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Abstract. Precipitation forecasting is an important mission
in weather science. In recent years, data-driven precipitation
forecasting techniques could complement numerical predic-
tion, such as precipitation nowcasting, monthly precipitation
projection and extreme precipitation event identification. In
data-driven precipitation forecasting, the predictive uncer-
tainty arises mainly from data and model uncertainties. Cur-
rent deep learning forecasting methods could model the para-
metric uncertainty by random sampling from the parameters.
However, the data uncertainty is usually ignored in the fore-
casting process and the derivation of predictive uncertainty
is incomplete. In this study, the input data uncertainty, target
data uncertainty and model uncertainty are jointly modeled
in a deep learning precipitation forecasting framework to es-
timate the predictive uncertainty. Specifically, the data uncer-
tainty is estimated a priori and the input uncertainty is propa-
gated forward through model weights according to the law
of error propagation. The model uncertainty is considered
by sampling from the parameters and is coupled with input
and target data uncertainties in the objective function dur-
ing the training process. Finally, the predictive uncertainty
is produced by propagating the input uncertainty in the test-
ing process. The experimental results indicate that the pro-
posed joint uncertainty modeling framework for precipitation
forecasting exhibits better forecasting accuracy (improving
RMSE by 1 %–2 % and R2 by 1 %–7 % on average) relative
to several existing methods, and could reduce the predictive
uncertainty by ∼ 28 % relative to the approach of Loquercio

et al. (2020). The incorporation of data uncertainty in the ob-
jective function changes the distributions of model weights of
the forecasting model and the proposed method can slightly
smooth the model weights, leading to the reduction of pre-
dictive uncertainty relative to the method of Loquercio et
al. (2020). The predictive accuracy is improved in the pro-
posed method by incorporating the target data uncertainty
and reducing the forecasting error of extreme precipitation.
The developed joint uncertainty modeling method can be re-
garded as a general uncertainty modeling approach to esti-
mate predictive uncertainty from data and model in forecast-
ing applications.

1 Introduction

Precipitation is a key hydrometeorological variable in earth
system science and is the main driving factor of floods and
droughts (Xu et al., 2019). In 2019 the flood disaster driven
by extreme precipitation caused a direct economic loss of
USD 29.6 billion in China, and the drought disaster led to
a crop production loss of 2.36× 1010 kg (http://www.mwr.
gov.cn/sj/#tjgb, last access: 6 April 2022). Accurate precipi-
tation forecasting is vital for the early warning of flood and
drought, smart city management and agricultural water re-
sources allocation (Van Den Hurk et al., 2012; Pozzi et al.,
2013). However, the precipitation forecasting problem suf-
fers from uncertainties from data, algorithms and random
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factors (Reeves et al., 2014; Kobold and Sušelj, 2005; Xu
et al., 2020b). The predictive uncertainty is a measurement
of the spread of precipitation forecasting and could indi-
cate how much the forecasted precipitation values fluctuate
around the mean (Papacharalampous et al., 2020). Therefore,
the uncertainty range should be given when generating pre-
cipitation forecasting results.

The precipitation forecasting methods can be divided into
two categories: numerical weather forecasting and statistical
machine learning. Numerical models consider the physical
process of earth system and could simulate the interactions
between atmospheres, oceans and lands (Sikder and Hos-
sain, 2016; Molinari and Dudek, 1992). Numerical models
have strong physical meaning and are the dominant ways
of operational precipitation forecasting. However, the fore-
casting ability of numerical models is limited due to the un-
certainty in initial and boundary conditions, the imperfection
of parameterization schemes, and the uncertainty in param-
eters (Reeves et al., 2014; Xu et al., 2021a). With the de-
velopment of computer technology and machine learning al-
gorithms, using random data-driven techniques for precipita-
tion forecasting has become popular in recent years (Shi et
al., 2015; Trebing et al., 2021; Sønderby et al., 2020). The
accuracy of data-driven methods is comparable to currently
advanced numerical models in short-term (e.g., from hours
to weeks) precipitation forecasting. For example, the convo-
lutional long-short term memory (LSTM) network is shown
to outperform the physical optical flow method in precipita-
tion nowcasting based on radar images (Shi et al., 2015). An-
other deep learning model called MetNet showed advantages
over traditional numerical models in terms of the forecasting
accuracy and running time for hourly precipitation predic-
tion (Sønderby et al., 2020). The data-driven methods also
exhibit appealing results in subseasonal to seasonal precip-
itation forecasting relative to numerical models (Boukabara
et al., 2019; Chantry et al., 2021; Hwang et al., 2019). A
key drawback of data-driven precipitation forecasting meth-
ods is the lack of physical meaning, also known as black-box
model. Despite this feature, data-driven statistical machine
learning methods have been widely used for parameter cali-
bration, data processing, submodel replacement and process
understanding among physical simulations (Ardabili et al.,
2019; Sahoo et al., 2017; Reichstein et al., 2019). The data-
driven learning techniques are strong complements to numer-
ical models for the improvement of precipitation forecasting
accuracy.

The predictive uncertainty in precipitation forecasting
arises mainly from data and models (Gal, 2016). The data
uncertainty comes from external observation conditions, in-
struments and processing algorithms. The data uncertainty is
usually examined by perturbing initial conditions in numeri-
cal models and producing a perturbed multi-model ensemble,
which is widely seen in hydrometeorological ensemble fore-
casting (Xu et al., 2019; Gneiting and Raftery, 2005; Duan et
al., 2019; Vitart et al., 2017). The data uncertainty is rarely

investigated in data-driven precipitation forecasting and is
often assumed to be accurate without error. The model un-
certainty is often represented by an ensemble of perturbed
model physics and parameters in numerical weather fore-
casting (Vitart et al., 2017; Kirtman et al., 2014; Taylor et
al., 2012). In data-driven models, the model uncertainty is
generally modeled by random regularization of parameters
(Gal, 2016; Kendall and Gal, 2017). For linear regression,
the parametric uncertainty is indicated by the standard de-
viation of trained parameters. In deep learning, the network
layers could be randomly abandoned to prevent overfitting
and generate a forecasted ensemble by Monte Carlo sampling
(Kendall and Gal, 2017; Srivastava et al., 2014; Loquercio et
al., 2020; Ghahramani, 2015).

