Articles | Volume 26, issue 11
https://doi.org/10.5194/hess-26-2923-2022
https://doi.org/10.5194/hess-26-2923-2022
Research article
 | 
14 Jun 2022
Research article |  | 14 Jun 2022

Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning

Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen

Related authors

Ground Constrained 3D Lidar SLAM Design and Implementation
Wenwen Tian, Puwei Yang, Chao Yang, and Sisi Zlatanova
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 697–704, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-697-2024,https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-697-2024, 2024
Incremental learning for rainfall-runoff simulation on deep neural networks
Zeqiang Chen, Jiashun Li, Changjiang Xiao, and Nengcheng Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-56,https://doi.org/10.5194/hess-2024-56, 2024
Preprint withdrawn
Short summary
EML BASED URBAN FIRE INCIDENT MODELING METHOD AND PROTOTYPE
A. He, W. Wang, W. Du, C. Wang, and N. Chen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 617–624, https://doi.org/10.5194/isprs-annals-V-3-2020-617-2020,https://doi.org/10.5194/isprs-annals-V-3-2020-617-2020, 2020
GEOSPATIAL SENSOR WEB ADAPTOR FOR INTEGRATING DIVERSE INTERNET OF THINGS PROTOCOLS WITHIN SMART CITY
D. Chen, X. Zhang, N. Chen, J. Yang, and J. Gong
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2020, 115–121, https://doi.org/10.5194/isprs-annals-V-4-2020-115-2020,https://doi.org/10.5194/isprs-annals-V-4-2020-115-2020, 2020
WHU-SGCC: a novel approach for blending daily satellite (CHIRP) and precipitation observations over the Jinsha River basin
Gaoyun Shen, Nengcheng Chen, Wei Wang, and Zeqiang Chen
Earth Syst. Sci. Data, 11, 1711–1744, https://doi.org/10.5194/essd-11-1711-2019,https://doi.org/10.5194/essd-11-1711-2019, 2019
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023,https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023,https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Daytime-only mean data enhance understanding of land–atmosphere coupling
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023,https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022,https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary

Cited articles

Ardabili, S., Mosavi, A., Dehghani, M., and Várkonyi-Kóczy, A. R.: Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review, in: International Conference on Global Research and Education, 52–62, https://doi.org/10.1007/978-3-030-36841-8_5, 2019. 
Badrinarayanan, V., Kendall, A., and Cipolla, R.: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, IEEE T. Pattern Anal., 39, 2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615, 2017. 
Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., and Hoffman, R. N.: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges, B. Am. Meteorol. Soc., 100, ES473–ES491, 2019. 
Brooks, S.: Markov chain Monte Carlo method and its application, J. Roy. Stat. Soc. D-Sta., 47, 69–100, 1998. 
Chantry, M., Christensen, H., Dueben, P., and Palmer, T.: Opportunities and challenges for machine learning in weather and climate modelling: hard, medium and soft AI, Philos. T. Roy. Soc. A, 379, 20200083, https://doi.org/10.1098/rsta.2020.0083, 2021. 
Download
Short summary
Precipitation forecasting has potential uncertainty due to data and model uncertainties. Here, an integrated predictive uncertainty modeling framework is proposed by jointly considering data and model uncertainties through an uncertainty propagation theorem. The results indicate an effective predictive uncertainty estimation for precipitation forecasting, indicating the great potential for uncertainty quantification of numerous predictive applications.