Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
Sara Modanesi
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
DICEA Dept. of Civil and Environmental Engineering, University of
Florence, Via di S. Marta 3, 50139 Firenze, Italy
Christian Massari
CORRESPONDING AUTHOR
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Michel Bechtold
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Hans Lievens
Department of Environment, Ghent University, Coupure links 653, 9000 Ghent, Belgium
Angelica Tarpanelli
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Luca Brocca
Research Institute for Geo-hydrological Protection, National Research Council, Via della Madonna Alta 126, 06128 Perugia, Italy
Luca Zappa
Department of Geodesy and Geoinformation, Technische Universität Wien (TU Wien), Wiedner Hauptstraße 8–10, 1040 Vienna, Austria
Gabriëlle J. M. De Lannoy
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Related authors
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2550, https://doi.org/10.5194/egusphere-2025-2550, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabrielle J. M. De Lannoy
EGUsphere, https://doi.org/10.2139/ssrn.4974019, https://doi.org/10.2139/ssrn.4974019, 2024
Preprint archived
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023, https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Short summary
We analyzed the water budget of nested karst catchments using simple methods and modeling. By utilizing the available data on precipitation and discharge, we were able to determine the response lag-time by adopting new techniques. Additionally, we modeled snow cover dynamics and evapotranspiration with the use of Earth observations, providing a concise overview of the water budget for the basin and its subbasins. We have made the data, models, and workflows accessible for further study.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575, https://doi.org/10.5194/essd-15-1555-2023, https://doi.org/10.5194/essd-15-1555-2023, 2023
Short summary
Short summary
Irrigation is the main source of global freshwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signals are presented.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Jaime Gaona, Davide Bavera, Guido Fioravanti, Sebastian Hahn, Pietro Stradiotti, Paolo Filippucci, Stefania Camici, Luca Ciabatta, Hamidreza Mosaffa, Silvia Puca, Nicoletta Roberto, and Luca Brocca
Hydrol. Earth Syst. Sci., 29, 3865–3888, https://doi.org/10.5194/hess-29-3865-2025, https://doi.org/10.5194/hess-29-3865-2025, 2025
Short summary
Short summary
Soil moisture is crucial for the water cycle since it is at the front line of drought. Satellite, model and in situ data help identify soil moisture stress but are challenged by data uncertainties. This study evaluates trends and data coherence of common active/passive microwave sensors and model-based soil moisture data against in situ stations across Europe from 2007 to 2022. Data reliability is increasing, but combining data types improves soil moisture monitoring capabilities.
Lucas Boeykens, Devon Dunmire, Jonas-Frederik Jans, Willem Waegeman, Gabriëlle De Lannoy, Ezra Beernaert, Niko E. C. Verhoest, and Hans Lievens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3327, https://doi.org/10.5194/egusphere-2025-3327, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We used AI to better estimate the height of the snowpack present on the ground across the European Alps, by using novel satellite data, complemented by weather information or snow depth estimates from a computer model. We found that both combinations improve the accuracy of our AI-based snow depth estimates, performing almost equally well. This helps us better monitor how much water is stored as snow, which is vital for drinking water, farming, and clean energy production in Europe.
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2550, https://doi.org/10.5194/egusphere-2025-2550, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Devon Dunmire, Michel Bechtold, Lucas Boeykens, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2306, https://doi.org/10.5194/egusphere-2025-2306, 2025
Short summary
Short summary
Snow is vital for society and the climate, yet estimates of snowpack remain uncertain due to observational and modeling limitations. Data assimilation (DA) helps by integrating observations with models. Here, we integrate snow depth retrievals into a physically-based snow model across the European Alps. This work offers advancements for snow data assimilation, such as incorporating a dynamic observational uncertainty, which is essential for forecasting and water resource management.
Anne Springer, Gabriëlle De Lannoy, Matthew Rodell, Yorck Ewerdwalbesloh, Helena Gerdener, Mehdi Khaki, Bailing Li, Fupeng Li, Maike Schumacher, Natthachet Tangdamrongsub, Mohammad J. Tourian, Wanshu Nie, and Jürgen Kusche
EGUsphere, https://doi.org/10.5194/egusphere-2025-2058, https://doi.org/10.5194/egusphere-2025-2058, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The GRACE and GRACE Follow-On satellites monitor changes in Earth's water storage by observing gravity variations. By integrating these observations into hydrological models through data assimilation, estimates of groundwater, soil moisture, and hydrological trends are improved, helping to monitor droughts, floods, and human water use. This review highlights recent advances in GRACE data assimilation, identifies key challenges, and discusses future directions with upcoming satellite missions.
