Articles | Volume 26, issue 10
https://doi.org/10.5194/hess-26-2637-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2637-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
δ13C, CO2 ∕ 3He and 3He ∕ 4He ratios reveal the presence of mantle gas in the CO2-rich groundwaters of the Ardennes massif (Spa, Belgium)
Agathe Defourny
CORRESPONDING AUTHOR
Urban and Environmental Engineering, University of Liège, Liège, Belgium
Water Resource Department, Spadel S.A., Spa, Belgium
Pierre-Henri Blard
Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine, CNRS, UMR7358, Nancy, France
Laboratoire de Glaciologie, Université libre de Bruxelles (ULB), Brussels, Belgium
Laurent Zimmermann
Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine, CNRS, UMR7358, Nancy, France
Patrick Jobé
Water Resource Department, Spadel S.A., Spa, Belgium
Arnaud Collignon
Water Resource Department, Spadel S.A., Spa, Belgium
Frédéric Nguyen
Urban and Environmental Engineering, University of Liège, Liège, Belgium
Alain Dassargues
Urban and Environmental Engineering, University of Liège, Liège, Belgium
Related authors
No articles found.
Nicolas Harrichhausen, Léo Marconato, Laurence Audin, Pierre Lacan, Stéphane Baize, Hervé Jomard, Alexandra Alvarado, James Hollingsworth, Pierre-Henri Blard, Patricia Ann Mothes, Frédérique Rolandoné, and Iván Dario Ortiz Martin
EGUsphere, https://doi.org/10.5194/egusphere-2025-4329, https://doi.org/10.5194/egusphere-2025-4329, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Tectonic plates can be broken into smaller blocks with deformation concentrated at their boundaries. We use remote sensing and field studies to investigate how faulting accommodates deformation at the northern boundary of the Quito-Latacunga microblock (Ecuador & Colombia). We show this boundary is a wide zone characterized by several parallel faults capable of hosting moderate to large (<M7) earthquakes, such as the one in 2022, and which may be influenced by nearby volcanism.
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
Clim. Past, 21, 1359–1381, https://doi.org/10.5194/cp-21-1359-2025, https://doi.org/10.5194/cp-21-1359-2025, 2025
Short summary
Short summary
The Camp Century subglacial core stores information about past climates and glacial and interglacial processes in northwestern Greenland. In this study, we investigated the core archive, making large-scale observations using computed tomography (CT) scans and micron-scale observations observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Solomon Ehosioke, Sarah Garré, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frédéric Nguyen
Biogeosciences, 22, 2853–2869, https://doi.org/10.5194/bg-22-2853-2025, https://doi.org/10.5194/bg-22-2853-2025, 2025
Short summary
Short summary
Understanding the electromagnetic properties of plant roots is useful to quantify plant properties and monitor plant physiological responses to changing environmental factors. We investigated the electrical properties of the primary roots of Brachypodium and maize plants during the uptake of fresh and saline water using spectral induced polarization. Our results indicate that salinity tolerance varies with the species and that Maize is more tolerant to salinity than Brachypodium.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Cited articles
Aeschbach-Hertig, W., Kipfer, R., Hofer, M., Imboden, D., Wieler, R., and
Signer, P.: Quantifiction of gas fluxes from subcontinental mantle: the
example of Laacher See, a maar lake in Germany, Geochim. Cosmochim. A., 60, 31–41, https://doi.org/10.1016/0016-7037(95)00370-3, 1996. a
Agnew, R. J.: Why springs bubble: A framework for gas discharge in groundwater,
Groundwater, 56, 859–870,
https://doi.org/10.1111/gwat.12789, 2018. a
Andrews, J. and Kay, R.: Natural production of tritium in permable rocks,
Nature, 298, 361–363, https://doi.org/10.1038/298361a0,
1982. a
Barry, P. H., Negrete-Aranda, R., Spelz, R. M., Seltzer, A. M., Bekaert, D. V.,
Virrueta, C., and Kulongoski, J. T.: Volatile sources, sinks and pathways: A
helium-carbon isotope study of Baja California fluids and gases, Chem.
