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Abstract. In recent years, the amount of water used for agri-
cultural purposes has been rising due to an increase in food
demand. However, anthropogenic water usage, such as for
irrigation, is still not or poorly parameterized in regional-
and larger-scale land surface models (LSMs). By contrast,
satellite observations are directly affected by, and hence po-
tentially able to detect, irrigation as they sense the entire in-
tegrated soil–vegetation system. By integrating satellite ob-
servations and fine-scale modelling it could thus be possible
to improve estimation of irrigation amounts at the desired
spatial–temporal scale.

In this study we tested the potential information offered by
Sentinel-1 backscatter observations to improve irrigation es-
timates, in the framework of a data assimilation (DA) system
composed of the Noah-MP LSM, equipped with a sprinkler
irrigation scheme, and a backscatter operator represented by
a water cloud model (WCM), as part of the NASA Land In-
formation System (LIS). The calibrated WCM was used as
an observation operator in the DA system to map model sur-
face soil moisture and leaf area index (LAI) into backscatter
predictions and, conversely, map observation-minus-forecast
backscatter residuals back to updates in soil moisture and
LAI through an ensemble Kalman filter (EnKF).

The benefits of Sentinel-1 backscatter observations in two
different polarizations (VV and VH) were tested in two sep-
arate DA experiments, performed over two irrigated sites,

the first one located in the Po Valley (Italy) and the sec-
ond one located in northern Germany. The results confirm
that VV backscatter has a stronger link with soil moisture
than VH backscatter, whereas VH backscatter observations
introduce larger updates in the vegetation state variables. The
backscatter DA introduced both improvements and degrada-
tions in soil moisture, evapotranspiration and irrigation esti-
mates. The spatial and temporal scale had a large impact on
the analysis, with more contradicting results obtained for the
evaluation at the fine agriculture scale (i.e. field scale). Above
all, this study sheds light on the limitations resulting from a
poorly parameterized sprinkler irrigation scheme, which pre-
vents improvements in the irrigation simulation due to DA
and points to future developments needed to improve the sys-
tem.

1 Introduction

Irrigation has been applied by humans for as long as they
have been cultivating plants. However, in the last century ir-
rigation has become one of the most impactful human ac-
tivities on the terrestrial water cycle, accounting for nearly
85 % of global water consumption (Gleick, 2003; Kustu et
al., 2010) and for 40 % of the world’s food production (Foley
et al., 2011; Massari et al., 2021; Siebert and Döll, 2010).
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In the next decades, the foreseen increase in population
(FAO, 2009) and climate change is expected to ask for
larger amounts of water resources for food production and
consequently increases in irrigation applications (Matthews
and Germain, 2007; Ozdogan et al., 2010b). Busschaert et
al. (2022) found that under a high CO2 emission scenario,
a significant increase in net irrigation requirements for all
of Europe (+30 % during the summer months) is expected
by the end of the century. Even though accurate information
on farmers’ decisions related to quantities and timing of ir-
rigation applications is often not available for public use, it
is critical to understand how much water is used for irriga-
tion to design an optimal water management strategy and to
understand the consequences of irrigation on climate in the
future (Alter et al., 2015).

Therefore, many studies have focused on detecting and
quantifying irrigation through modelling and remote-sensing
(RS) observations. From the modelling perspective, Girotto
et al. (2017) highlighted the key role in representing anthro-
pogenic processes into land surface models (LSMs). The au-
thors realized a study in India, where irrigation provides a
large contribution to winter crop production, and they found
that data assimilation (DA) of total water storage (TWS) RS
observations into the catchment land surface model (CLSM)
introduces a negative trend in groundwater due to pumping
for irrigation, along with an associated erroneous negative
trend in modelled evapotranspiration when irrigation is un-
modelled. Other studies have attempted to incorporate irriga-
tion schemes into global LSMs, including the Interaction be-
tween Soil, Biosphere, and Atmosphere (ISBA) LSM (Druel
et al., 2021), the Community Land Model (CLM; Pokhrel et
al., 2012), and the Organizing Carbon and Hydrology in Dy-
namic Ecosystems (ORCHIDEE) model (De Rosnay et al.,
2003), demonstrating the regional impact of irrigation on dif-
ferent water storages and on energy partitioning between sen-
sible and latent heat fluxes (Lawston et al., 2015). Different
types of irrigation systems were also implemented into the
NASA Land Information System (LIS; Kumar et al., 2006;
Peters-Lidard et al., 2007) framework and coupled with sev-
eral LSMs, such as the Noah LSM (Chen et al., 1996; Chen
and Dudhia, 2001; Mahrt and Pan, 1984) and the Noah-MP
LSM (Niu et al., 2011). Drip and flood irrigation systems
(Evans and Zaitchik, 2008) as well as a sprinkler scheme
(Ozdogan et al., 2010a) are currently part of the LIS frame-
work. The sprinkler irrigation scheme, in particular, adds ir-
rigation water as fictitious rainfall based on a root-zone soil
moisture threshold, and it was recently improved accounting
for groundwater extraction in Nie et al. (2019).

Beyond these efforts, the human influence on the water
distribution is still poorly described in LSMs due to sim-
plifying assumptions, such as limitations related to soil tex-
ture maps, static crop maps or irrigation intensity inputs
(Modanesi et al., 2021; Monfreda et al., 2008; Ozdogan et
al., 2010a; Salmon et al., 2015). Another key issue is related
to the farmer’s irrigation application decision, which is not

necessarily related to crop irrigation requirements or based
on the root-zone soil moisture availability but mainly on wa-
ter resource availability (Massari et al., 2021).

On the other hand, RS observations can indirectly disclose
the presence of irrigation activities when they sense the en-
tire integrated soil–vegetation system. For instance, visible
and near-infrared measurements were mainly used in pre-
vious studies for developing irrigation mapping techniques
(Ambika et al., 2016; Ozdogan and Gutman, 2008; Peña-
Arancibia et al., 2014; Salmon et al., 2015), and, in recent
years, optical data have also been combined with microwave
(MW) observations (Ferrant et al., 2019) or with thermal sen-
sor data (i.e. land surface temperature data) via energy and
water balance models (van Eekelen et al., 2015; Olivera-
Guerra et al., 2020; Brombacher et al., 2022), to investi-
gate the advantages of multi-sensor approaches. On the other
hand, MW satellite data were exploited in the last decade
for both detecting (Dari et al., 2021; Gao et al., 2018; Ku-
mar et al., 2015) and quantifying irrigation (Brocca et al.,
2018; Dari et al., 2020; Jalilvand et al., 2019; Zaussinger et
al., 2019). All these studies highlighted the importance of
high spatial resolution of RS observations for a better es-
timation of irrigation quantities. In this context, the Coper-
nicus Sentinel-1 mission represents the new era of satel-
lite observations, providing Synthetic Aperture Radar (SAR)
backscatter data at a fine spatial resolution (up to 10–20 m)
since 2014, which are freely accessible. A recent study by
Jalilvand et al. (2021) has highlighted the potential of high-
resolution Sentinel-1-based soil moisture data, such as the
1 km SMAP/Sentinel-1 product (Das et al., 2019) to detect
the irrigation signal over agricultural areas. However, despite
the advances in RS, satellite observations are still charac-
terized by limitations, such as the low revisit time typically
associated with higher spatial resolution data, noise in the
measurements, and the uncertainties of satellite retrieval al-
gorithms.

The optimal integration of fine-scale modelling and satel-
lite observations using DA in LSMs could be a promising
solution to account for anthropogenic activities alongside im-
proving the estimation of irrigation amounts and model pre-
dictions. Lawston et al. (2017) and Jalilvand et al. (2021)
suggested the use of MW-based surface soil moisture re-
trievals from SMAP or SMAP/Sentinel-1 respectively, to in-
corporate the irrigation signal into models via DA. In light of
this, Abolafia-Rosenzweig et al. (2019) designed an innova-
tive system to assimilate RS-based soil moisture into the VIC
(variable infiltration capacity) model through a particle batch
smoother in order to improve irrigation estimates. Further
studies investigated the use of surface soil moisture retrievals
and vegetation indices such as leaf area index (LAI) or veg-
etation optical depth to improve model predictions (Albergel
et al., 2018; De Lannoy and Reichle, 2016b; Kumar et al.,
2020). However, MW-based retrievals could also add unreli-
able information into LSM systems due to the RS observa-
tion preprocessing and the retrieval algorithm. More specifi-

Hydrol. Earth Syst. Sci., 26, 4685–4706, 2022 https://doi.org/10.5194/hess-26-4685-2022



S. Modanesi et al.: Quantifying irrigation through the assimilation of Sentinel-1 backscatter 4687

cally, passive MW retrievals are produced with ancillary data
that might be inconsistent with those used in the LSM (De
Lannoy and Reichle, 2016a), and active MW retrieval prod-
ucts based on change detection methods often rely on a cli-
matological approximation of the vegetation signal (Wagner
et al., 1999). To avoid this limitation, previous studies in-
vestigated the direct assimilation of MW observations, such
as brightness temperature (Tb) derived from Soil Moisture
and Ocean Salinity (SMOS) or Soil Moisture Active Passive
(SMAP) missions (De Lannoy and Reichle, 2016a, b; Re-
ichle et al., 2019), radar backscatter from the Advanced Scat-
terometer (ASCAT; Lievens et al., 2017a), or the joint assimi-
lation of Sentinel-1 backscatter and SMAP Tb (Lievens et al.,
2017b), through the use of calibrated observation operators.
The assimilation of Level-1 observations has the potential to
limit inconsistencies in the DA system and to address the cli-
matological bias correction through the observation opera-
tor calibration, as compared to classical soil moisture bias
correction techniques (i.e. cumulative distribution function
(CDF) matching).