Paolo Filippucci, Luca Brocca, Luca Ciabatta, Hamidreza Mosaffa, Francesco Avanzi, and Christian Massari
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-156, https://doi.org/10.5194/essd-2025-156, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Accurate rainfall data is essential, yet measuring daily precipitation worldwide is challenging. This research presents HYdroclimatic PERformance-enhanced Precipitation (HYPER-P), a dataset combining satellite, ground, and reanalysis data to estimate precipitation at a 1 km scale from 2000 to 2023. HYPER-P improves accuracy, especially in areas with few rain gauges. This dataset supports scientists and decision-makers in understanding and managing water resources more effectively.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194, https://doi.org/10.5194/egusphere-2024-4194, 2025
Short summary
Short summary
Our study evaluated 23 precipitation datasets using a hydrological model at global scale to assess their suitability and accuracy. We found that MSWEP V2.8 excels due to its ability to integrate data from multiple sources, while others, such as IMERG and JRA-3Q, demonstrated strong regional performances. This research assists in selecting the appropriate dataset for applications in water resource management, hazard assessment, agriculture, and environmental monitoring.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabrielle J. M. De Lannoy
EGUsphere, https://doi.org/10.2139/ssrn.4974019, https://doi.org/10.2139/ssrn.4974019, 2024
Preprint archived
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Jacopo Dari, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 28, 2651–2659, https://doi.org/10.5194/hess-28-2651-2024, https://doi.org/10.5194/hess-28-2651-2024, 2024
Short summary
Short summary
We have developed the first operational system (10 d latency) for estimating irrigation water use from accessible satellite and reanalysis data. As a proof of concept, the method has been implemented over an irrigated area fed by the Kakhovka Reservoir, in Ukraine, which collapsed on June 6, 2023. Estimates for the period 2015–2023 reveal that, as expected, the irrigation season of 2023 was characterized by the lowest amounts of irrigation.
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023, https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Short summary
We analyzed the water budget of nested karst catchments using simple methods and modeling. By utilizing the available data on precipitation and discharge, we were able to determine the response lag-time by adopting new techniques. Additionally, we modeled snow cover dynamics and evapotranspiration with the use of Earth observations, providing a concise overview of the water budget for the basin and its subbasins. We have made the data, models, and workflows accessible for further study.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575, https://doi.org/10.5194/essd-15-1555-2023, https://doi.org/10.5194/essd-15-1555-2023, 2023
Short summary
Short summary
Irrigation is the main source of global freshwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signals are presented.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022, https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary
Short summary
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution of global satellite soil moisture observations to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in, for example, meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Angelica Tarpanelli, Alessandro C. Mondini, and Stefania Camici
Nat. Hazards Earth Syst. Sci., 22, 2473–2489, https://doi.org/10.5194/nhess-22-2473-2022, https://doi.org/10.5194/nhess-22-2473-2022, 2022
Short summary
Short summary
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they were able to observe. Results show that on average 58 % of flood events are potentially observable by Sentinel-1 and only 28 % by Sentinel-2 due to the obstacle of cloud coverage.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Shannon de Roos, Gabriëlle J. M. De Lannoy, and Dirk Raes
Geosci. Model Dev., 14, 7309–7328, https://doi.org/10.5194/gmd-14-7309-2021, https://doi.org/10.5194/gmd-14-7309-2021, 2021
Short summary
Short summary
A spatially distributed version of the field-scale crop model AquaCrop v6.1 was developed for applications at various spatial scales. Multi-year 1 km simulations over central Europe were evaluated against biomass and surface soil moisture products derived from optical and microwave satellite missions, as well as in situ observations of soil moisture. The regional version of the AquaCrop model provides a suitable setup for subsequent satellite-based data assimilation.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Daniele Masseroni, Stefania Camici, Alessio Cislaghi, Giorgio Vacchiano, Christian Massari, and Luca Brocca
Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, https://doi.org/10.5194/hess-25-5589-2021, 2021
Short summary
Short summary
We evaluate 63 years of changes in annual streamflow volume across Europe, using a data set of more than 3000 stations, with a special focus on the Mediterranean basin. The results show decreasing (increasing) volumes in the southern (northern) regions. These trends are strongly consistent with the changes in temperature and precipitation.