The data and model uncertainties should be considered
jointly in an integrated modeling framework to get the pre-
dictive uncertainty, as the data and model uncertainties could
both inflate the predictive spread considerably (Gal, 2016;
Kendall and Gal, 2017). It is expected that the forecasting
result would be more or less different if the used data and
parameters are randomly sampled from the population. Data
uncertainty is usually assumed as a constant or Gaussian
distribution and could be propagated into final forecasting
through error forward propagation (Loquercio et al., 2020;
Xu et al., 2020a). If the data uncertainty is unknown, it can
be learned from the training process by considering the data
uncertainty as a trainable parameter (Kendall and Gal, 2017).
However, the joint learning of data errors and model weights
will increase the number of training parameters and may mix
the error flow from data and parameters. A prior estimation
of data uncertainty could help unravel the data error and fa-
cilitate the training process. On the other hand, previous fore-
casting studies usually model the input data uncertainty and
ignore the uncertainty in the target (predictand) data (Kendall
and Gal, 2017; Loquercio et al., 2020). The uncertainty in the
target dataset also plays an important role in the parameter
training process and could influence the forecasting accuracy.

There are two ways to estimate the data uncertainty. One
is to use in situ ground stations to calculate the systematic
and random errors within the data and the other is to use
multisource datasets to compute random error by intercom-
parison (Xu et al., 2021b; Gruber et al., 2016; Sun et al.,
2018). The in situ validation method is limited to the num-
ber and density of ground stations and is suitable for small
areas with enough station coverage. The second method is
independent of the in situ stations and requires multisource
datasets with independent error distribution (Gruber et al.,
2016). There are numerous precipitation datasets from var-
ious sensors and models and these could be used to calcu-
late precipitation data error at a large spatial scale (Xu et al.,
2020b; Sun et al., 2018). Three-cornered hat (TCH) and triple
collocation (TC) are two commonly used methods to evalu-
ate the random error among multisource datasets, which do
not require ground measurements as references (Premoli and
Tavella, 1993; Mccoll et al., 2014; Stoffelen, 1998). The ba-
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sic assumption of the TCH and TC methods is the stationarity
of both the raw dataset and its error, which may not always
be satisfied for real-world data. Most of the existing studies
assume that the used multisource datasets obey the station-
arity condition when using the TCH or TC methods (Xu et
al., 2020b; Gruber et al., 2016, 2017), which is useful for the
determination of relative prior random error.

In this study, we aim to quantify the predictive uncertainty
of data-driven precipitation forecasting by fully considering
the uncertainty from data and models. The data uncertainty
is estimated by the TCH method a priori and is assumed
as Gaussian distribution. The data uncertainty is propagated
within model training by the law of error propagation. The
parametric uncertainty is modeled by randomly abandon-
ing some network layers during the training process. The
data and model uncertainties are jointly considered in the
objective function within a deep learning encoder–decoder
framework. The forecasting experiments are conducted to
see whether the accuracy of precipitation forecasting can be
improved by joint data–model uncertainty modeling relative
to several uncertainty processing strategies from the existing
studies.

2 Study area and data

The study area is located in southern and northern China,
East Asia (Fig. 1). The annual rainfall decreases from the
southeast to the northwest, with an approximate average rain-
fall of 1500 mm in the southeast regions and 300 mm in the
northwest areas. Most of the southern areas feature a sub-
tropical monsoon climate and the rainfall is relatively larger
in summer and smaller in winter. From June to July in 2020,
extreme precipitation hit southern China (Wei et al., 2020)
and caused a direct economic loss of USD 13.2 billion. The
precipitation forecasting in the southern area of China is very
challenging and meaningful. Previous studies use numerical
models for precipitation forecasting in this area and show
some values (Yuan et al., 2012; Luo et al., 2017). The north-
ern area of China features the temperate moon and continen-
tal climates, with an annual rainfall of 400–800 mm in the
main rainy season of July and August. Here we would like to
explore the possibility of weekly precipitation forecasting by
a data-driven deep learning method.

Multisource precipitation datasets are used to obtain the
data error and to measure the precipitation forecasting abil-
ity of different uncertainty processing strategies, including
datasets from 1980 to 2020 of the Modern-Era Retrospective
Analysis for Research and Applications, version 2 (MERRA-
2) (Gelaro et al., 2017), the National Centers for Environ-
mental Prediction Reanalysis version 2 (NCEP R2) (Saha
et al., 2014) and the European Centre for Medium-Range
Weather Forecasts Reanalysis version 5 (ERA-5) (Hersbach
et al., 2020). The datasets with 2 m surface temperature and
geopotential height at 500 hPa are collected from the three

datasets accordingly as predictors. All these daily datasets
are converted to weekly data and are bilinearly interpolated
into 0.25◦ resolution. In the forecasting process, the tempera-
ture and geopotential height predictors in the historical three
consecutive weeks are used to forecast the precipitation in
the target week. For example, the predictors in the first week
(P1), second week (P2) and third week (P3) are used to fore-
cast the total precipitation in the fourth week.