The earlier studies on the direct assimilation of MW ob-
servations did not include any irrigation or dynamic vege-
tation modelling. Consequently, they did not investigate the
benefits of jointly updating soil moisture and vegetation or
any consequences on irrigation estimation. This work aims
at filling those gaps using the Noah-MP v.3.6 (Niu et al.,
2011) equipped with a dynamic vegetation model, a sprin-
kler irrigation scheme (Ozdogan et al., 2010a) and a cali-
brated backscatter forward operator, the Water Cloud Model
(WCM; Attema and Ulaby, 1978), within the NASA LIS
framework. The main target of this study is then to assimi-
late 1 km Sentinel-1 radar backscatter observations for a joint
update of modelled soil moisture and vegetation in order to
correct them for actual irrigation applications and thereby
improve the initial land surface conditions for subsequent ir-
rigation forecasts. The backscatter from Sentinel-1 contains
information on both soil moisture (Bauer-Marschallinger et
al., 2018; Liu and Shi, 2016; Zribi et al., 2011) and veg-
etation (Vreugdenhil et al., 2020, 2018), and we hypothe-
size that assimilating these data could correct for misrepre-
sented or missed irrigation events. Furthermore, we assume
that when coupling the Noah-MP DA system with a poorly
parameterized sprinkler irrigation module, irrigation water
amounts can be optimally forecasted when optimal soil mois-
ture and vegetation estimates are available. In this frame-
work, the WCM calibration is a necessary step to obtain un-
biased predictions over intensively irrigated areas, and this
topic was deeply investigated in Modanesi et al. (2021). The
ensemble Kalman filter (EnKF; Evensen, 1994) algorithm is
selected to perform the DA analysis. The EnKF was used in
previous studies for non-linear dynamics, and it is popular
in hydrological and land surface modelling studies (Reichle
et al., 2002; De Lannoy and Reichle, 2016a; Kumar et al.,
2019, 2020; De Santis et al., 2021, to cite a few). It uses an
ensemble of model trajectories to represent the background

error covariance at each time of an update. With the support
of a near-optimal DA system, this study aims at improving
irrigation estimates, and the following points are discussed:

i. the improvement (or deterioration) of LSMs simula-
tions in terms of irrigation, soil moisture, vegetation
and evapotranspiration due to the sequential assimila-
tion of Sentinel-1 backscatter in vertical transmit and
receive (VV) or in vertical transmit and horizontal re-
ceive (VH) polarizations and the differences in results
obtained using co- and cross-polarization observations
to update both soil moisture and vegetation;

ii. the limitations due to the spatial scale and shortcomings
of the system in terms of model parameterization and
DA consistency.

The analysis was carried out over two pilot sites: (i) the Po
Valley, one of the most intensively cultivated and irrigated ar-
eas in Italy (Po River Watershed Authority, 2016), and (ii) an
irrigated area located in northern Germany, in more humid
conditions.

The paper is organized as follows. Section 2 describes the
study areas, the datasets used (i.e. in situ benchmark data and
RS observations), methods (including the LSM description
and the DA system) and the experimental setup. Section 3
presents the results obtained from the DA experiments: first
the quality of the DA system design is evaluated in terms
of DA diagnostics, and then the estimates of irrigation and
model state variables and fluxes are evaluated. In Sect. 4 we
provide a discussion, and conclusions are reported in Sect. 5.

2 Data and methods

2.1 Study areas and in situ data

Two European pilot sites characterized by different climatic
conditions were selected (Fig. 1). The first one is located
in the Lower Saxony region in northern Germany and has
an extent of 160 km2, marked by the transparent red box in
Fig. 1a. It can be classified as Cfb (temperate oceanic cli-
mate) in the Köppen–Geiger classification (Peel et al., 2007).
Mean annual temperature and precipitation are around 9 ◦C
and 550 mm, respectively. For more general information on
this pilot site, the reader can refer to the work by Zappa et
al. (2021). The test site is composed of 49 fields (ranging
from 1.3 to 30 ha) characterized by a wide variety of crops,
which include potatoes, sugar beet, summer barley and win-
ter wheat. Daily irrigation data, available for each field, were
provided for the year 2018.

The second pilot site is located within the Po Valley, one
of the most important agricultural areas in Italy, intensively
equipped for irrigation (Salmon et al., 2015). According to
the Köppen–Geiger climate classification, this area can be
ascribed to the Cfa class (temperate climate, without dry sea-
son and with hot summers). The simulation area (red box
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Figure 1. Study area composed of the German and Italian pilot sites (represented by the red boxes). The pilot sites include three test sites:
(a) Lower Saxony with 49 fields; (b) five fields in Budrio; and (c) two small districts close to the city of Faenza, called San Silvestro and
Formellino. Map data © Google Maps 2019.

on Fig. 1b–c) is mainly characterized by croplands, except
the south, south-western area where forests and more com-
plex topography are dominant. This pilot site has an exten-
sion of 1800 km2; it is located in the Emilia Romagna re-
gion and is characterized by one of the most technologically
advanced Italian irrigation hydraulic systems – the Canale
Emiliano Romagnolo (CER; https://consorziocer.it/it/, last
access: 27 November 2021). In recent years, this area has
been affected by frequent water scarcity periods (Ceppi et al.,
2014; Strosser et al., 2012), which have increased the need
for optimal water management. In situ data, used for evalua-
tion, were collected over the test site of Budrio (Fig. 1b) and
Faenza (Fig. 1c). In particular, the Budrio farm is managed
by CER and includes five small fields extended for 0.4 ha
each. The most common crop types are tomatoes and maize,
and daily irrigation data are available for the period 2015–
2016 for four out of the five fields and for the year 2017 for
the last plot. The second Italian test site is located around the
city of Faenza, consisting of two small-districts: San Silve-
stro (hereafter Faenza F1), which has an extension of 290 ha,
and Formellino (Faenza F2 hereafter), reaching 760 ha. The
crops growing on the Faenza small-districts are pear and
kiwi, which typically require a significant amount of water.
The water used for irrigation at daily timescale was provided
by CER for the 2 years 2016–2017. Daily rainfall data are

collected from the national rainfall network managed by the
Department of Civil and Environmental Protection (DPC) of
Italy for the irrigated periods.

2.2 Remote-sensing observations

The European Space Agency (ESA) and Copernicus
Sentinel-1 mission collects active microwave backscatter
data at C-band (5.4 GHz) at a high spatial (∼ 20 m) and tem-
poral (less than weekly) resolution in interferometric wide
(IW) swath mode. The processing of the ground-range de-
tected (GRD) backscatter observations in VV and VH polar-
ization was done using the ESA Sentinel Application Plat-
form (SNAP) software and included standard techniques:
precise orbit file application, border noise removal, thermal
noise removal, radiometric calibration to backscatter as beta
nought, terrain flattening to backscatter as gamma nought
(γ 0 hereafter) and range-Doppler terrain correction. Further-
more, the γ 0 observations, originally acquired at∼ 20 m spa-
tial resolution, were aggregated by multilooking, masked for
urban area and water bodies, and projected on the 0.01◦

latitude–longitude grid as used in LIS Noah-MP LSM. Af-
ter applying an orbit bias correction (Lievens et al., 2019),
the observations from different orbits, either from Sentinel-
1A or Sentinel-1B and ascending or descending tracks, were
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https://consorziocer.it/it/


S. Modanesi et al.: Quantifying irrigation through the assimilation of Sentinel-1 backscatter 4689

combined at the daily timescale, with a mean temporal res-
olution of one assimilated observation every ∼ 3 d over the
pilot sites.

Additional RS observations were used for the evaluation
of Noah-MP LSM simulations.

– The Metop ASCAT surface soil moisture (SSM) Cli-
mate Data Records H115 and its extension H116 are
provided by the European Organization for the Ex-
ploitation of Meteorological Satellites (EUMETSAT)
Support to Operational Hydrology and Water Man-
agement (H SAF; http://hsaf.meteoam.it/, last access:
20 May 2021). The SSM retrieval is characterized by
a spatial sampling of 12.5 km and a temporal resolution
of one to two observations per day, depending on the
latitude.

– The PROBA-V leaf area index (LAI) is provided
by the Copernicus Global Land Service programme
(CGLS, https://land.copernicus.eu/global/, last access:
13 September 2022). The CGLS product at 1 km spa-
tial resolution and 10 d temporal resolution is developed
based on the work by Verger et al. (2014).