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Maria Teresa Brunetti, Massimo Melillo, Stefano Luigi Gariano, Luca Ciabatta, Luca Brocca, Giriraj Amarnath, and Silvia Peruccacci
Hydrol. Earth Syst. Sci., 25, 3267–3279, https://doi.org/10.5194/hess-25-3267-2021, https://doi.org/10.5194/hess-25-3267-2021, 2021
Short summary
Short summary
Satellite and rain gauge data are tested to predict landslides in India, where the annual toll of human lives and loss of property urgently demands the implementation of strategies to prevent geo-hydrological instability. For this purpose, we calculated empirical rainfall thresholds for landslide initiation. The validation of thresholds showed that satellite-based rainfall data perform better than ground-based data, and the best performance is obtained with an hourly temporal resolution.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot
Hydrol. Earth Syst. Sci., 25, 653–669, https://doi.org/10.5194/hess-25-653-2021, https://doi.org/10.5194/hess-25-653-2021, 2021
Short summary
Short summary
Soil moisture is a key variable related to droughts and flood genesis, but little is known about the evolution of soil moisture under climate change. Here, using a simulation approach, we show that changes in soil moisture are driven by changes in precipitation intermittence rather than changes in precipitation intensity or in temperature.
Stefania Camici, Christian Massari, Luca Ciabatta, Ivan Marchesini, and Luca Brocca
Hydrol. Earth Syst. Sci., 24, 4869–4885, https://doi.org/10.5194/hess-24-4869-2020, https://doi.org/10.5194/hess-24-4869-2020, 2020
Short summary
Short summary
The paper performs the most comprehensive European-scale evaluation to date of satellite rainfall products for river flow prediction. In doing so, how errors transfer from satellite-based rainfall products into flood simulation is investigated in depth and, for the first time, quantitative guidelines on the use of these products for hydrological applications are provided. This result can represent a keystone in the use of satellite rainfall products, especially in data-scarce regions.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Cited articles
Abolafiaâ Rosenzweig, R., Livneh, B., Small, E. E., and Kumar, S. V.: Soil Moisture Data Assimilation to Estimate Irrigation Water Use, J. Adv. Model. Earth Syst., 11, 3670–3690, https://doi.org/10.1029/2019MS001797, 2019.
Albergel, C., Munier, S., Bocher, A., Bonan, B., Zheng, Y., Draper, C., Leroux, D. J., and Calvet, J.-C.: LDAS-Monde sequential assimilation of satellite derived observations applied to the contiguous US: An ERA-5 driven reanalysis of the land surface variables, Remote Sens., 10, 1627, https://doi.org/10.3390/rs10101627, 2018.
Alter, R. E., Im, E.-S., and Eltahir, E. A.: Rainfall consistently enhanced
around the Gezira Scheme in East Africa due to irrigation, Nat. Geosci.,
8, 763–767, https://doi.org/10.1038/ngeo2514, 2015.
Ambika, A. K., Wardlow, B., and Mishra, V.: Remotely sensed high resolution
irrigated area mapping in India for 2000 to 2015, Sci. Data, 3, 160118,
https://doi.org/10.1038/sdata.2016.118, 2016.
Attema, E. P. W. and Ulaby, F. T.: Vegetation modelled as a water cloud,
Radio Sci., 13, 357–364, https://doi.org/10.1029/RS013i002p00357, 1978.
Azimi, S., Dariane, A. B., Modanesi, S., Bauer-Marschallinger, B., Bindlish,
R., Wagner, W., and Massari, C.: Assimilation of Sentinel 1 and SMAP–based
satellite soil moisture retrievals into SWAT hydrological model: the impact
of satellite revisit time and product spatial resolution on flood
simulations in small basins, J. Hydrol., 581, 124367, https://doi.org/10.1016/j.jhydrol.2019.124367, 2020.
Baghdadi, N., Hajj, M. E., Zribi, M., and Bousbih, S.: Calibration
of the water cloud model at C-band for winter crop fields and grasslands, Remote Sens.-Basel, 9, 969, https://doi.org/10.3390/rs9090969, 2017.
Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S.,
Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., and Wagner,
W.: Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing
Assets and Overcoming Obstacles, IEEE T. Geosci. Remote, 57, 520–539,
https://doi.org/10.1109/TGRS.2018.2858004, 2018.
Bazzi, H., Baghdadi, N., Ienco, D., ElHajj, M., Zribi, M., Belhouchette, H.,
Escorihuela, M. J., and Demarez, V.: Mapping Irrigated Areas Using
Sentinel-1 Time Series in Catalonia, Spain, Remote Sens.-Basel, 11, 1836,
https://doi.org/10.3390/rs11151836, 2019.