3 Methods

3.1 Estimation of data uncertainty

The TCH method (Xu et al., 2020b; Premoli and Tavella,
1993) is used to estimate the uncertainty in temperature,
geopotential height and precipitation datasets. The collected
three datasets are all reanalysis data, which are generated
from different physical models and data assimilation al-
gorithms. The different reanalysis datasets and their errors
are generally not closely correlated and are regarded as
collocated datasets for the uncertainty estimation, similar
to existing studies (Xu et al., 2021b; Mccoll et al., 2014;
Gruber et al., 2017). In the TCH algorithm, one arbitrary
dataset is chosen as the reference among the three datasets,
and then the differencing operation is conducted between
the reference and the other two datasets to get the differ-
encing series. The covariance of the differencing series is
connected to the variance–covariance matrix of precipita-
tion datasets through matrix transformation. The parameters
of the variance–covariance matrix are iteratively resolved
by minimizing the global correlation of the covariance of
the differencing series. A detailed introduction of the TCH
method could refer to Premoli and Tavella (1993) and Xu et
al. (2020b).

Consider the data series {Pi, i = 1,2, . . .,N}. It can be
generally expressed as

Pi = Ptrue+ εi, (1)

where Ptrue denotes the true predictor or predictand data in
a specific area and is unknown, and εi is the measurement
error. Choosing an arbitrary dataset as the reference, the dif-
ferences of N − 1 data and the reference data are calculated
as

DiN = Pi −PN = εi − εN , i = 1, . . . ,N − 1, (2)

where PN is the reference series and the TCH result is in-
dependent of the selection of reference data. These N − 1
differences are concatenated into an M × (N − 1) matrix

D = [D1N D2N · · ·D(N−1)N ], (3)

where the rows of D denote the differenced time series with
M length. The variance/covariance of D is then obtained by

S =

[
1

M − 1

]
[(D−D)T (D−D)], (4)
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Figure 1. The study area for short-term precipitation forecasting.

where D represents the average of D. The covariance of D
can be related to S by

S =KT
·R ·K, K =

[
I

−uT

]
, (5)

where R is the N ×N covariance matrix of {εi, i =
1,2, . . . ,N} and u represents the vector [1 · · ·1]T . The co-
variance matrix of D is regarded as the Allan covariance
when TCH was initially proposed to evaluate the instability
of clocks, which requires a filtering operation on the origi-
nal time series before differencing. However, the covariance
can also be the commonly mentioned sample variance. Equa-
tion (5) can be reformatted as

S = [I − u]

[
R̂ r

rT rNN

][
I

−uT

]
, (6)

where R̂ is the (N−1)× (N−1) matrix and r is the (N−1)
vector [r1N r2N · · · rN−1, N ] grouping covariance estimates
with the N th time series and rNN denotes the variance of the
N th time series. This partitioning can help solve the under-
determined problem in Eq. (5) by isolating theN free param-
eters (r and rNN ). When the free parameters are determined,
the unknown elements in R̂ are obtained by

R̂ = S− rNN

[
uuT

]
+ urT + ruT . (7)

A suitable objective function is suggested by Galindo and
Palacio (1999) based on the Kuhn–Tucker theorem to mini-
mize the quadratic mean of covariances

F (r,rNN )=
∑

i<j

r2
ij

L2 (8)

subjected to a constraint

G(r,rNN )=

−
rNN − [r − rNNu]T · S−1

· [r − rNNu]
L

< 0, (9)

where L= N−1
√

det(S). The initial conditions are selected as
follows to meet the constraint (Torcaso et al., 1998):

r
(0)
iN = 0, i < N and r(0)NN = (2 · u

T
· S−1

· u)−1. (10)

Once the free parameters are determined, the unknown ele-
ments in R can be solved using Eq. (7).

The uncertainties of the predictors and predictands are es-
timated weekly using the TCH method. The weekly datasets
are grouped according to the weekly climatology and then
used to estimate the uncertainty. For example, all the precipi-
tation datasets which belong to the first week of each year are
concatenated to apply the TCH method in order to get the un-
certainty of the datasets for the first week of each year. Sim-
ilarly, the data uncertainty for the 2nd and 3rd week until the
52nd week is evaluated sequentially. This strategy enables a
time-variant uncertainty estimation which is more reasonable
as the precipitation climatology is different for different sea-
sons. The NCEP R2 and ERA-5 data are used to assist the un-
certainty estimation of MERRA-2 data by the TCH method,
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and the precipitation forecasting experiments are conducted
based on MERRA-2 data to evaluate the proposed forecast-
ing framework.

3.2 Variational Bayesian inference

Here we introduce the variational inference theory (Hoff-
man et al., 2013), which is a standard Bayesian modeling
technique for the estimation of model uncertainty. Given
the input data X = {x1, . . .,xN } and the output data Y =
{y1, . . .,yN }, the Bayesian regression is used to find suitable
parameters within the function y = f w(x) which could gen-
erate the output Y according to the inputX. The parameterw
is assumed to obey a prior distribution p(w) before the obser-
vations are known. When the observed data are obtained, it is
possible to determine which parameters are more suitable for
the function according to the data. A likelihood distribution
p(y|x,w) is defined to describe the probability of y gener-
ated by x andw. For example, a Gaussian likelihood function
is defined as

p(y|x,w)=N
(
y;f w (x) ,τ−1I

)
, (11)

where τ−1 is the observation noise and I is the identity ma-
trix.

Given the input dataX and the output data Y , the Bayesian
theorem is applied to find the posterior distribution of param-
eters in the parameter space

p(w |X,Y )=
p(Y |x,w)p(w)

p(Y |X)
, (12)

where the numerator p(Y |X) is the normalization factor, also
named as model evidence

p(Y |X)=

∫
p(Y |X,w)p (w)dw. (13)

The solution of Eq. (13) needs to marginalize the likelihood
over w, which is analytically tractable for some simple mod-
els such as the Bayesian regression, but intractable for com-
plex models such as deep learning methods (Gal, 2016).