– The Moderate Resolution Imaging Spectroradiometer
(MODIS) is a multispectral sensor on board TERRA
and AQUA satellites acquiring image data of the Earth’s
surface simultaneously in visible and infrared bands.
For this work, the MOD16A2 Version 6 Evapotranspi-
ration product was used for evaluation. This is an 8 d
composite product characterized by 500 m spatial reso-
lution.

ASCAT SSM, PROBA-V LAI and MODIS ET were ex-
tracted over the test sites and re-gridded over the LIS grid
spatial domain (0.01◦) as well as sampled to a daily timescale
in order to match the LIS outputs.

2.3 Land surface and irrigation modelling

The LSM selected for this study is the Noah-MP.v.3.6 (Niu
et al., 2011). This model is able to dynamically simulate veg-
etation and soil moisture in four layers, i.e. 0–10, 10–40,
40–100 and 100–200 cm depth. For this study, the Noah-MP
model was coupled to a sprinkler irrigation module (Ozdogan
et al., 2010a) embedded within the NASA’s LIS version 7.3
(Kumar et al., 2008). For a more detailed description of the
Noah-MP parameterization used in this study, the reader can
refer to Modanesi et al. (2021).

The irrigation module adds water as pseudo-precipitation
to mimic sprinkler systems (Ozdogan et al., 2010a) and does
not further change processes related to, for example, vapour
fluxes (which would be needed for highly efficient drip irri-
gation systems; Evans and Zaitchik, 2008). In order to iden-
tify the irrigation season, timing and location of irrigation,
four conditions need to be met: (i) irrigable land cover (i.e.
croplands), (ii) irrigated land fraction, (iii) growing season

and (iv) dry enough root-zone soil moisture. The first two
conditions are tested against static land cover (LC) and ir-
rigation intensity (areal fraction) maps. The growing season
was defined based on a user-defined threshold of simulated
LAI (LAI> 1). The LAI value is then converted to the green-
ness vegetation fraction (GVF) in accordance with Fang et
al. (2018):

GVF= 1− e−b×LAI, (1)

where b (–) is an empirical parameter that depends on plant
canopy (Fang et al., 2018; Norman et al., 1995). Finally, the
irrigation is applied when the root-zone soil moisture avail-
ability falls below a user-defined threshold, which has been
set to 50 % of field capacity (FC) as in Ozdogan et al. (2010a)
for the German pilot site and 45 % in Italy (a previous analy-
sis has shown large overestimations using a threshold of 50 %
in the Po Valley). The irrigation amount is determined by the
amount of water needed to increase the root-zone soil mois-
ture back to FC. In this context, the maximum rooting depth
is an important input parameter, impacting the frequency of
irrigation events as well as the amount of irrigated water.

The modelled irrigation estimates are thus primarily
controlled by five datasets: static LC, irrigation fraction,
soil texture, crop type and dynamic meteorological forc-
ing. In this study, the static 1 km LC is derived from the
CGLS 100 m global LC map for the year 2015 (Buchhorn
et al., 2020; available at https://land.copernicus.eu/global/
products/lc, last access: 21 December 2021). The 23 classes
of this global LC map were reclassified to the 14 classes sup-
ported by LIS and re-gridded to 0.01◦ (for additional details
on the reclassification, the reader can refer to Modanesi et
al., 2021). The global 500 m rain-fed, irrigated and paddy
croplands dataset (GRIPC) by Salmon et al. (2015) is used to
map the irrigation fractional area. However, the GRIPC input
lacks important information over the German test site, which
is classified as non-irrigated. In order to allow for irrigation
simulations over Germany, the irrigation fractional area was
set to 100 % over the known irrigated LIS grid pixels (based
on irrigation benchmark data). The parameters needed to ac-
tivate the irrigation scheme are summarized in Table 1.

Soil texture and the associated parameters were ex-
tracted from the 1 km Harmonized Soil World Database
(HWSD v1.21) and mapped to discrete soil classes with
their associated soil hydraulic parameters as in Modanesi et
al. (2021). Given the lack of European or large-scale dynamic
crop map datasets, the crop type was set to a generic type,
with a maximum rooting depth of 1 m in Italy (Modanesi
et al., 2021) and 0.8 m Germany. In particular, in the Lower
Saxony test site, an averaged rooting depth was calculated
based on the main crop types cultivated on the irrigated
fields.

The dynamic meteorological forcing data were extracted
from Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2; Gelaro et al., 2017),
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Table 1. Parameters needed to activate the irrigation scheme in Noah-MP, based on the two pilot sites.

Pilot site Noah-MP Crop rooting Irrigation Land use Soil moisture
LAI (–) depth (m) fraction threshold (%)

Italy > 1 1 GRIPC Cropland 45
Germany > 1 0.8 User-defined Cropland 50

which is not corrected for surface or screen-level observa-
tions (and are thus unlikely to contain feedback from – un-
modelled and unobserved – irrigation). The meteorological
data, at original spatial resolution of 0.5◦× 0.625◦, were
remapped to 0.01◦ spatial resolution via bilinear interpola-
tion.

2.4 Observation operator and calibration

The observation operator used to ingest Sentinel-1 γ 0 ob-
servations into the Noah-MP LSM is represented by the
Water Cloud Model (WCM) introduced by Attema and
Ulaby (1978). The WCM simulates the total γ 0 as the sum
of the γ 0 from the vegetation (γ 0

veg) and the γ 0 from the soil
(γ 0

soil) attenuated by the vegetation (t2) as follows:

γ 0
tot = γ

0
veg+ t

2γ 0
soil. (2)

For more information on the WCM, the reader can refer to
the Appendix section as well as to Lievens et al. (2017a) and
Modanesi et al. (2021). The WCM includes four fitting pa-
rameters, two of them related to the scattering and attenu-
ation by vegetation and the other two parameters to model
the soil backscatter contribution as a linear function of the
SSM. Those parameters were calibrated to limit long-term
biases between Sentinel-1 observations, which include an
irrigation signal over irrigated areas, and the LSM simula-
tions. The WCM calibration was performed for each indi-
vidual grid cell using the procedure designed in Modanesi et
al. (2021), which includes (i) the use of Noah-MP SSM and
LAI as inputs for the WCM (ensemble mean time series from
an open loop simulation); (ii) the use of Sentinel-1 γ 0 VV
and VH separately to tune the parameters for the simulation
of γ 0 VV and VH independently; (iii) the activation of the ir-
rigation scheme to reduce seasonal inconsistencies between
simulated and observed γ 0 during irrigation periods; (iv) the
optimization of a Bayesian objective function represented by
the sum of square error between γ 0 observations and simula-
tions, and a constraint on prior parameter estimates, using the
DiffeRential Evolution Adaptive Metropolis (DREAM(ZS);
Vrugt et al., 2008; De Lannoy et al., 2014). The calibration
was realized for the period January 2018–December 2020.
As a final note, the WCM calibration procedure acts as a cli-
matological bias correction method to meet the assumption
of unbiased observations and simulations in a DA system. It
is worth mentioning that after the calibration step, no further

interannual, seasonal or shorter-term bias correction was per-
formed.

2.5 Data assimilation

The DA system was developed in order to directly assimi-
late Sentinel-1 γ 0 observations into Noah-MP and sequen-
tially update both soil moisture and vegetation within the
LIS framework. The direct assimilation of γ 0 observations
requires that simulated land surface state variables are first
mapped to γ 0 predictions (forecast) via a second modelling
step, i.e. via the WCM as observation operator (Sect. 2.4).
The assimilation was performed via an ensemble Kalman fil-
ter (EnKF; Evensen, 2003, 1994), which updates the land
surface state, where and when satellite-based γ 0 observa-
tions are available. Specifically, a 1-dimensional EnKF was
applied (Reichle et al., 2002), using Sentinel-1 observations
on the same spatial grid as that of the model simulations.
In this study, the updated land surface state variables during
the assimilation include both surface soil moisture (0–10 cm)
and LAI, and the deeper profile layers are also updated (10–
40, 40–100 and 100–200 cm) via error cross-correlations.
All other fluxes and state variables, including irrigation es-
timates, are consistently adjusted via model propagation.

The EnKF assumes unbiased observations and forecasts.
This is achieved by running the Noah-MP with a poor guess
of irrigation activated and using calibrated WCM parameters
to produce unbiased γ 0 forecasts relative to Sentinel-1 γ 0

(which “senses” irrigation). The optimality of the Kalman
filter further strongly depends on the characterization of the
random component of forecast and observation errors. In this
context, the forecast errors are diagnosed from an ensemble
of 24 land model (including WCM) trajectories, from which
the error covariances are estimated at the time of an update.
The ensembles are generated by perturbing selected meteo-
rological input forcings (i.e. rainfall and incidence longwave
and shortwave radiation) and state variables. The perturba-
tion parameters, summarized in Table 2, are based on Kumar
et al. (2014), aiming at a unit standard deviation of normal-
ized γ 0 innovations (De Lannoy and Reichle, 2016a; Reichle
et al., 2017). Only the SSM and LAI state variables are per-
turbed, and no temporal autocorrelation is used to avoid ex-
cessive uncertainty estimates. The observation error standard
deviation is set to 1 dB, regardless of the polarization or orbit
of the γ 0 observations.
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Table 2. Perturbation parameters for forcing (i.e. rainfall, incident
and shortwave radiation) and state variables (i.e. SSM and LAI).