Bechtold, M., De Lannoy, G. J. M., Reichle, R. H., Roose, D., Balliston, N.,
Burdun, I., Devito, K., Kurbatova, J., Strack, M., and Zarov, E. A.: Improved
groundwater table and L-band brightness temperature estimates for Northern
Hemisphere peatlands using new model physics and SMOS observations in a
global data assimilation framework, Remote Sens. Environ., 246,
111805, https://doi.org/10.1016/j.rse.2020.111805, 2020.
Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F.,
Gruber, A., and Fernández-Prieto, D.: How much water is used for
irrigation? A new approach exploiting coarse resolution satellite soil
moisture products, Int. J. Appl. Earth Obs., 73, 752–766, https://doi.org/10.1016/j.jag.2018.08.023, 2018.
Brombacher, J., de Oliveira Silva, I. R., Degen, J., and Pelgrum, H.: A
novel evapotranspiration based irrigation quantification method using the
hydrological similar pixels algorithm, Agr. Water Manage., 267,
107602, https://doi.org/10.1016/j.agwat.2022.107602, 2022.
Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., and
Smets, B.: Copernicus global land cover layers – collection 2, Remote
Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020 (data
available at: https://lcviewer.vito.be/2015, last access: 13 September 2022).
Busschaert, L., de Roos, S., Thiery, W., Raes, D., and De Lannoy, G. J. M.: Net irrigation requirement under different climate scenarios using AquaCrop over Europe, Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, 2022.
Ceppi, A., Ravazzani, G., Corbari, C., Salerno, R., Meucci, S., and Mancini, M.: Real-time drought forecasting system for irrigation management, Hydrol. Earth Syst. Sci., 18, 3353–3366, https://doi.org/10.5194/hess-18-3353-2014, 2014.
Chen, F. and Dudhia, J.: Coupling an advanced land surface hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., Duan,
Q. Y., Ek, M., and Betts, A.: Modeling of land surface evaporation by four
schemes and comparison with fife observations, J. Geophys. Res.-Atmos., 101,
7251–7268, https://doi.org/10.1029/95JD02165, 1996.
Dari, J., Brocca, L., Quintana-Seguí, P., Escorihuela, M. J., Stefan,
V., and Morbidelli, R.: Exploiting High-Resolution Remote Sensing Soil
Moisture to Estimate Irrigation Water Amounts over a Mediterranean Region,
Remote Sens.-Basel, 12, 2593, https://doi.org/10.3390/rs12162593, 2020.
Dari, J., Quintana-Seguí, P., Escorihuela, M.J., Stefan, V., Brocca,
L., and Morbidelli, R.: Detecting and mapping irrigated areas in a
Mediterranean environment by using remote sensing soil moisture and a land
surface model, J. Hydrol., 596, 126129, https://doi.org/10.1016/j.jhydrol.2021.126129, 2021.
Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A.,
Yueh, S., Jagdhuber, T., Chen, F., Crow, W., O'Neill, P. E., Walker, J. P.,
Berg, A., Bosch, D. D., Caldwell, T., Cosh, M. H., Collins, C. H., Lopez-Baeza,
E., and Thibeault, M.: The SMAP and Copernicus Sentinel 1A/B microwave
active-passive high resolution surface soil moisture product, Remote Sens.
Environ. 233, 111380, https://doi.org/10.1016/j.rse.2019.111380, 2019.
De Lannoy, G. J. and Reichle, R. H.: Global assimilation of multiangle and
multipolarization SMOS brightness temperature observations into the GEOS-5
catchment land surface model for soil moisture estimation, J.
Hydrometeorol., 17, 669–691, https://doi.org/10.1175/JHM-D-15-0037.1, 2016a.
De Lannoy, G. J. M. and Reichle, R. H.: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model, Hydrol. Earth Syst. Sci., 20, 4895–4911, https://doi.org/10.5194/hess-20-4895-2016, 2016b.
De Lannoy, G. J. M., Reichle, R. H., and Vrugt, J. A.: Uncertainty
quantification of GEOS-5 L-band radiative transfer model parameters using
Bayesian inference and SMOS observations, Remote Sens. Environ., 148,
146–157, https://doi.org/10.1016/j.rse.2014.03.030, 2014.
De Rosnay, P., Polcher, J., Laval, K., and Sabre, M.: Integrated
parameterization of irrigation in the land surface model ORCHIDEE.