Given the new input data x′, the forecasted value is gener-
ated by the integral of probability over the parameter space,
which is called the inference process:

p
(
y′|x′,X,Y

)
=

∫
p(y′|x′,w)p(w|X,Y )dw. (14)

Since the posterior distribution of parameters p(w|X,Y )
cannot be obtained analytically, an approximate analytical
distribution qθ (w) could be defined, with θ as the parame-
ter to be estimated, being as close as the posterior distribu-
tion. The Kullback–Leibler (K–L) divergence (Kullback and
Leibler, 1951) is an indicator to measure the similarity of two
distributions, also known as relative entropy. The objective

function is to minimize the K–L divergence between the two
distributions:

KL(qθ (w) ||p(w|X,Y ))=
∫
qθ (w) log

qθ (w)

p (w|X,Y )
dw. (15)

The optimal variational distribution qθ ′(w) is obtained when
the K–L divergence is minimized. The estimated variational
distribution could be regarded as the posterior distribution
of parameters and then the predictive distribution could be
generated:

p
(
y′|x′,X,Y

)
≈

∫
p
(
y′|x′,w

)
qθ
′ (w)dw =: qθ ′(y′|x′). (16)

The above inference process is the variational Bayesian infer-
ence. Variational inference replaces the integral of the like-
lihood with optimization, which simplifies the estimation of
posterior distribution.

3.3 Monte Carlo sampling

The Monte Carlo method is a kind of stochastic simula-
tion technology, proposed by Stanislaw Ulam and John von
Neumann during the Second World War (Von Neumann and
Ulam, 1951). Monte Carlo methods are used to estimate
unknown parameters by random sampling and are widely
applied in mathematics, physics, game theory and finance
(Brooks, 1998; Jacoboni and Lugli, 2012; Metropolis and
Ulam, 1949; Rubinstein and Kroese, 2016).

In Eq. (14), the posterior distribution p(w|X,Y ) cannot
be solved analytically. Assume Ui as the weight matrix
Ki ×Ki−1 from i− 1 layer to i layer, i.e., w = {Ui}i=1, ... ,L,
a variational weight distribution q(w) is defined to randomly
replace the columns with zero (dropout process):

Ui =Hi · diag
(
[zi,j ]

Ki
j=1

)
(17)[

zi,j
]
∼ Bernoulli(pi) , i = 1, . . .,L, j = 1, . . .,Ki−1, (18)

where pi and Hi are variational parameters; zi,j is a binary
variable, with a value of zero representing the abandoning of
the j th unit in i− 1 layer and a value of one the keeping,
based on the Bernoulli distribution at the probability pi .

The predictive distribution is estimated after minimizing
the K–L divergence:

q
(
y′|x′

)
=

∫
p
(
y′|x′,w

)
q (w)dw. (19)

The predictive mean and variance can be obtained after re-
peating the dropout process multiple times.
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Eq(y′|x′)
(
y′
)
=

∫
y′q
(
y′|x′

)
dy′ =

∫
y′N

(
y′; ŷ′(

x′,U1, . . .,UL
)
,τ−1I

)
Bern(U1)· · ·Bern

(
UL
)
dU1· · ·

dULdy′ =
∫
ŷ′
(
x′,U1, . . .,UL

)
Bern(U1)· · ·Bern

(
UL
)

dU1· · ·dUL ≈
1
T

∑T

t=1
ŷ′(x′, Û1, t , . . ., ÛL, t ) (20)

Var
q
(
y′|x′

)(y′)≈ τ−1I +
1
T

∑T

t=1
ŷ′
(
x′, Û1,t , . . ., ÛL, t

)T
ŷ′
(
x′, Û1,t , . . ., ÛL, t

)
−Eq(y′|x′)

(
y′
)TEq(y′|x′)(y′) , (21)

where ut, i is the forecasted value for the ith pixel and the t th
ensemble. The calculation of predictive variance is based on
the standard deviation of the ensemble which represents the
spread of the forecasted values.

The above Monte Carlo sampling and dropout process is
the Monte Carlo dropout technique which is used to obtain
the model uncertainty here.

3.4 Joint data and model uncertainties modeling

Dropout is a Bayesian method to model the model uncer-
tainty in forecasting (Srivastava et al., 2014). However, the
data uncertainty also needs to be considered. Kendall and
Gal (2017) regarded the data uncertainty as a trainable pa-
rameter and jointly considered data and model uncertainties.
However, the predictand data uncertainty is ignored and the
learning of data uncertainty increases the number of training
parameters. Here we propose an integrated modeling frame-
work to fully incorporate the data and model uncertainties
during the training process (Fig. 2). First, the data uncertain-
ties of predictors and predictands are estimated by the TCH
method and are assumed as Gaussian distribution:

σ = TCH(Di) i = 1,2,3 (22)
σx ∼N (0,σ ) (23)
σy ∼N (0,σ ). (24)

The sampling methods are used to obtain samples from the
data distribution to produce ensemble forecasts. The sam-
pling process is conducted for both predictor data and predic-
tand data. The data uncertainty is randomly sampled T times
to generate an ensemble of predictors and predictands. In the
meantime, the parameters are randomly dropped out for T
times to construct a parametric ensemble. The perturbed data
and parameter values are jointly used to calculate the train-
ing loss. Obtained from the likelihood of a Gaussian process
(Srivastava et al., 2014), the objective function is expressed
as follows (Kendall and Gal, 2017):

L(θ,p)=−
1
N

∑N

i=1
logp

(
yi,σ |f

Ûi
(
xi,σ

))
+

1−p
2N
‖θ‖2 (25)

σ =

√
(σ
(l)
x )

2+ σ 2
y , (26)

where N is the sample size; p is the dropout probability;
Ûi ∼ qθ

′(U); θ is the parameter to be estimated; σx and σy
are the data uncertainty for predictor and predictand, respec-
tively. The propagated data uncertainty for the lth network
layer is represented by σ lx . The negative log-likelihood func-
tion can be deduced according to the objective function:

− logp
(
yi,σ |f

Ûi
(
xi,σ

))
∝

1
2σ 2

∥∥∥yi − f Ûi (xi)∥∥∥2

+
1
2

log(σ 2) , (27)

where σ is the regression noise, with the mean of zero in a
Gaussian distribution.