Variable Perturbation Standard
type deviation

Rainfall (kg m−2 s−1) Multiplicative 0.5
Incident longwave radiation (W m−2) Additive 50.0
Incident shortwave radiation (W m−2) Multiplicative 0.3
SSM (m3 m−3) Additive 0.012
LAI (–) Additive 0.04

The main equation of the EnKF can then be written as fol-
lows:

x̂+i = x̂−i +Ki

[
yobs,i −hi

(
x̂−i

)]
, (3)

where i represents the time step, x̂+i is an ensemble of model

states after assimilation and x̂−i represents the forecast en-
semble state (i.e. SSM and LAI), yobs,i is the assimilated ob-
servations at time i and hi (.) is the WCM observation oper-
ator. The term yobs,i −hi

(
x̂−i

)
is the γ 0 observation-minus-

forecast (O −F ) residual in dB and is mapped to updates in
the model state via the Kalman gain Ki described as follows:

Ki =

[
CYM(CM +Cv)−1

]
i
. (4)

In Eq. (4), CYM,i is the error cross-covariance matrix be-
tween the state and observation predictions, and CM,i is the
forecast error covariance matrix of the backscatter (observa-
tion) predictions.

The above method will update forecasted irrigation esti-
mates by correcting random errors in land surface state fore-
casts. An alternative method would be to run the Noah-MP
without irrigation activated and to derive irrigation estimates
from the amount of water or vegetation added to the system
via DA (i.e. the increments), if the true precipitation is used
as input and if the observation operator is also not compen-
sating for irrigation. More specifically, positive and autocor-
related increments in the growing season would be indica-
tive of irrigation. However, this would also be indicative of a
suboptimal assimilation system. In this study, we use imper-
fect reanalysis precipitation input, and we simulate irrigation
through an irrigation scheme. Increments of any sign could
thus be related to over- or underestimation of irrigation.

2.6 Experiments

In this study we considered two different experimental lines,
(i) the assimilation of Sentinel-1 γ 0 VV (Sentinel-1 γ 0 VV
DA hereafter) and (ii) the assimilation of Sentinel-1 γ 0 VH
(Sentinel-1 γ 0 VH DA hereafter), both to sequentially update
SSM and LAI. The experimental workflow is described in
the scheme of Fig. 2.

For each pilot site, the Noah-MP model was previously
spun up from January 1982 to May 2014. Then, an ensemble
spin-up was realized in open loop (OL) mode using 24 en-
semble members from May 2014 to January 2015, in order
to obtain optimal initial conditions. The OL run was contin-
ued thereafter from January 2015 onwards through Decem-
ber 2020. Similarly, the Sentinel-1 γ 0 VV DA and Sentinel-1
γ 0 VH DA experiments were run from January 2015 through
December 2020. Note that all instantaneous state and flux
variables in the OL and DA experiments were described by
ensemble distributions, and consequently irrigation was acti-
vated for different individual ensemble members at different
times and with different quantities.

2.7 Evaluation

The evaluation aimed at (i) verifying the goodness of the DA
system in terms of DA diagnostics; (ii) highlighting benefits
of the Sentinel-1 DA for irrigation, soil moisture and LAI
estimation, as well as testing the differences between the
Sentinel-1 γ 0 VV DA and the Sentinel-1 γ 0 VH DA con-
figurations; (iii) verifying the influence of the spatial scale of
the test sites on the irrigation simulation and evaluation; and
(iv) identifying shortcomings of the system.

To achieve those targets, two types of evaluation were car-
ried out.

– The optimality of the DA system design was evaluated
regionally for each pilot site, for the period January
2015–December 2020. Following Reichle et al. (2017),
three different filter diagnostics were analysed. First, the
difference between the temporal mean ensemble stan-
dard deviation (or ensemble spread) of the DA and
OL runs was computed to test whether the DA sys-
tem successfully reduces the uncertainties (i.e. ensem-
ble spread) as compared to the OL run. Second, the time
series standard deviation of the normalized γ 0 O −F

residuals was computed to check if observation and
model errors were adequately chosen. In ideal condi-
tions, this metric should be equal to unity over the en-
tire study area. The normalized O −F residuals were
obtained by normalizing each O −F residual by their
simulated (expected) (forecast and observation error)
standard deviation and then calculating the time series
standard deviation (Bechtold et al., 2020; Reichle et al.,
2019). Third, the time series standard deviations of the
increments (analysis – forecast) in SSM and LAI were
investigated in order to verify whether those values are
small relative to the values of the update state variables.

– The OL and DA estimates of irrigation, SSM, LAI and
ET were evaluated using independent reference data for
the years 2015–2017 and 2016–2017 at the Budrio and
Faenza (Italian) sites and for the year 2018 at the Ger-
man sites. The evaluation of ensemble mean irrigation
simulations was assessed in terms of correlation and
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Figure 2. Workflow of the DA experiments realized within the LIS framework. The scheme describes how the Sentinel-1 γ 0 (VV or VH) is
assimilated into the Noah-MP LSM to sequentially update SSM and LAI using an EnKF.

percentage bias (Pearson R and bias hereafter) between
estimated irrigation volumes and benchmark irrigation
data. As the irrigation timing is often driven by stake-
holders’ turns to withdraw water and by water availabil-
ity rather than by the root-zone moisture conditions, and
because short-term DA increments influence short-term
activations of the irrigation system, the comparisons be-
tween simulations and in situ observations were car-
ried out by accumulating irrigation data in a biweekly
time window. An evaluation of daily SSM and LAI out-
puts was performed against ASCAT SSM and PROBA-
V LAI, respectively, in terms of Pearson R. The ET
outputs were tested against MODIS ET, considering the
important role that irrigation has in affecting ET (Had-
deland et al., 2014; Lawston et al., 2015). The latter
however, must be considered more a comparison than
a real validation given the inherent uncertainties con-
tained in the MODIS ET product.
The evaluation of the 0.01◦ irrigation simulations with
benchmark data asks for careful data handling and of-
fers opportunities to relate skill metrics to properties of
the irrigated regions. First, the Italian pilot site is com-
posed of Budrio with five small fields of 0.4 ha within
one LIS grid cell (0.01◦), the Faenza F1 test site of
290 ha, covering three LIS grid cells, and Faenza F2 of
760 ha including eight LIS grid cells. The benchmark ir-
rigation data for the five fields in Budrio were averaged

to obtain a unique time series, whereas at the Faenza
test sites the LIS simulations were averaged to obtain
a single time series for each field (and for each anal-
ysed variable). This allows us to relate skill metrics to
the spatial scale (1 pixel at Budrio, to district scale at
Faenza) of simulations and reference data.
Second, the German pilot site is composed of 49 fields,
covering 24 LIS pixels. The irrigation data of the fields
falling within each grid cell were averaged, assigning a
weight to each time series based on the percentage area
of the field falling within the LIS pixel. By consider-
ing only pixels with a percentage of irrigated area larger
than 25 %, 8 irrigated pixels of the 24 pixels were re-
tained. For these 8 pixels, statistical distributions of the
skill metrics could be obtained.

3 Results

3.1 Data assimilation diagnostics

The two DA experiments (Sentinel-1 γ 0 VV DA and
Sentinel-1 γ 0 VH DA) were evaluated in terms of DA
optimality and increments over the period January 2015–
December 2020 for both Germany and Italy. Figure 3 shows
a general reduction in the time–mean ensemble spread in
SSM or LAI due to DA compared to the spread of the OL
runs (1SSM ens. spread mean;1LAI ens. spread mean), for
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both the Sentinel-1 γ 0 VV and VH DA experiments. In Italy
(Fig. 3a, c, e and g), a larger reduction of the ensemble SSM
and LAI spread is identified over croplands and particularly
over the western, north-western part of the study area where
a higher number of observations is assimilated (maps repre-
senting the number of assimilated observations for each ex-
periment and each test site are displayed in Fig. S3 of the
Supplement). The patches with a lower spread reduction are
associated with input soil parameters and in particular with
the presence of silty-loam soil texture, which contrasts the
sandy-loam soil of the remaining area (LIS input is shown
in Fig. S1). The two texture classes lead to very different
soil moisture time series. In a previous study (Modanesi et
al., 2021), a lower agreement of calibrated WCM simula-
tions with Sentinel-1 observations was found over the silty-
loam soil texture, and this is reflected in the lower reduc-
tion of SSM spread when assimilating Sentinel-1 (Fig. 3a and
c). These features are much less visible in the difference of
LAI spreads (LAI is mainly associated with the almost ho-
mogenous vegetation class, not so much with texture). Fur-
thermore, the Sentinel-1 γ 0 VH DA displays larger spread
reduction in terms of LAI over croplands compared to the
Sentinel-1 γ 0 VV DA experiment, showing a large influence
of the vegetation in the γ 0 VH signal. For Germany the
results show a similar link between the soil texture and the
SSM spread reduction, especially for the Sentinel-1 γ 0 VV
DA experiment (Fig. 3b), where pixels with a stronger spread
reduction are associated with sandy-loam soil texture (LIS
input is shown in Fig. S2 for Germany). The absolute mean
decrease in spread (m) over Germany is less pronounced than
for the Italian pilot site (e.g. for Sentinel-1 γ 0 VH DA,1LAI
ens. spread meanm=−0.1 for Italy andm=−0.05 for Ger-
many), which is partly due to the state dependency of the
spread (e.g. higher LAI values and larger spreads in Italy than
in Germany).

