, A., Munier, S., Mucia, A., Albergel, C., and Calvet, J.-C.: Implementation and validation of a new irrigation scheme in the ISBA land surface model, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-332, in review, 2021.
Evans, J. P. and Zaitchik, B. F.: Modeling the large-scale water balance
impact of different irrigation systems, Water Resour. Res., 44, W08448,
https://doi.org/10.1029/2007WR006671, 2008.
Evensen, G.: Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res.-Oceans 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994.
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and
practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.
Fang, L., Zhan, X., Hain, C. R., and Liu, J.: Impact of using near real-time
green vegetation fraction in Noah land surface model of NOAA NCEP on
numerical weather predictions, Adv. Meteorol., 2018, 9256396, https://doi.org/10.1155/2018/9256396, 2018.
FAO: How to feed the world in 2050, Food and Agriculture Organisation, Rome, p. 35, https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (last access: 23 September 2022), 2009.
Ferrant, S., Selles, A., Le Page, M., AlBitar, A., Mermoz, S., Gascoin, S., Bouvet, A., Ahmed, S., and Kerr, Y.: Sentinel-1&2 for near real time cropping pattern monitoring in drought prone areas. application to irrigation water needs in telangana, South-India, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W6, 285–292, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, 2019.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer,
C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S.,
Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.:
Solutions for a cultivated planet, Nature, 478, 337–342, https://doi.org/10.1038/nature10452, 2011.
Gao, Q., Zribi, M., Escorihuela, M., Baghdadi, N., and Segui, P.: Irrigation
mapping using Sentinel-1 time series at field scale, Remote Sens.-Basel, 10,
1495, https://doi.org/10.3390/rs10091495, 2018.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017 (data available
at: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last access: 13 September 2022).
Girotto, M., De Lannoy, G. J., Reichle, R. H., Rodell, M., Draper, C., Bhanja, S. N., and Mukherjee, A.: Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India, Geophys. Res. Lett., 44, 4107–4115, https://doi.org/10.1002/2017GL072994, 2017.
Gleick, P. H.: Water use, Annu. Rev. Env. Resour., 28, 275–314, 2003.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M.,
Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., and Schewe, J.: Global
water resources affected by human interventions and climate change,
P. Natl. Acad. Sci. USA, 111, 3251–3256, https://doi.org/10.1073/pnas.1222475110, 2014.
H SAF: ASCAT Surface Soil Moisture Climate Data Record v5 12.5 km sampling – Metop, EUMETSAT SAF on Support to Operational Hydrology and Water Management [data set], https://doi.org/10.15770/EUM_SAF_H_0006, 2020.
Jalilvand, E., Tajrishy, M., Hashemi, S. A. G., and Brocca, L.:
Quantification of irrigation water using remote sensing of soil moisture in
a semi-arid region, Remote Sens. Environ., 231, 111226,
https://doi.org/10.1016/j.rse.2019.111226, 2019.
Jalilvand, E., Abolafia-Rosenzweig, R., Tajrishy, M., and Das, N. N.:
Evaluation of SMAP-Sentinel1 High-Resolution Soil Moisture Data to Detect
Irrigation over Agricultural Domain. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens., 14, 10733–10747, https://doi.org/10.1109/JSTARS.2021.3119228, 2021.
Kumar, S. V., Peters-Lidard, C., Tian, Y., Houser, P., Geiger, J., Olden,
S., Lighty, L., Eastman, J., Doty, B., and Dirmeyer, P.: Land information
system: An interoperable framework for high resolution land surface
modeling, Environ. Model. Softw., 21, 1402–1415, https://doi.org/10.1016/j.envsoft.2005.07.004, 2006 (code available at: https://github.com/NASA-LIS/LISF, last access: 13 September 2022).
Kumar, S. V., Reichle, R. H., and Peters-Lidard, C. D.: A land surface data
assimilation framework using the land information system: Description and applications, Adv. Water Resour., 31,1419–1432,
https://doi.org/10.1016/j.advwatres.2008.01.013, 2008.
Kumar, S. V., Peters-Lidard, C. D., Mocko, D., Reichle, R., Liu, Y.,
Arsenault, K. R., Xia, Y., Ek, M., Riggs, G., and Livneh, B.: Assimilation
of remotely sensed soil moisture and snow depth retrievals for drought
estimation, J. Hydrometeorol., 15, 2446–2469, https://doi.org/10.1175/JHM-D-13-0132.1, 2014.