The objective function consists of a mean square error
(MSE) term adjusted by data uncertainty and a regulariza-
tion term, which is the negative logarithm of the Gaussian
likelihood function. The objective function includes an un-
certainty parameter σ 2, which is determined by the sum of
propagated uncertainty and target data uncertainty. The min-
imization of the negative log-likelihood function could be
reached by differentiating the optimization function and set-
ting to zero:

∂

∂σ 2

[
1

2σ 2

∥∥∥yi − f Ûi (xi)∥∥∥2
+

1
2

log(σ 2)

]
= 0 (28)

H⇒−
1

2σ 4

∥∥∥yi − f Ûi (xi)∥∥∥2
+

1
2σ 2 = 0 (29)

H⇒ σ 2
=

∥∥∥yi − f Ûi (xi)∥∥∥2
, (30)

where the minimum value of the negative log-likelihood
function could be reached when the data variance equals the
square of the difference between the forecasted value and the
observation.

Once the network weights are determined according to the
objective function, the new input data uncertainty is propa-
gated and the weights are randomly sampled to produce the
forecasted ensemble. The predictive mean and variance are
calculated from the predictive ensembles:

µi =
1
T

∑T

t=1
yt, i (31)

Vari ≈
1
T

∑T

t=1
y2
t, i −

(
1
T

∑T

t=1
yt, i

)2

+
1
T

∑T

t=1
σ 2
t, i . (32)
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Figure 2. The proposed integrated data–model uncertainty modeling framework in precipitation forecasting. σx and σy are the predictor and
predictand uncertainty, respectively. xln and σ ln represent the propagated data value and uncertainty, respectively, for the lth network layer.

3.5 The deep learning forecasting framework

In deep learning, encoder–decoder is a commonly used fore-
casting model (Badrinarayanan et al., 2017; Cho et al., 2014).
In the encoder process, an input signal is converted into a
one-dimensional vector with fixed length. In the decoder pro-
cess, the one-dimensional vector is transformed into the tar-
get data with variable length. The available networks used for
encoder and decoder processes are arbitrary and depend on
the specific problem, such as the convolutional neural net-
work (CNN), recurrent neural network (RNN) and LSTM
network (Hochreiter and Schmidhuber, 1997; Goodfellow et
al., 2016). The CNN network is used in this study to construct
the encoder–decoder forecasting model. Here we designed
a deep learning encoder–decoder model for weekly precip-
itation forecasting (Fig. 3). The temperature and geopoten-
tial height data for the previous three weeks are regarded
as inputs, with an image size of 64× 64× 7 (including the
land–sea mask). In the encoder process, the input image
is down-sampled by a series of convolution, pooling and
dropout operations, resulting in a one-dimensional vector
(1× 1× 2048). In the decoder process, the one-dimensional
vector is up-sampled by deconvolution, dropout and convolu-
tion operations, resulting in a forecasted precipitation image
(64× 64× 1). The down-sampling and up-sampling proce-
dures are used to learn the nonlinear mapping relationships
between predictors and predictands.

In the training process, the optimization algorithm is set to
Adam (Kingma and Ba, 2014), which is a stochastic learning
algorithm based on adaptive moment. The network learning
rate is set to 0.001 and the stopping rule of iteration is that
the validating error does not decrease for at least 100 times.
The data uncertainty is propagated forward according to the
law of uncertainty propagation and the dropout process is re-
peated 10 times with a dropout rate of 0.5. The random seed
is set to 1 to enable the reproducibility of the experiment. The
experimental data span from 1980 to 2020 (2139 weeks), of

which 60 %, 20 % and 20 % of the data are used for train-
ing, validating and testing, respectively. The optimal model
parameters are determined based on the minimal validating
loss.

The proposed deep learning framework for precipitation
forecasting is demonstrated in Fig. 4. The input data and
its uncertainty are prepared and are considered as inputs for
the forecasting model. The model weights are initialized and
the input uncertainty is propagated forward according to the
weights. The loss function value is calculated according to
the forecasted value, the propagated uncertainty, target data
and its uncertainty. The forecasting model is trained accord-
ing to the optimization algorithm and then the trained model
is obtained. Next the test data are used to produce the fore-
casted value and variance based on the model weights and
uncertainty propagation. Finally, the forecasted value and
variance are evaluated and compared with several precipi-
tation forecasting methods.

We designed a series of comparison experiments to in-
vestigate the effect of different uncertainty processing strate-
gies on the forecasting performance (Table 1). The precipita-
tion forecasting experiment without considering uncertainty
is used as the baseline (Experiment 1). The MSE is used
as the loss function, and the data and model uncertainties
are not considered in Experiment 1. The uncertainty sources
are incorporated differently into the experiments, including
predictor uncertainty (Experiment 2), predictor and predic-
tand uncertainties (Experiment 3), model uncertainty (Ex-
periment 4) based on the method of Srivastava et al. (2014),
data and model uncertainties (Experiment 5) based on the
method of Loquercio et al. (2020) and data and model un-
certainties (Experiment 6) based on the proposed framework
here. The data uncertainty only includes the propagated un-
certainty from the input data in Eq. (26) in Experiment 2,
while the propagated uncertainty from the input data and the
target data uncertainty are both included in Experiment 3. In
Experiment 4, the data uncertainty is ignored and the model
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Figure 3. The developed deep learning model for precipitation forecasting.