Geol., 550, 119722, https://doi.org/10.1016/j.chemgeo.2020.119722, 2020. a, b, c
Bekaert, D., Broadley, M., Caracausi, A., and Marty, B.: Novel insights into
the degassing history of the Earth's mantle from high precision noble gas
analysis of magmatic gas, Earth Planet. Sci. Lett., 525, 115766,
https://doi.org/10.1016/j.epsl.2019.115766, 2019. a
Bräur, K., Kämpf, H., Niedermann, S., and Strauch, G.: Indications for the
existence of different magmatic reservoirs beneath the Eifel area (Germany):
A multi-isotope (C,N,He,Ne,Ar) approach, Chem. Geol., 56, 193–208,
https://doi.org/10.1016/j.chemgeo.2013.08.013, 2013. a, b, c
Carreira, P., Marques, J., Carvalho, M., Nunes, D., and da Silva, M. A.: Carbon
isotopes and geochemical processes in CO2-rich cold mineral water,
N_Portugal, Environ. Earth Sci., 71, 2941–2953, 2014. a
Depret, M., Bruni, Y., Dassargues, A., Defourny, A., Marion, J.-M.,
Vanderschueren, W., and Hatert, F.: Mineralogical and hydrogeological study
of “pouhons” in the lower Paleozoic formations of the Stavelot-Venn Massif,
Geologica Belg., 24, 109–124, 2021. a
Dunai, T. and Baur, H.: Helium, neon, and argon systematics of the European
subcontinental mantle: Implications for its geochemical evolution, Chechim. Cosmochim. A., 59, 2767–2783,
https://doi.org/10.1016/0016-7037(95)00172-V, 1995. a, b, c
Fielitz, W. and Mansy, J.-L.: Pre- and synorogenic burial metamorphism in the
Ardenne and nieghbouring areas (Rhenohercynian zone, central European
Variscides, Tectonophysics, 309, 227–256,
https://doi.org/10.1016/S0040-1951(99)00141-9, 1999. a
Fillimonova, E., Lavrushin, V., Kharitonova, N., Sartykov, A., Maximova, E.,
Baranovskaya, E., Korzun, A., Maslov, A., and Baidariko, E.: Hydrogeology and
hydrochemistry of mineral sparkling groundwater within Essentuki area
(Caucasian mineral water region), Environ. Earth Sci., 79, 15, https://doi.org/10.1007/s12665-019-8721-2, 2020. a
Gilfillan, S., Györe, D., Flude, S., Johnson, G., Bond, C., Hicks, N.,
Lister, R., jones, D., Kremer, Y., Haszeldine, R., and Stuart, F.: Noble
gases confirm plume-related mantle degassing beneath Southern Africa, Nat.
Commun., 10, 5028,
https://doi.org/10.1038/s41467-019-12944-6, 2019. a
Goes, S., Spakman, W., and Bijwaard, H.: A lower mantle source for central
European volcanism, Science, 286, 1928–1931, 1999. a
Graham, D. W.: Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs, 2002. a
Holocher, J., Matta, V., Aeschbach-Hertig, W., Beyerle, U., and Hofer, M.:
Noble gas and major element constraints on the water dynamics in an alpine
floodplain, Groundwater, 39, 841–852, 2001. a
Vanderschueren, H. W.: Le radon dans l'air, dans l'eau et dans les roches. Mesure dynamique
de son exhalation et contribution á la charactérisation géologique des
matériaux, Geological survey of Belgium professional paper, 308, 96 pp., http://biblio.naturalsciences.be/rbins-publications/professional-papers-of-the-geological-survey-of-belgium/bibliographic-references/vanderschueren_radon_2011 (last access: 18 May 2022), 2011. a
Karolyte, R., Johnson, G., Györe, D., Serno, S., Flude, S., Stuart, F.,
Chivas, A., Boyce, A., and Gilfillan, S.: Tracing the migration of mantle
CO2 in gas fields and mineral water springs in south-east Australia
using noble gas and stable isotopes, Geochim. Cosmochim. A., 259,
109–128, https://doi.org/10.1016/J.gca.2019.06.002, 2019. a, b
Kreemer, C., Blewitt, G., and Davis, P. M.: Geodetic evidence for a buoyant
mantle plume beneath the Eifel volcanic area, NW Europe, Geophys. J.