Figure 4 shows the standard deviation of the normalized
O −F residuals time series, for both the Sentinel-1 γ 0 VV
DA and Sentinel-1 γ 0 VH DA. In an optimal DA system,
these values should be equal to 1 over the entire study area for
an agreement between the actual and simulated (expected)
forecast and the observation errors. In Italy, m= 0.83 and
m= 0.82 are obtained for the Sentinel-1 γ 0 VV DA and the
Sentinel-1 γ 0 VH DA experiments respectively, but, once
again, the spatial patterns are consistent with the soil texture
distribution. The large ellipsoid feature, in the northern side
of the study area, is characterized by values exceeding unity,
meaning that the sum of observation and forecast error, pre-
scribed in the ensemble perturbation, underestimates the ac-
tual errors. Similarly, in Germany we obtain near-optimal re-
sults in terms ofm values over the entire study area, but larger
error underestimations are observed over the silty-loam soil
texture, with values larger than 1.5 for both DA experiments
(Fig. 4b and d). In Germany an additional source of uncer-
tainty is related to the irrigation fraction information, which
is zero over the entire cropland area, except for the pixels for

which we collected irrigation benchmark data (see discussion
on GRIPC input, Sect. 2.3). We hypothesize that the lack of
accurate information on the irrigated fraction over other pix-
els can negatively affect the WCM calibration and indeed the
results in terms of DA diagnostics.

Finally, we analysed the increments of SSM and LAI over
the study area. In a well-calibrated DA system, the long-
term mean of the increments is expected to be close to zero
at each pixel. As explained in Reichle et al. (2019), values
close to zero indicate that no long-term net addition or sub-
traction of water (or vegetation) is generated by the analy-
sis. As expected, the temporal mean values of SSM and LAI
analysis increments vanish in the regional average (results
not shown). However, the standard deviation of the analysis
increments provides valuable information, which has been
summarized in Fig. 5. Maps of SSM (Fig. 5a–d) and LAI
(Fig. 5e–h) show generally small increment standard devi-
ations for both DA experiments and both study areas. Note
that zero standard deviations are found where no data were
assimilated (see Fig. S3). For both areas, complementary pat-
terns are observed for SSM and LAI increments. Larger SSM
variances can be observed over the cropland area charac-
terized by sandy soil (e.g. north-west in Italy) and where a
higher number of observations are assimilated (especially in
Italy), whereas larger LAI updates are related to the silty-
loam soil type (e.g. ellipsoid-shaped area in Italy), corre-
sponding to the patterns in O −F (not shown, but the pat-
tern of standard deviations of normalized O −F in Fig. 4
is similar to that of O −F ). This is particularly true for the
Sentinel-1 γ 0 VH DA experiment.

Although the DA diagnostics show satisfactory results in
terms of consistency of the system, input parameters, such as
soil texture and vegetation (i.e. lack of dynamic crop maps
in the model), seem to have a strong impact on the perfor-
mance of the DA system. In this context, the red squares in
Figs. 4a–b and 5a–b show areas where the test sites are lo-
cated. In Italy (Figs. 4a or 5a) the Budrio test site (north-west
square) is placed over an area where results are close to op-
timal in terms of standard deviation of normalized O −F .
On the other hand, the Faenza test site shows a certain over-
estimation of the actual observation error (south-east square
in Fig. 4a). In any case, although influences related to the
mentioned input data are present, overall, the results are ac-
ceptable and near-optimal over both the Italian and German
test sites.

3.2 SSM, LAI, ET and irrigation evaluation: DA vs OL

In this section we show the results of the DA and OL runs
in terms of irrigation, SSM, LAI and ET. We first discuss
the Italian pilot site, where the longest record (2–3 year) of
benchmark data is available for three test sites with differ-
ent spatial extents. This allows us to focus on the impact of
the spatial scale on the performance of the DA system. Next,
we discuss the pilot site in Germany, where the availability
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Figure 3. Maps of the difference in time–mean ensemble spread between the DA and OL runs for (a–d) SSM (1SSM ens. spread) and
(e–h) LAI (1LAI ens. spread). 1SSM ens. spread after Sentinel-1 γ 0 VV DA (a) in Italy and (b) in Germany; Sentinel-1 γ 0 VH DA (c) in
Italy and (d) in Germany. (e–h) Similar to (a)–(d) but for 1LAI ens. spread. m is the mean over the entire study area. The reference period
is January 2015–December 2020.

Figure 4. Maps of the standard deviation (SD) of the normalized O−F residuals for Sentinel-1 γ 0 VV DA (a) in Italy and (b) in Germany;
Sentinel-1 γ 0 VH DA (c) in Italy and (d) in Germany. m is the mean over the entire study area. Red boxes in (a) and (b) indicate areas
where the test sites are located. The reference period is January 2015–December 2020. No Sentinel-1 data were assimilated in the white
areas (Fig. S3).

of 1 year of data for 49 small irrigated fields (24 LIS pixels,
of which only 8 were retained considering a percentage of
irrigated area larger than 25 %) allows for a statistical inter-
pretation of the results.

3.2.1 Italy

Figure 6 shows an example time series of SSM, LAI, ET and
irrigation at the Budrio farm for the OL and Sentinel-1 γ 0

VV DA experiment, including a comparison in terms of γ 0

observations and forecasts. Also shown are the reference data
of ASCAT SSM, PROBA-V LAI and MODIS ET observa-
tions at daily timescale. For irrigation, the benchmark refer-
ence data, OL and DA output, are aggregated to a biweekly
timescale.

The irrigation simulations (Fig. 6e) show a general dete-
rioration of the performance with DA, with a decrease in
Pearson R from 0.76 (OL) to 0.62 (DA). However, the DA
run provides interesting results in terms of irrigation quanti-
ties. The observed irrigation amounts in the years 2015, 2016
and 2017 are about 345, 223 and 350 mm, respectively. The
corresponding OL and DA estimates are 419 and 220 mm in
2015, 356 and 306 mm in 2016, and finally 445 and 315 mm
in 2017. This indicates that the DA reduces the bias in some
years (2016, 2017), but in other years DA might worsen the
irrigation estimate (2015), increasing the annual bias. This
could be related to the lower number of assimilated obser-
vations during the year 2015, due to the solely acquisition
from Sentinel-1A. However, the lack of benchmark irriga-
tion data for this year over other test sites makes it diffi-
cult to test this hypothesis. An inset of Fig. 6 for the period
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Figure 5. Same as Fig. 3 but for the standard deviation (SD) of the increments in (a–d) SSM and (e–h) LAI. Red boxes in (a) and (b) indicate
areas where the test sites are located.

Figure 6. Evaluation of the OL (blue lines) and DA (orange lines) results at the Budrio test site for the Sentinel-1 γ 0 VV DA experiment:
(a) Sentinel-1 γ 0 VV against WCM γ 0 VV; (b) ASCAT SSM against simulated SSM; (c) Proba-V LAI against simulated LAI; (d) MODIS
ET against simulated ET; and (e) irrigation benchmark against simulated irrigation, with an indication of MERRA2 and in situ rainfall
estimates.

March 2017–November 2017 was added in the Supplement
(Fig. S4), with the objective to help the visualization of the
irrigation quantification improvement due to DA during the
irrigation season. Figure 6e additionally shows the time se-
ries of rainfall from rain-gauge observations and MERRA-2

forcing (upper axes). Although a good agreement is observed
between MERRA-2 and gauge rainfall in terms of Pearson R
(0.78), it is worth noting that the precipitation from MERRA-
2 during the summer is typically less than in situ rainfall, and
this aspect could also contribute to create overestimation in
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irrigation simulation, which is only slightly corrected by the
Sentinel-1 γ 0 VV DA.

Figure 6b shows the impact of DA in the SSM dynamics
during both the summer and winter seasons. The Sentinel-1
γ 0 corrects a dry winter bias that is observed in the OL run
SSM time series, while during the summer the increments
affect mainly the short-term dynamics. The LAI time series
are less affected by the ingestion of Sentinel-1 during the
growing season (Fig. 6c) than SSM. The larger updates in
terms of SSM are also reflected in a larger improvement in
terms of Pearson R for SSM as compared to LAI: for SSM,
the Pearson R increases from 0.74 for the OL to 0.78 for
the DA, while for LAI (Fig. 6c) the increase in Pearson R
is smaller (from 0.69 to 0.71). This is also explained by the
results shown in Fig. 6a, where the daily WCM γ 0 VV fore-
cast time series are compared with Sentinel-1 observations:
it is worth noting that the soil contribution in both the simu-
lated and observed γ 0 signal is much higher than the vegeta-
tion contribution, confirming what was highlighted in previ-
ous studies (i.e. Bauer-Marschallinger et al., 2018; Modanesi
et al., 2021; Wagner et al., 2013). By design, the DA run
provides better agreement (Pearson R= 0.81) between the
WCM forecasts and Sentinel-1 observations than the OL run
(Pearson R= 0.67).