Figure 4. The proposed deep learning framework for precipitation
forecasting.

parameters are randomly sampled 10 times to get the model
spread. In Experiment 5, the input data uncertainty is propa-
gated and the model uncertainty is modeled by sampling the
parameters. In Experiment 6, the input uncertainty is propa-
gated and the target data uncertainty is included in Eq. (26)
and the model uncertainty is represented by a multiple sam-
pling process.

The root mean square error (RMSE) statistic is used to
measure the difference between forecasted value and true
value:

RMSE=

√∑n
i=1(yi − ŷi)

2

n
, (33)

where yi is the true value or observation, ŷi is the forecasted
value and n is the sample size.

4 Results and discussion

4.1 The uncertainty of input and output datasets

The data uncertainty of predictors and predictand is calcu-
lated based on the TCH method and shown in Fig. 5. The
precipitation data uncertainty is much higher than the tem-
perature and geopotential height variables, with a median of
∼ 43 % relative uncertainty fraction for precipitation, ∼ 2 %
for temperature and ∼ 1 % for geopotential height in the
MERRA-2 data. This pattern is also seen in the ERA-5 and

Figure 5. The data uncertainty calculated by the TCH method. The
uncertainty distribution is plotted according to the uncertainty over
all the pixels of the study area.

NCEP R2 datasets. Therefore, the precipitation data suffer
from greater uncertainty relative to the input data and the
predictand uncertainty should not be ignored in the training
process. The combination of the propagated input uncertainty
and the predictand uncertainty is used as the adjusted param-
eter to regularize the loss function, which is relatively reason-
able as the data with larger uncertainty should contribute less
to the total training loss. It should be noted that the predictor
and predictand data are normalized to [0, 1] before uncer-
tainty estimation to ensure a fair comparison of uncertainty
value. The high uncertainty for precipitation data is related
to strong spatiotemporal heterogeneity of precipitation and
the high inconsistency among the reanalysis data (Xu et al.,
2020b), while temperature and geopotential height data are
much more homogeneous in space and time.

4.2 Overall precipitation forecasting performance

The RMSE and uncertainty in Table 2 are calculated based
on the averaged values of all the grid cells. As for the predic-
tive uncertainty, the forecasting method that only considers
model uncertainty (Srivastava et al., 2014) obtains the mini-
mum predictive uncertainty (Table 2). However, the data un-
certainty is not considered when only sampling from the pa-
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Table 1. A summary of the experiment setup in this study. The
√

and × symbols indicate that the specific factor is considered and omitted,
respectively.

Experiments Uncertainty processing

Data uncertainty Model uncertainty

Input data (predictor) Target data (predictand)
uncertainty uncertainty

Experiment 1 × × ×

Experiment 2
√

× ×

Experiment 3
√ √

Experiment 4 (Srivastava et al., 2014) × ×
√

Experiment 5 (Loquercio et al., 2020)
√

×
√

Experiment 6 (this study)
√ √ √

rameters and thus the impact of data error on forecasting is
not evaluated. Loquercio et al. (2020) used the law of un-
certainty propagation to propagate the data uncertainty and
sampled the parameters randomly during training. In our pro-
posed method, the input data uncertainty, target data uncer-
tainty and model uncertainty are jointly coupled by uncer-
tainty propagation and random parameter sampling. The av-
erage predictive uncertainty (10.859) based on the proposed
method is smaller than that (15.232) based on the method
of Loquercio et al. (2020), and the predictive R2 is higher
(0.539) than the latter (0.523). In this regard, the proposed
method could reduce the predictive uncertainty of precip-
itation forecasting to some extent, when jointly modeling
data and model uncertainties. The proposed method could
improve the precipitation forecasting performance and could
improve the reliability of precipitation forecasting by reduc-
ing the uncertainty.

When only the input uncertainty is modeled in the fore-
casting model, the predictive uncertainty is 14.729. If the tar-
get data uncertainty is coupled with input uncertainty, the
predictive uncertainty is reduced substantially (9.290). In
Eq. (30), when the predictive error on the right side of the
equation reaches a local minimum and remains unchanged
basically, the left side of the equation includes the input un-
certainty propagation and the target data uncertainty. When
new data are used to make a prediction, the predictive un-
certainty is generated by the input uncertainty and the law of
error propagation. Thus, when only the input uncertainty is
modeled in Eq. (30), the left side of this equation equals the
propagated uncertainty from the input data. If the left side of
Eq. (30) is replaced from the propagated input uncertainty
with the combination of propagated input uncertainty and
target uncertainty, the propagated input uncertainty after re-
placement will be smaller than that of no replacement, i.e.,

(σ
(l)
x )2 = σ 2

− σ 2
y < σ

2
=

∥∥∥yi − f Ûi (xi)∥∥∥2
.

The predictive accuracy generally increases with the un-
certainty processing procedures. The predictive RMSE de-
creases when incorporating the predictor uncertainty pro-

cessing relative to the prediction without uncertainty han-
dling. Further improvement is expected when considering the
predictor and predictand uncertainties from the data aspect,
relative to the sole predictor treatment. TheR2 exhibits slight
improvement when incorporating model uncertainty (Srivas-
tava et al., 2014) relative to the prediction without uncertainty
processing. In the method of Loquercio et al. (2020), the in-
put data uncertainty and model uncertainty are both consid-
ered and the predictive performance increases relative to the
no uncertainty and predictor uncertainty processing. In our
method, the input data uncertainty, target data uncertainty
and model uncertainty are jointly considered, reaching the
lowest RMSE and the highest R2 relative to the above uncer-
tainty processing methods.