Kumar, S. V., Peters-Lidard, C. D., Santanello, J. A., Reichle, R. H., Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M. F.: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes, Hydrol. Earth Syst. Sci., 19, 4463–4478, https://doi.org/10.5194/hess-19-4463-2015, 2015.
Kumar, S. V., Mocko, D. M., Wang, S., Peters-Lidard, C. D., and Borak, J.:
Assimilation of remotely sensed Leaf Area Index into the Noah-MP land
surface model: Impacts on water and carbon fluxes and states over the
Continental U.S., J. Hydrometeorol., 20, 1359–1377, https://doi.org/10.1175/JHM-D-18-0237.1, 2019.
Kumar, S. V., Holmes, T. R., Bindlish, R., de Jeu, R., and Peters-Lidard, C.: Assimilation of vegetation optical depth retrievals from passive microwave radiometry, Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, 2020.
Kustu, M. D., Fan, Y., and Robock, A.: Large-scale water cycle perturbation
due to irrigation pumping in the US High Plains: A synthesis of observed
streamflow changes, J. Hydrol., 390, 222–244, https://doi.org/10.1016/j.jhydrol.2010.06.045, 2010.
Lawston, P. M., Santanello, J. A., Zaitchik, B. F., and Rodell, M.: Impact
of irrigation methods on land surface model spinup and initialization of WRF
forecasts, J. Hydrometeorol., 16, 1135–1154,
https://doi.org/10.1175/JHM-D-14-0203.1, 2015.
Lawston, P. M., Santanello Jr., J. A., and Kumar, S. V.: Irrigation signals
detected from SMAP soil moisture retrievals, Geophys. Res. Lett.,
44, 11–860, https://doi.org/10.1002/2017GL075733, 2017.
Lievens, H., Martens, B., Verhoest, N. E. C., Hahn, S., Reichle, R. H., and
Miralles, D. G.: Assimilation of global radar backscatter and radiometer
brightness temperature observations to improve soil moisture and land
evaporation estimates, Remote Sens. Environ., 189, 194–210, https://doi.org/10.1016/j.rse.2016.11.022, 2017a.
Lievens, H., Reichle, R. H., Liu, Q., De Lannoy, G. J. M., Dunbar, R. S.,
Kim, S. B., Das, N. N., Cosh, M., Walker, J. P., and Wagner, W.: Joint Sentinel-1 and SMAP data assimilation to improve soil
moisture estimates, Geophys. Res. Lett., 44, 6145–6153, https://doi.org/10.1002/2017GL073904, 2017b.
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L.,
Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W.,
Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J.,
and De Lannoy, G. J. M.: Snow depth variability in the Northern Hemisphere
mountains observed from space, Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y, 2019.
Liu, C. and Shi, J.: Estimation of vegetation parameters of water cloud
model for global soil moisture retrieval using time-series L-Band Aquarius
observations, IEEE J. Sel. Top. Appl., 9, 5621–5633,
https://doi.org/10.1109/JSTARS.2016.2596541, 2016.
Macelloni, G., Paloscia, S., Pampaloni, P., Marliani, F., and Gai, M.: The
relationship between the backscattering coefficient and the biomass of
narrow and broad leaf crops, IEEE T. Geosci. Remote, 39, 873–884,
https://doi.org/10.1109/36.917914, 2001.
Mahrt, L. and Pan, H.-L.: A two-layer model of soil hydrology, Bound.-Lay. Meteorol., 29, 1–20, https://doi.org/10.1007/BF00119116, 1984.
Massari, C., Modanesi, S., Dari, J., Gruber, A., De Lannoy, G. J., Girotto,
M., Quintana-Seguí, P., Le Page, M., Jarlan, L., and Zribi, M.: A
review of irrigation information retrievals from space and their utility for
users, Remote Sens., 13, 4112, https://doi.org/10.3390/rs13204112, 2021.
Matthews, O. P. and Germain, D. S.: Boundaries and transboundary water
conflicts, J. Water Res. Pl., 133, 386–396,
https://doi.org/10.1061/(ASCE)0733-9496(2007)133:5(386), 2007.