When comparing the ET results against MODIS ET, a
slight improvement is observed when DA is performed
(Fig. 6d; Pearson R increases from 0.69 to 0.72), and a
general overestimation in the model outputs was observed
for both the OL and DA runs over the late summer months
(from July to October of each year). The general decrease
of MODIS ET during the late summer is not explained by
the irrigation benchmark time series reported in Fig. 6e and
shows a dubious response to irrigation events. This highlights
possible uncertainties related to reference ET observations or
benchmark irrigation data, and we believe that in this case the
ET estimates are the least reliable.

Additional time series analyses for the other Italian sites
and for γ 0 VH DA are reported in the Supplement (Figs. S5
through S7).

Table 3 summarizes the results obtained for the three test
sites within the Italian pilot site. For the Faenza sites, the
results are first spatially aggregated over 3 or 8 pixels be-
fore computing time series metrics. The uncertainty in the
reference data and the relatively short data records prevent a
statistically significant evaluation, but overall, the DA runs
provide a slight improvement of SSM and LAI for both
the DA experiments compared to the OL run. As expected,
Sentinel-1 γ 0 VV DA provides better results in terms of SSM
temporal dynamics, while the Sentinel-1 γ 0 VH DA shows
larger improvements for LAI and ET. These findings confirm
that γ 0 VV contains more information about SSM (Bauer-
Marschallinger et al., 2018; Modanesi et al., 2021; Wagner
et al., 2013), whereas γ 0 VH seems to be more related to
vegetation (LAI) (i.e. Macelloni et al., 2001; Vreugdenhil et
al., 2018). Due to the effect of LAI and SSM on plant transpi-

ration, ET is also minimally improved. In terms of irrigation
temporal dynamics, the DA experiments slightly deteriorate
the temporal dynamics for all the test sites but reduce the bias
in the irrigation estimates.

Figure 7 summarizes the Pearson R and bias scores for the
irrigation simulations for all the experiments and for the three
Italian test sites. Even though DA always reduces the R val-
ues compared to those of the OL, Fig. 7a and c suggest that
the R values for the DA experiments increase when moving
from the small area of Budrio (1 LIS pixel) to Faenza F2 (8
LIS pixels) and that the skill reduction introduced by DA is
only marginal for the largest Faenza F2 field. An explanation
could be related to the spatial mismatch between the 1 km
Sentinel-1 signal and the small Budrio fields (∼ 2 ha in total)
together with the poor model ability to reproduce stakehold-
ers’ decisions (i.e. irrigation timing) in areas extended over
few hectares, such as in Budrio.

Even though DA deteriorates the irrigation results in terms
of R, it improves the results in percentage bias (Fig. 7b and
d). In general, the Noah-MP LSM overestimates irrigation
over all the test sites in the OL run. Here, the Sentinel-
1 γ 0 VH DA provides more reliable irrigation quantities.
We hypothesize this could be attributed to the ability of
the Sentinel-1 γ 0 VH to introduce stronger updates in LAI,
which is more linked to root-zone soil moisture under well-
developed crops than SSM (Modanesi et al., 2021). Results
in terms of bias show another important aspect: although
many limitations in the simulation of the irrigation dynamics
are related to the spatial scale, the quality of the benchmark
irrigation data also has an important impact. For a small site
such as Budrio, the irrigation benchmark is expected to be
more precise, explaining lower biases in terms of irrigation
quantities.

3.2.2 Germany

In the Lower Saxony test site, the analysis was conducted
over 8 LIS pixels based on the preprocessing described at
Sect. 2.7. The evaluation in terms of SSM and LAI using
ASCAT SSM and PROBA-V LAI (not shown) does not dis-
play substantial differences in terms of Pearson R between
the OL and the DA runs (median Pearson R equal to ∼ 0.8
for SSM and ∼ 0.7 for LAI, across 8 pixels). Regarding irri-
gation estimates, Fig. 8a and b display the PearsonR and per-
centage bias distributions over the 8 selected irrigated pixels
for the OL and the Sentinel-1 γ 0 VV DA experiment, while
Fig. 8c and d refer to the Sentinel-1 γ 0 VH DA. In partic-
ular, Fig. 8a and c show improved irrigation estimates for
both Sentinel-1 γ 0 VV DA (Pearson R increases from 0.47
to 0.61) and Sentinel-1 γ 0 VH DA (PearsonR increases from
0.47 to 0.65).

Unlike the Italian site, the Lower Saxony site suffers from
an irrigation underestimation by the model, in line with a pre-
vious study by Zappa et al. (2021), which used Sentinel-1
SSM retrievals to detect and quantify irrigation at the Lower
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Table 3. Evaluation results at all the Italian test sites and for both the DA experiments.

Italy test Benchmark period & Model run SCORE

sites number of LIS pixel SSM LAI ET Irr. Irr. Irr.
Pearson R Pearson R Pearson R Pearson R bias amount

(–) (–) (–) (–) (%) (mm)

Budrio 2015–2017 OL VV 0.74 0.69 0.70 0.76 33.0 1220.1
1 pixel DA VV 0.78 0.71 0.71 0.62 −8.1 842.5

OL VH 0.74 0.69 0.70 0.76 33.0 1220.0
DA VH 0.76 0.72 0.72 0.51 −20.6 728.1

Benchmark – – – – – 917.2

Faenza F1 2016–2017 OL VV 0.78 0.73 0.65 0.90 121.9 753.6
3 pixels DA VV 0.81 0.74 0.66 0.75 54.4 524.1

OL VH 0.78 0.73 0.65 0.90 121.9 753.6
DA VH 0.79 0.76 0.67 0.64 26.3 428.9

Benchmark – – – – – 339.5

Faenza F2 2016–2017 OL VV 0.78 0.86 0.79 0.88 115.2 751.0
8 pixels DA VV 0.80 0.86 0.80 0.86 83.6 641.0

OL VH 0.78 0.86 0.79 0.88 115.2 751.0
DA VH 0.79 0.87 0.81 0.80 51.3 528.0

Benchmark – – – – – 349.0

Saxony test site. Figure 8b shows that the median bias is
reduced from a value of −40.8 % for the OL to a value of
−24.6 % for Sentinel-1 γ 0 VV DA, and Fig. 8d shows a re-
duction from −40.8 % for OL to −7.6 % for Sentinel-1 γ 0

VH DA. Despite the improvement in median values for the
bias, the overall distribution of the bias is wider than for the
OL. Reasons for that might be related to the specificity of
the different fields and the difference in the performance for
different spatial scales (see Sect. 3.2.1) when different fields
of different size are bulked altogether. Beyond this, also the
consistency between simulated backscatter by the coupled
Noah-MP-WCM and Sentinel-1 data for some specific pix-
els might exert a role in spreading the distribution of the bias
with respect to the OL. The latter can be caused by both poor
model performance (due to the quality of the forcing, model
parameters and static maps) and the quality of the Sentinel-1
γ 0 data.

4 Discussion

4.1 Data assimilation

In this study, we built a DA system for the assimilation of
Sentinel-1 γ 0 VV or VH data into the Noah-MP LSM in
order to test the ability of Sentinel-1 γ 0 to improve irriga-
tion quantification through the update of both SSM and LAI.
The regional-scale analysis of internal DA diagnostics pro-
vided evidence that the DA system was self-consistent and

near-optimal. Local deviations from desirable reductions in
ensemble spread or from optimal O −F statistics or higher
absolute SSM or LAI increments were mainly related to poor
input data to the Noah-MP LSM. Confirming what was previ-
ously found in Modanesi et al. (2021), soil texture uncertain-
ties play an important role in reducing (or increasing) the ef-
fectiveness of the DA system. This is because the soil texture
affects the root-zone soil moisture and FC, which contribute
to the activation of the irrigation scheme. The silty-loam soil
texture generally shows a reduced variability in the soil mois-
ture dynamics compared to more sandy textures, resulting
in lower irrigation amounts, especially over wetter climates
(i.e. Germany). Assuming that the Sentinel-1 γ 0 contains in-
formation on soil moisture and vegetation, the DA system
should correct the land state to improve the forecasted irriga-
tion, which might be poor when produced by a model only,
due to poor input parameterization or errors in MERRA-
2 precipitation input as compared to in situ precipitation
(which was observed in the evaluation over the Italian test
sites). However, this seems to be challenging in our experi-
ments considering that the Sentinel-1 γ 0 DA could also have
updated soil moisture to a wetter condition to account for the
presence of irrigation before the model would have triggered
irrigation, which consequently delays or skips a simulation
of irrigation in the DA output. Another important factor that
influences regional DA diagnostics is the irrigation fraction
information. This information was lacking in the GRIPC in-
put for the pilot site in Germany, which forced us to simu-
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Figure 7. Evaluation results in terms of irrigation simulations for the three Italian test sites based on the extent of the fields in terms of LIS
pixels. Blue bars refer to the OL run, while orange bars refer to the DA run. The Pearson R values are reported for (a) the Sentinel-1 γ 0 VV
DA and (c) the Sentinel-1 γ 0 VH DA experiments. (b, d) Same as (a) and (c) but for percentage bias.

late irrigation only over pixels where known irrigated fields
were located, notwithstanding that also other cropland pix-
els could be irrigated, especially during the drier conditions
that affected the northern countries during the 2018 summer
months in northern European countries (i.e. the 2018 north-
western Europe drought; Drouard et al., 2019). The standard
deviation of normalized O−F higher than unity in the east-
ern area of the German pilot site could thus be related to the
absence of irrigation simulations over areas which are actu-
ally irrigated. The lack of updated irrigation fraction input at
global scale is still a strong limitation, although many studies
have focused on monitoring irrigated lands worldwide in the
last decade (Ambika et al., 2016; Bazzi et al., 2019; Dari et
al., 2020; Gao et al., 2018).