4.3 Spatial patterns of precipitation forecasting

In Fig. 6, the spatial patterns of RMSE for precipitation fore-
casting demonstrate some similarities and differences be-
tween different uncertainty processing strategies. Overall,
the spatial distribution of RMSE is similar and smaller in
the northwest region but larger in the southeast region. In
places where the annual rainfall is abundant, the water cycle
process is accelerated and the precipitation observations may
suffer from large uncertainty. The difficulty of forecasting
extreme high precipitation volume also increases the average
RMSE in the southeast region relative to the northwest re-
gion (Yuan et al., 2012; Huang et al., 2013). There are some
differences in the forecasting error among different forecast-
ing methods in local areas. For example, the forecasting per-
formance based on our proposed method could outperform
the methods in Experiments 1, 2, 4 and 5, and is comparable
with the method in Experiment 3 for the local areas covered
by black circles in Fig. 6.

Figure 7 demonstrates the difference of the predictive
RMSE between other uncertainty processing approaches and
the proposed method for precipitation forecasting. It can be
seen that there is little difference of the predictive RMSE be-
tween the proposed method and other uncertainty processing
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Table 2. The accuracy of precipitation forecasting based on different uncertainty processing strategies. The best RMSE and the highest R2

are shown in bold for each column.

Uncertainty processing RMSE Uncertainty R2

No uncertainty 25.138 – 0.503
Predictor uncertainty 25.065 14.729 0.517
Predictor and predictand uncertainties 24.679 9.290 0.533
Model uncertainty (Srivastava et al., 2014) 25.156 1.570 0.506
Data and model uncertainties (Loquercio et al., 2020) 25.056 15.232 0.523
Data and model uncertainties (This study) 24.531 10.859 0.539

Figure 6. The spatial patterns of RMSE for precipitation forecasting. In this figure, x means the modeling of input uncertainty; x+ y
represents the modeling of input and output uncertainty; x+y+ θ indicates the modeling of input uncertainty, output uncertainty and model
uncertainty. The black circles represent the highlighted areas.

approaches. However, RMSE is larger for some uncertainty
processing methods relative to the proposed method in some
areas, including the Hainan and Taiwan provinces and part of
eastern China. It is likely that the predictive RMSE is reduced
in the proposed method by improving the prediction perfor-
mance in the areas with accelerated water cycle and abundant
rainfall. The target data uncertainty is incorporated into the
objective function to pay different attentions to space during
the training process, leading to a different weight distribu-
tion of the forecasting model for the proposed method rela-
tive to others. The changing weight distribution improves the

forecasting accuracy in the southeast areas by reducing the
forecasting error of extreme precipitation.

Figure 8 demonstrates the impact of different uncertainty
processing methods on the predictive uncertainty of precip-
itation. The spatial patterns of predictive uncertainty indi-
cate larger uncertainty in southern China relative to north-
ern China, which is consistent with the knowledge that the
water cycle in southern China is accelerated and precipita-
tion forecasting may suffer from large uncertainty. If only
the input uncertainty is considered in the forecasting model,
the predictive uncertainty is large in the central and south-
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Figure 7. The difference of the predictive RMSE between the proposed method and other uncertainty processing approaches for precipitation
forecasting.

east regions. The predictive uncertainty could be substan-
tially reduced when incorporating the target data uncertainty
besides the input uncertainty. In the method of Loquercio et
al. (2020), the predictive uncertainty is slightly higher than
that of input uncertainty modeling in space, because the in-
put and model uncertainties are jointly modeled. Our pro-
posed method could include the input, target and model un-
certainties jointly and could help reduce the predictive uncer-
tainty to a large extent, relative to the method of Loquercio
et al. (2020).

4.4 Uncertainty analysis and discussion

In precipitation forecasting, data and model uncertainties
both bring uncertainty to the forecasting result. The higher
the data and model uncertainties, the more divergent and less
reliable the forecasting. Therefore, the data and model uncer-
tainties should be jointly considered in the forecasting pro-
cess (Gal, 2016; Kendall and Gal, 2017; Loquercio et al.,
2020; Parrish et al., 2012). Although the predictive errors are
close to each other among different forecasting methods in
Fig. 6 and Table 2, the predictive uncertainty has some dis-
crepancies. The modeling of input uncertainty only in the
forecasting model would bring high predictive uncertainty

and the target data uncertainty is ignored. The joint modeling
of input and target uncertainties could reduce the predictive
uncertainty substantially, which is related to the change of
the variance in Eqs. (26) and (30), corresponding to the min-
imum value of the forecasting error term. The propagation of
input uncertainty is constrained by refining the uncertainty
representation in Eq. (26) after incorporating the target un-
certainty term and thus changing the weight training process.

Figure 9 demonstrates the relationship between the pre-
dictive uncertainty by the proposed method and the sum-
mation of the predictive uncertainty from data and model.
The predictive uncertainty by the proposed method (σxyθ )
agrees well with the summation of the predictive uncertainty
from data and model, with a regressed slope of 1.004 and
a R2 of 0.98, indicating the good consistency of the pre-
dictive uncertainty between joint and separate uncertainty
modeling. The median predictive uncertainty is 8.04, 1.40
and 9.49 mm for data, model and joint data–model uncer-
tainty modeling, respectively, in the precipitation forecast-
ing experiments (Fig. 10). The data and model uncertainty
account for ∼ 85 % and ∼ 15 % of the total predictive un-
certainty by the proposed method, respectively. The model
structure is fixed in this study and thus the model uncertainty
comes from mainly the parameters. The dropout method en-
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Figure 8. The spatial patterns of uncertainty for precipitation fore-
casting.

ables the random abandoning of network parameters over the
specific layer and prevents the overfitting of the forecasting
model. The distributions of model weights are changed when
incorporating the data uncertainty into the objective func-
tion (Fig. 11). The model weights become larger and more
dispersive relative to the prediction without uncertainty pro-
cessing or with model uncertainty consideration. The data
uncertainty is propagated into the prediction through model
weights and thus the data uncertainty contributes more to the
predictive uncertainty than model uncertainty. Although the
model weights appear more scattered, the predictive accuracy
exhibits small improvement due to the uncertainty consider-
ation in the objective function.