Validation over Indian Peninsula, Geophys. Res. Lett., 30, 1986,
https://doi.org/10.1029/2003GL018024, 2003.
De Santis, D., Biondi, D., Crow, W. T., Camici, S., Modanesi, S., Brocca, L.,
and Massari, C.: Assimilation of Satellite Soil Moisture Products for River
Flow Prediction: An Extensive Experiment in Over 700 Catchments Throughout
Europe, Water Resour. Res., 57, e2021WR029643,
https://doi.org/10.1029/2021WR029643, 2021.
Drouard, M., Kornhuber, K., and Woollings, T.: Disentangling dynamic
contributions to summer 2018 anomalous weather over Europe, Geophys. Res. Lett., 46, 12537–12546, https://doi.org/10.1029/2019GL084601, 2019.
Druel, A., Munier, S., Mucia, A., Albergel, C., and Calvet, J.-C.: Implementation and validation of a new irrigation scheme in the ISBA land surface model, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-332, in review, 2021.
Evans, J. P. and Zaitchik, B. F.: Modeling the large-scale water balance
impact of different irrigation systems, Water Resour. Res., 44, W08448,
https://doi.org/10.1029/2007WR006671, 2008.
Evensen, G.: Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res.-Oceans 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994.
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and
practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.
Fang, L., Zhan, X., Hain, C. R., and Liu, J.: Impact of using near real-time
green vegetation fraction in Noah land surface model of NOAA NCEP on
numerical weather predictions, Adv. Meteorol., 2018, 9256396, https://doi.org/10.1155/2018/9256396, 2018.
FAO: How to feed the world in 2050, Food and Agriculture Organisation, Rome, p. 35, https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (last access: 23 September 2022), 2009.
Ferrant, S., Selles, A., Le Page, M., AlBitar, A., Mermoz, S., Gascoin, S., Bouvet, A., Ahmed, S., and Kerr, Y.: Sentinel-1&2 for near real time cropping pattern monitoring in drought prone areas. application to irrigation water needs in telangana, South-India, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W6, 285–292, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, 2019.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer,
C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S.,
Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.:
Solutions for a cultivated planet, Nature, 478, 337–342, https://doi.org/10.1038/nature10452, 2011.
Gao, Q., Zribi, M., Escorihuela, M., Baghdadi, N., and Segui, P.: Irrigation
mapping using Sentinel-1 time series at field scale, Remote Sens.-Basel, 10,
1495, https://doi.org/10.3390/rs10091495, 2018.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017 (data available
at: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last access: 13 September 2022).
Girotto, M., De Lannoy, G. J., Reichle, R. H., Rodell, M., Draper, C., Bhanja, S. N., and Mukherjee, A.: Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India, Geophys. Res. Lett., 44, 4107–4115, https://doi.org/10.1002/2017GL072994, 2017.
Gleick, P. H.: Water use, Annu. Rev. Env. Resour., 28, 275–314, 2003.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M.,
Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., and Schewe, J.: Global
water resources affected by human interventions and climate change,
P. Natl. Acad. Sci. USA, 111, 3251–3256, https://doi.org/10.1073/pnas.1222475110, 2014.
H SAF: ASCAT Surface Soil Moisture Climate Data Record v5 12.5 km sampling – Metop, EUMETSAT SAF on Support to Operational Hydrology and Water Management [data set], https://doi.org/10.15770/EUM_SAF_H_0006, 2020.
Jalilvand, E., Tajrishy, M., Hashemi, S. A. G., and Brocca, L.:
Quantification of irrigation water using remote sensing of soil moisture in
a semi-arid region, Remote Sens. Environ., 231, 111226,
https://doi.org/10.1016/j.rse.2019.111226, 2019.
Jalilvand, E., Abolafia-Rosenzweig, R., Tajrishy, M., and Das, N. N.:
Evaluation of SMAP-Sentinel1 High-Resolution Soil Moisture Data to Detect
Irrigation over Agricultural Domain. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens., 14, 10733–10747, https://doi.org/10.1109/JSTARS.2021.3119228, 2021.
Kumar, S. V., Peters-Lidard, C., Tian, Y., Houser, P., Geiger, J., Olden,
S., Lighty, L., Eastman, J., Doty, B., and Dirmeyer, P.: Land information
system: An interoperable framework for high resolution land surface
modeling, Environ. Model. Softw., 21, 1402–1415, https://doi.org/10.1016/j.envsoft.2005.07.004, 2006 (code available at: https://github.com/NASA-LIS/LISF, last access: 13 September 2022).