In the test site analysis, we focused on three different as-
pects: (i) the added value of the DA experiments compared
to the OL runs and the role of the Sentinel-1 γ 0 polariza-
tion; (ii) the limitation of the Noah-MP parameterization and,
more generally, of the DA system in improving irrigation
simulations; and finally, (iii) the spatial-scale difference be-
tween the irrigation benchmark and irrigation simulations.

In Italy, we found an improvement due to DA in terms
of SSM, LAI and ET, compared against RS retrievals (i.e.
ASCAT SSM, PROBA-V LAI and MODIS ET). Sentinel-

1 γ 0VV DA provided a larger contribution to SSM perfor-
mances, whereas Sentinel-1 γ 0 VH DA improved mostly the
vegetation and vegetation-related states (LAI and ET). This
could be expected based on previous literature (i.e. Bauer-
Marschallinger et al., 2018; Vreugdenhil et al., 2020, 2018)
and the previous study by Modanesi et al. (2021) over the
Italian test sites. Our findings also showed how the Sentinel-
1 γ 0 VV DA has a larger impact on the temporal dynamics of
irrigation, whereas the VH polarization has a stronger influ-
ence in adjusting the bias, and one potential reason could be
the high sensitivity of the vegetation to root-zone soil mois-
ture and vice versa (Modanesi et al., 2021). Similar conclu-
sions were obtained by Nie et al. (2022) over Morocco. This
recent study showed how the assimilation of MODIS LAI
into Noah-MP v.4.0.1, with and without activating irrigation,
provides critical information to improve the root-zone soil
moisture and more generally water–energy–carbon fluxes.

Following the rationale that weather forecasts would be
improved if land surface conditions are better constrained,
the hope was to also improve irrigation forecasts with bet-
ter constrained land surface conditions. However, the latter
is only true if the assumption holds that the irrigation model
produces the best irrigation estimates for the best estimates
of land surface state variables. The latter assumption strongly
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Figure 8. Evaluation in terms of (a, c) Pearson R and (b, d) percentage bias of irrigation simulations for the German test sites, containing
the 8 irrigated LIS pixels with percentage irrigated area larger than 25 %. Blue boxplots refer to the OL run, while orange boxplots refer to
the DA run, with (a–b) the Sentinel-1 γ 0 VV DA and (c–d) for the Sentinel-1 γ 0 VH DA.

depends on a good characterization of soil, vegetation and ir-
rigation parameters, which was found to be a limitation for
the DA system. For instance, the OL run provided a large
overestimation or underestimation of the irrigation quanti-
ties (depending on the study area) that can be attributed to
limited parameterization of the irrigation scheme like, for in-
stance, detailed information on irrigation fraction input, dy-
namic crop rotation and rooting depths, as well as a poor de-
scription of the crop phenology in Noah-MP. The DA exper-
iments helped in reducing the irrigation overestimation (or
underestimation) at some, but not all, sites. This means that
if the sprinkler irrigation scheme is not well parameterized,
the DA system is not able to strongly correct the OL runs. In
the case of biased state variables or flux simulations, it is gen-
erally more interesting to study the effect of DA on anoma-
lies from (multi-year) climatological conditions, but such an
analysis could not be performed with the limited amount of
available benchmark data.

The limited spatial coverage and scale of the benchmark
data is another reason of concern in the evaluation of the DA
results. The Sentinel-1 DA appears to degrade the temporal
dynamics (Pearson R) of the biweekly irrigation estimates
relative to the OL, when compared to the small-scale (Bu-

drio) benchmark. This can be explained by the spatial mis-
match between the 1 km Sentinel-1 signal (which can include
multiple fields irrigated at different times) and the irrigation
information related to the small Budrio fields. However, this
degradation is not significant or not found, when the sim-
ulations at multiple LIS pixels are aggregated (Faenza) or
the statistics for multiple sites are lumped (Lower Saxony),
respectively. In Germany, the median Pearson R over the
irrigated pixels increased, especially for the Sentinel-1 γ 0

VV DA experiment, and a reduction of the median bias was
found for the Sentinel-1 γ 0 VH DA experiment.

4.2 Limitations and shortcomings

The evaluation highlighted many aspects that can be im-
proved for a more reliable irrigation estimation in a DA sys-
tem which involves the Noah-MP LSM, with an irrigation
scheme and innovative Sentinel-1 γ 0 observations. Although
we obtained good results in terms of average DA diagnos-
tics, it should be noted that the system is influenced by errors
from the LSM, the irrigation scheme and the observation op-
erator, which can interact and compensate each other result-
ing in suboptimal assimilation results. Based on Modanesi
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et al. (2021), the best unbiased WCM parameters were ob-
tained, but a single parameter set was used for each model
grid cell, regardless of the crop-type year variability. In par-
ticular, over the Po Valley, agricultural practices are charac-
terized by crop rotation, and the different structural effects
of crop types on γ 0 observations can lead to an interannual
variability that is only partly represented by soil moisture and
LAI and that could deteriorate model estimates (i.e. irriga-
tion) in the DA runs. Additionally, the Sentinel-1 γ 0 data
show slightly different statistics for different orbits, and their
combination results in a reduction of the signal-to-noise ra-
tio, impacting time series analysis. We think that the inclu-
sion of dynamic crop information and the assimilation of γ 0

data per orbit would improve the results, and this is a future
step of this work that we are currently investigating.

In terms of irrigation simulations, we found that absolute
irrigation amounts and timing of irrigation estimated by the
irrigation scheme strongly depend on soil (e.g. texture), veg-
etation (e.g. crop type) and irrigation (e.g. “intensity” or area
fraction) parameters. These parameters are now based on
global datasets that might not be ideal for regional to local
applications, not being dynamic and updated. Likewise, irri-
gation estimates depend on a correct representation of natu-
ral forcing input, here reanalysis data, which is unlikely to be
accurate at the local scale (where the weather is itself influ-
enced by irrigation).

Furthermore, the irrigation estimates obtained with inclu-
sion of DA do not always outperform the model-only esti-
mates. The main reason is that the irrigation model does not
necessarily produce the best irrigation estimates for the best
estimates of land surface state variables at the test sites. In
addition, if the soil moisture is updated to wetter conditions
to include irrigation before the model would forecast it, then
the irrigation simulation will be skipped or delayed in the
DA results. Thus, in line with the suggestions by Lawston et
al. (2017), besides optimizing the DA itself, future research
should also focus on improving the irrigation model to op-
timally use the observational information contained in the
Sentinel-1 γ 0.

Another important aspect is related to the temporal and
spatial variability of irrigation. We found that irrigation re-
sults become increasingly uncertain (and depend more on the
irrigation parameterization) at shorter, e.g. daily, timescales.
Soil moisture and vegetation increments can indeed af-
fect the irrigation dynamics at short-term periods (i.e. daily
timescale), and the benchmark data are also not representa-
tive of the effective irrigation needs in the short term because
of water management policies. It can be expected that the
interannual variability in irrigation can be better estimated,
as also suggested by Lawston et al. (2017). Furthermore, we
found that the agreement between benchmark data and sim-
ulations of irrigation quantities increases in an analysis at
pixel level or at small-district spatial scale (Italy), showing
the limitation of the system in providing information at plot

scale, when simulations and RS observations are provided at
coarser spatial resolution (i.e. 0.01◦).

Three last aspects need to be highlighted: (i) a robust eval-
uation analysis of land surface variables is not straightfor-
ward considering that RS observations at coarse spatial res-
olution (i.e. ASCAT) or constrained by reanalysis data (i.e.
MODIS ET) do not necessarily provide accurate information
on irrigation (Zaussinger et al., 2019); (ii) additionally, eval-
uating irrigation estimates is also more challenging due to
the scarce availability of information on the irrigation man-
agement (Massari et al., 2021); and (iii) finally, the disagree-
ment between in situ reference data and irrigation estimates
obtained from the model only can be partly explained by the
actual in situ irrigation system management, which depends
on water availability and policies unknown by the modelling
system. In this context, although irrigation data are compared
at biweekly timescale, and DA is overall expected to improve
the simulation of irrigation temporal dynamics, the temporal
resolution of Sentinel-1 (∼ 3 d over the study areas) could
imply some irrigation events have been missed, thus affect-
ing the DA results.