The predictive uncertainty is closely related to the input
data uncertainty and model weights. In Fig. 2, the input data
uncertainty is propagated into predictive uncertainty through
model parameters, while the target data uncertainty is in-
corporated into the training process by the objective func-
tion. The incorporation of uncertainty processing changes
the training process and the distributions of model weights
(Fig. 11). The weights of the last CNN layer (Layer 13) of
the precipitation forecasting model are generally higher than
the other layers, which may contribute largely to the pre-
dictive uncertainty by propagating the data uncertainty. The
mean and standard deviation of the squared weights of the
last CNN layer for the method of Loquercio et al. (2020) are

Figure 9. The relationship between the summation of predictive un-
certainty from data (input and target data) and model and the pre-
dictive uncertainty from joint consideration of data (input and target
data) and model.

Figure 10. The distributions of the predictive uncertainty from data,
model and joint data–model modeling methods for precipitation
forecasting.

higher than other uncertainty processing methods, suggest-
ing an overall larger and more dispersive weight distribution
for this method than the others. This could partly explain the
high uncertainty of the method of Loquercio et al. (2020) in
Table 2.

The proposed method in this study could model the in-
put uncertainty, target uncertainty and model uncertainty
jointly and could reduce the predictive uncertainty relative
to the method of Loquercio et al. (2020). The developed
method does not increase the training parameter and is a gen-
eral forecasting uncertainty method for geophysical applica-
tions such as temperature forecasting, runoff forecasting and
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Figure 11. The mean and standard deviation of squared weights of the precipitation forecasting model.

wind speed forecasting, especially for data-driven forecast-
ing models (Ham et al., 2019; Zheng et al., 2020; Hossain et
al., 2015).

In numerical precipitation forecasting systems, ensemble
forecasting is commonly used to quantify the predictive un-
certainty (Duan et al., 2019). In ensemble forecasting, the
model parameters and data are perturbed to produce a fore-
casted ensemble and thus the data and model uncertainties
are both considered. However, it would be time-consuming
and cost-expensive to conduct large-sample sampling for
complex physical models. In our developed method, the law
of error propagation is used to propagate the data uncertainty.
The uncertainty propagation of convolution, max-pooling
and deconvolution in the deep learning forecasting model
is tractable in an analytical form. However, the uncertainty
propagation process is generally analytically intractable for
complex statistical or physical models. Therefore, the the-
ory and implementation technology for uncertainty model-
ing require further development, such as surrogate model-
ing, Monte Carlo methods, polynomial chaos expansions and
Bayesian approaches (Linde et al., 2017; Sudret et al., 2017;
Zhu and Zabaras, 2018; Schiavazzi et al., 2017; Nitzler et al.,
2020).

5 Conclusions

In this study, we proposed a data–model uncertainty coupling
framework to estimate the predictive uncertainty of precipita-
tion forecasting. In this framework, the predictor and predic-
tand uncertainties are estimated a priori by the TCH method

and are assumed as Gaussian distribution. The predictor un-
certainty is propagated forward during training and testing
processes by the law of error propagation. The model uncer-
tainty is represented by randomly abandoning model weights
from deep learning layers. The data and model uncertainties
are jointly modeled in the objective function during training
and are also used during the testing process. The loss func-
tion is constructed by the MSE statistic adjusted by data un-
certainty and a regularization term based on logarithmic data
uncertainty. In the loss function, the adjusting parameter is
determined by the combination of the square of predictor and
predictand uncertainties. The forecasted ensembles are used
to calculate the predictive mean and variance to estimate the
predictive uncertainty of precipitation.

The weekly precipitation forecasting in southern and
northern China is used as an example to examine the effec-
tiveness of the proposed joint uncertainty modeling frame-
work. Temperature and geopotential height data in the previ-
ous three weeks are used to forecast the precipitation in the
target week. The forecasting model is developed based on
an encoder–decoder CNN deep neural network, with multi-
variate spatiotemporal predictor data as input and spatiotem-
poral precipitation data as output. The experimental results
indicate that the proposed joint uncertainty modeling frame-
work for precipitation forecasting exhibits better forecasting
accuracy (improving RMSE by 1 %–2 % and R2 by 1 %–7 %
on average) relative to several existing methods, and could
reduce the predictive uncertainty by ∼ 28 % relative to the
approach of Loquercio et al. (2020). The reduction of predic-
tive uncertainty is significative for quantitative precipitation
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forecasting from a data-driven view. The predictive perfor-
mance is improved in the proposed method by incorporating
the target data uncertainty and reducing the forecasting error
of extreme precipitation.

The data-driven precipitation forecasting method has limi-
tations in the interpretation part relative to numerical weather
prediction. The precipitation forecasting accuracy for numer-
ical models could still be improved by improving the param-
eterization schemes and resolving the uncertainties in obser-
vations, parameters and models. The proposed uncertainty
modeling framework may also provide some insights for the
uncertainty quantification in numerical prediction models.
For example, the uncertainty propagation for the input data
and the coupling with target data uncertainty could be used
in a data assimilation scheme to estimate the propagated un-
certainty in weather forecasting.

Data-driven precipitation forecasting could be used as a
tool to assist regional prediction and warning of extreme
weather events together with numerical models. The pro-
posed joint data–model uncertainty modeling framework
could help to estimate the forecasting spread and is a gen-
eral approach to derive predictive uncertainty for geophys-
ical forecasting applications. Further research should focus
on the non-Gaussian uncertainty modeling for complex inte-
grated statistical–physical models.
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