Kumar, S. V., Reichle, R. H., and Peters-Lidard, C. D.: A land surface data
assimilation framework using the land information system: Description and applications, Adv. Water Resour., 31,1419–1432,
https://doi.org/10.1016/j.advwatres.2008.01.013, 2008.
Kumar, S. V., Peters-Lidard, C. D., Mocko, D., Reichle, R., Liu, Y.,
Arsenault, K. R., Xia, Y., Ek, M., Riggs, G., and Livneh, B.: Assimilation
of remotely sensed soil moisture and snow depth retrievals for drought
estimation, J. Hydrometeorol., 15, 2446–2469, https://doi.org/10.1175/JHM-D-13-0132.1, 2014.
Kumar, S. V., Peters-Lidard, C. D., Santanello, J. A., Reichle, R. H., Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M. F.: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes, Hydrol. Earth Syst. Sci., 19, 4463–4478, https://doi.org/10.5194/hess-19-4463-2015, 2015.
Kumar, S. V., Mocko, D. M., Wang, S., Peters-Lidard, C. D., and Borak, J.:
Assimilation of remotely sensed Leaf Area Index into the Noah-MP land
surface model: Impacts on water and carbon fluxes and states over the
Continental U.S., J. Hydrometeorol., 20, 1359–1377, https://doi.org/10.1175/JHM-D-18-0237.1, 2019.
Kumar, S. V., Holmes, T. R., Bindlish, R., de Jeu, R., and Peters-Lidard, C.: Assimilation of vegetation optical depth retrievals from passive microwave radiometry, Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, 2020.
Kustu, M. D., Fan, Y., and Robock, A.: Large-scale water cycle perturbation
due to irrigation pumping in the US High Plains: A synthesis of observed
streamflow changes, J. Hydrol., 390, 222–244, https://doi.org/10.1016/j.jhydrol.2010.06.045, 2010.
Lawston, P. M., Santanello, J. A., Zaitchik, B. F., and Rodell, M.: Impact
of irrigation methods on land surface model spinup and initialization of WRF
forecasts, J. Hydrometeorol., 16, 1135–1154,
https://doi.org/10.1175/JHM-D-14-0203.1, 2015.
Lawston, P. M., Santanello Jr., J. A., and Kumar, S. V.: Irrigation signals
detected from SMAP soil moisture retrievals, Geophys. Res. Lett.,
44, 11–860, https://doi.org/10.1002/2017GL075733, 2017.
Lievens, H., Martens, B., Verhoest, N. E. C., Hahn, S., Reichle, R. H., and
Miralles, D. G.: Assimilation of global radar backscatter and radiometer
brightness temperature observations to improve soil moisture and land
evaporation estimates, Remote Sens. Environ., 189, 194–210, https://doi.org/10.1016/j.rse.2016.11.022, 2017a.
Lievens, H., Reichle, R. H., Liu, Q., De Lannoy, G. J. M., Dunbar, R. S.,
Kim, S. B., Das, N. N., Cosh, M., Walker, J. P., and Wagner, W.: Joint Sentinel-1 and SMAP data assimilation to improve soil
moisture estimates, Geophys. Res. Lett., 44, 6145–6153, https://doi.org/10.1002/2017GL073904, 2017b.
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L.,
Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W.,
Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J.,
and De Lannoy, G. J. M.: Snow depth variability in the Northern Hemisphere
mountains observed from space, Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y, 2019.
Liu, C. and Shi, J.: Estimation of vegetation parameters of water cloud
model for global soil moisture retrieval using time-series L-Band Aquarius
observations, IEEE J. Sel. Top. Appl., 9, 5621–5633,
https://doi.org/10.1109/JSTARS.2016.2596541, 2016.
Macelloni, G., Paloscia, S., Pampaloni, P., Marliani, F., and Gai, M.: The
relationship between the backscattering coefficient and the biomass of
narrow and broad leaf crops, IEEE T. Geosci. Remote, 39, 873–884,
https://doi.org/10.1109/36.917914, 2001.
Mahrt, L. and Pan, H.-L.: A two-layer model of soil hydrology, Bound.-Lay. Meteorol., 29, 1–20, https://doi.org/10.1007/BF00119116, 1984.
Massari, C., Modanesi, S., Dari, J., Gruber, A., De Lannoy, G. J., Girotto,
M., Quintana-Seguí, P., Le Page, M., Jarlan, L., and Zribi, M.: A
review of irrigation information retrievals from space and their utility for
users, Remote Sens., 13, 4112, https://doi.org/10.3390/rs13204112, 2021.