To test the goodness of the EnKF assumptions over the
study areas, future research could benefit from an experi-
ment using precipitation plus known irrigation as modified
input forcing. However, high-quality gridded irrigation prod-
ucts are not yet available, and the difference between the
spatial resolution of MERRA-2 forcings and irrigation in-
put will complicate such an experiment. As a final note, fu-
ture research should also focus on investigating different DA
techniques. In particular, the DA analysis could benefit from
the use of particle filtering, which has proven useful from
a mass-balance perspective, also for irrigation applications
(Abolafia-Rosenzweig et al., 2019).

5 Conclusions

Information on the actual irrigation quantities used for agri-
cultural purposes is still missing, and a correct quantification
of irrigation is a challenging topic. The joint use of models
and RS observations (which contain irrigation information)
can help to fill this gap while also providing irrigation esti-
mates at high temporal scale and medium–high spatial reso-
lution.

In this study we assimilated, in two different experiments,
1 km Sentinel-1 γ 0 VV and VH polarization into the Noah-
MP LSM, equipped with a sprinkler irrigation scheme, for
the joint update of soil moisture and vegetation state vari-
ables. The objective was to test if irrigation water amounts,
simulated by the irrigation scheme, can be optimally esti-
mated when optimal soil moisture and vegetation estimates
are available through DA. Additionally, we aimed at (i) test-
ing the consistency of the DA system; (ii) testing the effects
of DA on irrigation and model state predictions with a spe-
cific focus on differences due to the assimilation of Sentinel-
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1 γ 0 data in co- or cross-polarization; and, finally, (iii) un-
veiling the limitations of the system in terms of input parame-
ters, DA shortcomings, spatial-scale analysis and benchmark
uncertainties.

The main conclusions drawn from our evaluation highlight
shortcomings of the system and can be summarized as fol-
lows.

– The developed DA system is consistent and close to op-
timality, but it could benefit from enhanced model in-
puts, such as more reliable soil texture maps or the in-
troduction of dynamic and high-resolution crop maps,
which could improve both soil moisture and vegetation
simulations (input for the WCM calibration). Additional
effort will also be needed in future research to account
for different Sentinel-1 orbits, both in the WCM calibra-
tion and in the DA system, which will provide a gain of
the signal-to-noise ratio, with a general benefit in time
series analysis.

– The Sentinel-1 γ 0 observations contain useful informa-
tion about SSM and LAI over irrigated areas, confirm-
ing Modanesi et al. (2021), and the γ 0 polarization has
a considerable influence on the DA results. For instance,
the Sentinel-1 γ 0 VV DA mainly improves temporal dy-
namics of SSM and irrigation, whereas the Sentinel-1
γ 0 VH DA seems to have a stronger influence on veg-
etation and in adjusting temporary biases. We hypothe-
size that this could be due to the high sensitivity of the
vegetation to root-zone soil moisture (and vice versa),
but further investigation is needed to understand if the
main impact comes from the stronger vegetation updat-
ing or the potential stronger updates in root-zone soil
moisture.

– The Noah-MP LSM input and irrigation parameteriza-
tion affect the OL and DA estimates, providing strong
over- or underestimations of irrigation, depending on
the study area. These limitations are mainly related to
soil texture uncertainties, lack of crop-type inputs and
outdated irrigated fractional area information, which af-
fect the results of the reference OL run. In this con-
text, the DA can only correct the estimates of irrigation
amounts, if the irrigation simulation is not excessively
biased, meaning that future research should focus on
improving the irrigation model. Alternatively, even with
biased irrigation simulations, the DA should be able to
correct for the interannual variability in irrigation esti-
mates, but the record of available benchmark data on
irrigation is insufficient at this time to confirm this hy-
pothesis.

– When comparing irrigation simulations and benchmark
data, the spatial and temporal resolution play an im-
portant role. Irrigation estimates were here evaluated at
a biweekly scale, to limit the influence of short-term

analysis increments on the activation of the irrigation
scheme and to reduce mismatches with benchmark data
due to human choices in the timing of irrigation applica-
tion. In any case, results in terms of temporal dynamics
and bias could also be affected by the temporal reso-
lution of Sentinel-1 observations (∼ 3 d), which could
miss strong dry-downs that would trigger an irrigation
event. Furthermore, an occasional DA update towards
wetter soil moisture due to irrigation before the model
would forecast irrigation would possibly cancel an irri-
gation event in the DA output. Additional improvements
could be obtained in DA analysis with higher-temporal-
resolution products, as also demonstrated by Azimi et
al. (2020). Furthermore, the evaluation in terms of irri-
gation quantities provides better results when irrigation
benchmark data and the model have a similar spatial res-
olution. The evaluation is generally difficult due to the
scant reporting of irrigation, and extra uncertainty can
derive from the reliability of in situ irrigation estimates.

This study points out that future efforts will be needed to
improve irrigation estimates through the joint use of LSMs
and Sentinel-1 observations, to allow for a more realistic de-
scription of the hydrological cycle and more reliable irriga-
tion simulations over irrigated areas.

Appendix A

This Appendix has the objective to describe the WCM equa-
tion, stated in Sect. 2.4, in more detail. The γ 0 is described
as the sum of the backscatter from the vegetation (γ 0

veg) and
from the bare soil (γ 0

soil), attenuated by a t2 coefficient, rep-
resenting the two-way attenuation from the vegetation layer:

γ 0
= γ 0

veg+ t
2γ 0

soil, (A1)

where

γ 0
veg = AV1 cosθ(1− t2) (A2)

t2 = exp
(
−2BV2

cosθ

)
(A3)

γ 0
soil = C+D ·SSM. (A4)

Equations (A2) and (A3) refer to the vegetation-related
terms. In particular, V1 and V2 represent two bulk vegetation
descriptors, the first one accounting for the direct vegetation
γ 0 and the second one representing the attenuation. We as-
sume V1=V2=LAI following previous studies (Modanesi
et al., 2021; Lievens et al., 2017a; Baghdadi et al., 2017). A
(–) and B (–) are the two fitting parameters related to direct
vegetation and attenuation respectively, while θ represents
the incidence angle, here set to zero considering that the γ 0

terrain-flattened version does not include this information.
Equation (A2), as well as Eq. (A1), is computed in linear
scale.

https://doi.org/10.5194/hess-26-4685-2022 Hydrol. Earth Syst. Sci., 26, 4685–4706, 2022



4702 S. Modanesi et al.: Quantifying irrigation through the assimilation of Sentinel-1 backscatter

Equation (A4) accounts for the soil-related term, which is
described in a simple linear approach, as a function of SSM,
following the work by Lievens et al. (2017a). The C and D
parameters are fitted in decibels (dB) and decibels per cubic
metre per cubic metre (dB m−3 m−3), respectively, but γ 0

soil is
transformed back to linear scale in Eq. (A1). Those parame-
ters, as well as A (–) and B (–), are calibrated separately for
each polarization and for each grid cell.

Code and data availability. The ASCAT surface soil mois-
ture products H115 and H116 can be downloaded from
https://doi.org/10.15770/EUM_SAF_H_0006 (H SAF,
2020). Sentinel-1A/B data are from the ESA and Coper-
nicus Sentinel satellites project and were processed us-
ing the ESA Sentinel Application Platform (SNAP;
https://step.esa.int/main/download/snap-download/; last access:
21 September 2022) and including standard processing techniques
. Data from PROBA-V are available at https://land.copernicus.
vgt.vito.be/PDF/portal/Application.html#Browse;Root=512260;
Collection=1000083;Time=NORMAL,NORMAL,-1,,,-1,, (last
access: 13 September 2022; Verger et al., 2014). MERRA-2 data
are available from MDISC, which is managed by the NASA God-
dard Earth Sciences (GES) Data and Information Services Center
(DISC; https://disc.gsfc.nasa.gov/datasets?project=MERRA-2,
last access: 13 September 2022; Gelaro et al., 2017). The prod-
uct MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux
product is available at the following Earth Engine Data Catalog:
https://doi.org/10.5067/MODIS/MOD16A2.006 (Running et al.,
2017). The LIS source code and default input parameters are avail-
able via https://lis.gsfc.nasa.gov/ (last access: 13 September 2022)
and https://github.com/NASA-LIS/LISF (last access: 13 Septem-
ber 2022; Kumar et al., 2006; Peters-Lidard et al., 2007). The
Copernicus Global Land Service (CGLS) 100 m global land cover
map for the year 2015 is available at https://lcviewer.vito.be/2015
(lLast access: 13 September 2022; Buchorn et al, 2020). In situ
data are available under request to the original providers, Canale
Emiliano Romagnolo (CER; https://consorziocer.it/it/, last access:
20 September 2022) for the irrigation data over the Po Valley
(Italy) and Claas Nendel from the Leibniz Centre for Agricultural
Landscape Research (ZALF) for irrigation data over Germany.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-4685-2022-supplement.
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