Modanesi, S., Massari, C., Gruber, A., Lievens, H., Tarpanelli, A., Morbidelli, R., and De Lannoy, G. J. M.: Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land, Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, 2021.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Nie, W., Zaitchik, B. F., Rodell, M., Kumar, S. V., Arsenault, K. R., Li, B.,
and Getirana, A.: Assimilating GRACE into a land surface model in the
presence of an irrigation-induced groundwater trend, Water Resour.
Res., 55, 11274–11294, https://doi.org/10.1029/2019WR025363, 2019.
Nie, W., Kumar, S. V., Arsenault, K. R., Peters-Lidard, C. D., Mladenova, I. E., Bergaoui, K., Hazra, A., Zaitchik, B. F., Mahanama, S. P., McDonnell, R., Mocko, D. M., and Navari, M.: Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco, Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, 2022.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, 1–19, https://doi.org/10.1029/2010JD015139, 2011.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol., 77, 263–293,
https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Olivera-Guerra, L., Merlin, O., and Er-Raki, S.: Irrigation retrieval from
Landsat optical/thermal data integrated into a crop water balance model: A
case study over winter wheat fields in a semi-arid region, Remote Sens.
Environ., 239, 111627, https://doi.org/10.1016/j.rse.2019.111627, 2020.
Ozdogan, M. and Gutman, G.: A new methodology to map irrigated areas using
multi-temporal MODIS and ancillary data: An application example in the
continental US, Remote Sens. Environ., 112, 3520–3537, https://doi.org/10.1016/j.rse.2008.04.010, 2008.
Ozdogan, M., Rodell, M., Beaudoing, H. K., and Toll, D. L.: Simulating the
effects of irrigation over the United States in a land surface model based
on satellite derived agricultural data, J. Hydrometeorol., 11, 171–184,
https://doi.org/10.1175/2009JHM1116.1, 2010a.
Ozdogan, M., Yang, Y., Allez, G., and Cervantes, C.: Remote sensing of
irrigated agriculture: Opportunities and challenges, Remote Sens., 2,
2274–2304, https://doi.org/10.3390/rs2092274, 2010b.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peña-Arancibia, J. L., McVicar, T. R., Paydar, Z., Li, L., Guerschman,
J. P., Donohue, R. J., Dutta, D., Podger, G. M., van Dijk, A. I., and Chiew, F. H.: Dynamic identification of summer cropping irrigated areas in a large
basin experiencing extreme climatic variability, Remote Sens.
Environ., 154, 139–152, https://doi.org/10.1016/j.rse.2014.08.016, 2014.
Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., Lighty, L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E. F., and Sheffield, J: High-performance Earth system modeling with NASA/GSFC's Land Information System, Innov. Syst. Softw. Eng., 3, 157–165, https://doi.org/10.1007/s11334-007-0028-x, 2007.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J.-F., Kim, H.,
Kanae, S., and Oki, T.: Incorporating anthropogenic water regulation
modules into a land surface model, J. Hydrometeorol., 13, 255–269,
https://doi.org/10.1175/JHM-D-11-013.1, 2012.
Po River Watershed Authority: Caratteristiche del bacino del fiume
Po e primo esame dell'impatto ambientale delle attività
umane sulle risorse idriche, http://www.adbpo.it/PBI/Piano_adottato/Relazione_Generale_07_12_2016.pdf (last access: 30 November 2021), 2016.
Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic data
assimilation with the ensemble Kalman filter, Mon. Weather Rev., 130,
103–114, https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2, 2002.
Reichle, R. H., De Lannoy, G. J., Liu, Q., Ardizzone, J. V., Colliander, A.,
Conaty, A., Crow, W., Jackson, T. J., Jones, L. A., and Kimball, J. S.:
Assessment of the SMAP level-4 surface and root-zone soil moisture product
using in situ measurements, J. Hydrometeorol., 18, 2621–2645,
https://doi.org/10.1175/JHM-D-17-0063.1, 2017.
Reichle, R. H., Liu, Q., Koster, R., Crow, W., De Lannoy, G. J. M., Kimball,
J., Ardizzone, J., Bosch, D., Colliander, A., Cosh, M., Kolassa, J.,
Mahanama, S., McNairn, H., Prueger, J., Starks, P., and Walker, J.: Version
4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product, J. Adv.