Matthews, O. P. and Germain, D. S.: Boundaries and transboundary water
conflicts, J. Water Res. Pl., 133, 386–396,
https://doi.org/10.1061/(ASCE)0733-9496(2007)133:5(386), 2007.
Modanesi, S., Massari, C., Gruber, A., Lievens, H., Tarpanelli, A., Morbidelli, R., and De Lannoy, G. J. M.: Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land, Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, 2021.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Nie, W., Zaitchik, B. F., Rodell, M., Kumar, S. V., Arsenault, K. R., Li, B.,
and Getirana, A.: Assimilating GRACE into a land surface model in the
presence of an irrigation-induced groundwater trend, Water Resour.
Res., 55, 11274–11294, https://doi.org/10.1029/2019WR025363, 2019.
Nie, W., Kumar, S. V., Arsenault, K. R., Peters-Lidard, C. D., Mladenova, I. E., Bergaoui, K., Hazra, A., Zaitchik, B. F., Mahanama, S. P., McDonnell, R., Mocko, D. M., and Navari, M.: Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco, Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, 2022.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, 1–19, https://doi.org/10.1029/2010JD015139, 2011.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol., 77, 263–293,
https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Olivera-Guerra, L., Merlin, O., and Er-Raki, S.: Irrigation retrieval from
Landsat optical/thermal data integrated into a crop water balance model: A
case study over winter wheat fields in a semi-arid region, Remote Sens.
Environ., 239, 111627, https://doi.org/10.1016/j.rse.2019.111627, 2020.
Ozdogan, M. and Gutman, G.: A new methodology to map irrigated areas using
multi-temporal MODIS and ancillary data: An application example in the
continental US, Remote Sens. Environ., 112, 3520–3537, https://doi.org/10.1016/j.rse.2008.04.010, 2008.
Ozdogan, M., Rodell, M., Beaudoing, H. K., and Toll, D. L.: Simulating the
effects of irrigation over the United States in a land surface model based
on satellite derived agricultural data, J. Hydrometeorol., 11, 171–184,
https://doi.org/10.1175/2009JHM1116.1, 2010a.
Ozdogan, M., Yang, Y., Allez, G., and Cervantes, C.: Remote sensing of
irrigated agriculture: Opportunities and challenges, Remote Sens., 2,
2274–2304, https://doi.org/10.3390/rs2092274, 2010b.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peña-Arancibia, J. L., McVicar, T. R., Paydar, Z., Li, L., Guerschman,
J. P., Donohue, R. J., Dutta, D., Podger, G. M., van Dijk, A. I., and Chiew, F. H.: Dynamic identification of summer cropping irrigated areas in a large
basin experiencing extreme climatic variability, Remote Sens.
Environ., 154, 139–152, https://doi.org/10.1016/j.rse.2014.08.016, 2014.
Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., Lighty, L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E. F., and Sheffield, J: High-performance Earth system modeling with NASA/GSFC's Land Information System, Innov. Syst. Softw. Eng., 3, 157–165, https://doi.org/10.1007/s11334-007-0028-x, 2007.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J.-F., Kim, H.,
Kanae, S., and Oki, T.: Incorporating anthropogenic water regulation
modules into a land surface model, J. Hydrometeorol., 13, 255–269,
https://doi.org/10.1175/JHM-D-11-013.1, 2012.
Po River Watershed Authority: Caratteristiche del bacino del fiume
Po e primo esame dell'impatto ambientale delle attività
umane sulle risorse idriche, http://www.adbpo.it/PBI/Piano_adottato/Relazione_Generale_07_12_2016.pdf (last access: 30 November 2021), 2016.
Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic data
assimilation with the ensemble Kalman filter, Mon. Weather Rev., 130,
103–114, https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2, 2002.
Reichle, R. H., De Lannoy, G. J., Liu, Q., Ardizzone, J. V., Colliander, A.,
Conaty, A., Crow, W., Jackson, T. J., Jones, L. A., and Kimball, J. S.:
Assessment of the SMAP level-4 surface and root-zone soil moisture product
using in situ measurements, J. Hydrometeorol., 18, 2621–2645,
https://doi.org/10.1175/JHM-D-17-0063.1, 2017.
Reichle, R. H., Liu, Q., Koster, R., Crow, W., De Lannoy, G. J. M., Kimball,
J., Ardizzone, J., Bosch, D., Colliander, A., Cosh, M., Kolassa, J.,
Mahanama, S., McNairn, H., Prueger, J., Starks, P., and Walker, J.: Version
4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product, J. Adv.
Model. Earth Sy., 11, 3106–3130, https://doi.org/10.1029/2019MS001729, 2019.
Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD16A2.006, 2017.
Salmon, J. M., Friedl, M. A., Frolking, S., and Wisser, D.: Global rain-fed,
irrigated, and paddy croplands: A new highnresolution map derived from
remote sensing, crop inventories and climate data, Int. J. Appl. Earth Obs.,
38, 321–334, https://doi.org/10.1016/j.jag.2015.01.014, 2015.
Siebert, S. and Döll, P.: Quantifying blue and green virtual water
contents in global crop production as well as potential production losses
without irrigation, J. Hydrol., 384, 198–217, https://doi.org/10.1016/j.jhydrol.2009.07.031, 2010.
Strosser, P., Dworak, T., Delvaux, P. A. G., Berglund, M., Schmidt, G.,
Mysiak, J., Kossida, M., Iacovides, I., and Ashton, V.: Gap analysis of the
water scarcity and droughts policy in the EU European Commission, European
Commission, Tender ENV.D.1/SER/2010/0049, 206 pp., 2012.
Van Eekelen, M. W., Bastiaanssen, W. G., Jarmain, C., Jackson, B., Ferreira,
F., Van der Zaag, P., Okello, A. S., Bosch, J., Dye, P., Boastidas-Obando,
E., Dost, R. J. J., and Luxemburg, W. M. J.: A novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the Incomati basin, Agr. Ecosyst. Environ., 200, 126–142, https://doi.org/10.1016/j.agee.2014.10.023, 2015.
Verger, A., Baret, F., and Weiss, M.: Near real-time vegetation monitoring
at global scale, IEEE J. Sel. Top. Appl., 7, 3473–3481,
https://doi.org/10.1109/JSTARS.2014.2328632, 2014 (data available at:
https://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Browse;Root=512260;Collection=1000083;Time=NORMAL,NORMAL,-1,,,-1,, (last access: 13 September 2022).
Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner,
I., Rüdiger, C., and Strauss, P.: Sensitivity of Sentinel-1 Backscatter
to Vegetation Dynamics: An Austrian Case Study, Remote Sens.-Basel, 10,
1396, https://doi.org/10.3390/rs10091396, 2018.
Vreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B., Hahn, S.,
Steele-Dunne, S., Pfeil, I., Dorigo, W., and Wagner, W.: Sentinel-1 Cross
Ratio and Vegetation Optical Depth: A Comparison over Europe, Remote
Sens.-Basel, 12, 3404, https://doi.org/10.3390/rs12203404, 2020.
Vrugt, J. A., Ter Braak, C. J., Clark, M. P., Hyman, J. M., and Robinson, B. A.: Treatment of input uncertainty in hydrologic modeling: Doing hydrology
backward with Markov chain Monte Carlo simulation, Water Resour. Res.,
44, W00B09, https://doi.org/10.1029/2007WR006720, 2008.
Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture
from ERS scatterometer and soil data, Remote Sens. Environ., 70, 191–207, https://doi.org/10.1016/S0034-4257(99)00036-X, 1999.
Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S.,
Figa-Saldaña, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J.,
Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., Blöschl, G.,
Eitzinger, J., and Steinnocher, K.: The ASCAT soil moisture product: A
review of its specifications, validation results, and emerging applications,
Meteorol. Z., 22, 5–33, https://doi.org/10.1127/0941-2948/2013/0399, 2013.
Zappa, L., Schlaffer, S., Bauer-Marschallinger, B., Nendel, C., Zimmerman,
B., and Dorigo, W.: Detection and Quantification of Irrigation Water Amounts
at 500 m Using Sentinel-1 Surface Soil Moisture, Remote Sens., 13, 1727,
https://doi.org/10.3390/rs13091727, 2021.
Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., and Brocca, L.: Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data, Hydrol. Earth Syst. Sci., 23, 897–923, https://doi.org/10.5194/hess-23-897-2019, 2019.
Zribi, M., Chahbi, A., Shabou, M., Lili-Chabaane, Z., Duchemin, B., Baghdadi, N., Amri, R., and Chehbouni, A.: Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation, Hydrol. Earth Syst. Sci., 15, 345–358, https://doi.org/10.5194/hess-15-345-2011, 2011.
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Given the crucial impact of irrigation practices on the water cycle, this study aims at...