Model. Earth Sy., 11, 3106–3130, https://doi.org/10.1029/2019MS001729, 2019.
Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD16A2.006, 2017.
Salmon, J. M., Friedl, M. A., Frolking, S., and Wisser, D.: Global rain-fed,
irrigated, and paddy croplands: A new highnresolution map derived from
remote sensing, crop inventories and climate data, Int. J. Appl. Earth Obs.,
38, 321–334, https://doi.org/10.1016/j.jag.2015.01.014, 2015.
Siebert, S. and Döll, P.: Quantifying blue and green virtual water
contents in global crop production as well as potential production losses
without irrigation, J. Hydrol., 384, 198–217, https://doi.org/10.1016/j.jhydrol.2009.07.031, 2010.
Strosser, P., Dworak, T., Delvaux, P. A. G., Berglund, M., Schmidt, G.,
Mysiak, J., Kossida, M., Iacovides, I., and Ashton, V.: Gap analysis of the
water scarcity and droughts policy in the EU European Commission, European
Commission, Tender ENV.D.1/SER/2010/0049, 206 pp., 2012.
Van Eekelen, M. W., Bastiaanssen, W. G., Jarmain, C., Jackson, B., Ferreira,
F., Van der Zaag, P., Okello, A. S., Bosch, J., Dye, P., Boastidas-Obando,
E., Dost, R. J. J., and Luxemburg, W. M. J.: A novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the Incomati basin, Agr. Ecosyst. Environ., 200, 126–142, https://doi.org/10.1016/j.agee.2014.10.023, 2015.
Verger, A., Baret, F., and Weiss, M.: Near real-time vegetation monitoring
at global scale, IEEE J. Sel. Top. Appl., 7, 3473–3481,
https://doi.org/10.1109/JSTARS.2014.2328632, 2014 (data available at:
https://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Browse;Root=512260;Collection=1000083;Time=NORMAL,NORMAL,-1,,,-1,, (last access: 13 September 2022).
Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner,
I., Rüdiger, C., and Strauss, P.: Sensitivity of Sentinel-1 Backscatter
to Vegetation Dynamics: An Austrian Case Study, Remote Sens.-Basel, 10,
1396, https://doi.org/10.3390/rs10091396, 2018.
Vreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B., Hahn, S.,
Steele-Dunne, S., Pfeil, I., Dorigo, W., and Wagner, W.: Sentinel-1 Cross
Ratio and Vegetation Optical Depth: A Comparison over Europe, Remote
Sens.-Basel, 12, 3404, https://doi.org/10.3390/rs12203404, 2020.
Vrugt, J. A., Ter Braak, C. J., Clark, M. P., Hyman, J. M., and Robinson, B. A.: Treatment of input uncertainty in hydrologic modeling: Doing hydrology
backward with Markov chain Monte Carlo simulation, Water Resour. Res.,
44, W00B09, https://doi.org/10.1029/2007WR006720, 2008.
Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture
from ERS scatterometer and soil data, Remote Sens. Environ., 70, 191–207, https://doi.org/10.1016/S0034-4257(99)00036-X, 1999.
Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S.,
Figa-Saldaña, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J.,
Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., Blöschl, G.,
Eitzinger, J., and Steinnocher, K.: The ASCAT soil moisture product: A
review of its specifications, validation results, and emerging applications,
Meteorol. Z., 22, 5–33, https://doi.org/10.1127/0941-2948/2013/0399, 2013.
Zappa, L., Schlaffer, S., Bauer-Marschallinger, B., Nendel, C., Zimmerman,
B., and Dorigo, W.: Detection and Quantification of Irrigation Water Amounts
at 500 m Using Sentinel-1 Surface Soil Moisture, Remote Sens., 13, 1727,
https://doi.org/10.3390/rs13091727, 2021.
Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., and Brocca, L.: Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data, Hydrol. Earth Syst. Sci., 23, 897–923, https://doi.org/10.5194/hess-23-897-2019, 2019.
Zribi, M., Chahbi, A., Shabou, M., Lili-Chabaane, Z., Duchemin, B., Baghdadi, N., Amri, R., and Chehbouni, A.: Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation, Hydrol. Earth Syst. Sci., 15, 345–358, https://doi.org/10.5194/hess-15-345-2011, 2011.
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Given the crucial impact of irrigation practices on the water cycle, this study aims at...