Int., 222, 1316–1322,
https://doi.org/10.1093/gji/ggaa227, 2020. a, b
Marty, B., Almayrac, M., Barry, P., Bekaert, D., Broadley, M., Byrne, D.,
Ballentine, C., and Caracausi, A.: An evaluation of the C N ratio of the
mantle from natural CO2-rich gas analysis : Geochemical and
cosmochemical implications, Earth Planet. Sci. Lett., 551,
116574, https://doi.org/10.1016/J.epsl.2020.116574, 2020. a, b, c, d, e, f
May, F., Hoernes, S., and Neugebauer, H.: Genesis and sitribution of mineral
waters as a consequence of recent lithospheric dynamics: the Rhenish Massif,
Central Europe, Geol. Rundsch., 85, 782–799,
https://doi.org/10.1007/s005310050112, 1996. a, b
Moreira, M., Rouchon, V., Muller, E., and Noirez, S.: The xenon isotopic
signature of the mantle beneath Massif Central, Gechem. Perspect., 6, 28–32, 2018. a
Pisolkar, M.: Why CO2-rich mineral waters present peculiar signatures, when compared with other types of mineral waters? Vidago-Pedras Salgadas case study, Master Thesis, Tecnico Lisboa, Lisboa, Portugal, https://fenix.tecnico.ulisboa.pt/downloadFile/1689244997257994/dissertacao.pdf (last access: 9 May 2022), 2017. a
Ray, J. S.: Carbon isotopic variations in fluid‐deposited graphite: evidence
for multicomponent Rayleigh isotopic fractionation, Int. Geol. Rev., 51, 45–57, https://doi.org/10.1080/00206810802625057, 2009. a, b, c
Redondo, R. and Yelamos, J. G.: Determination of CO2 origin (natural or
industrial) in sparkling bottled waters by isotope ratio
analysis, Food Chem., 92, 507–514, 2004. a
Ritter, J., Jordan, M., Christensen, U., and Achauer, U.: A mantle plume below
the Eifel volcanic fields, Germany, Earth Planet. Sci. Lett., 186,
7–14, https://doi.org/10.1016/S0012-821X(01)00226-6, 2001. a
Sano, Y. and Fischer, T.: The analysis and interpretation of noble gases in
modern hydrothermal systems, in: The Noble Gases as Geochemical Tracers,
edited by: Burnard, P., 249–317, Springer, https://doi.org/10.1007/978-3-642-28836-4_10, 2013. a
Stiller, M., Kaerger, L., Agafonova, T., Krawczyk, C., Oncken, O., Weber, M., Former DEKORP Project Leaders, Former DEKORP/BELCORP Research Group, Former DEKORP Processing Centre: Deep seismic reflection profile DEKORP 1987-1A across the western Rhenish Massif, West Germany/ East Belgium, GFZ Data Services, https://doi.org/10.5880/GFZ.DEKORP-1A.001, 2020. a
Vanbrabant, Y., Braun, J., and Jongmans, D.: Models of passive margin
inversion: implications for the Rhenohercynian fold-and-thurst belt, Belgium
and Germany, Earth Planet. Sci. Lett., 202, 15–29,
https://doi.org/10.1016/S0012-821X(02)00751-3, 2002.
a
Zimmermann, L. and Bekaert, D.: Analyse des gaz rares par spectrométrie de masse statique – Mesures et applications.J6637 V1(Techniques de l'ingénieur), 2020. a
Zimmermann, L., Füri, E., and Burnard, P.: Purification des gaz rares sous ultravide – Méthodes de purification. Techniques de l'Ingénieur, J6 635, 2015. a
Short summary
The Belgian city of Spa is known worldwide for its ferruginous and naturally sparkling groundwater springs that gave their name to the bathing tradition commonly called
spa. However, the origin of the dissolved CO2 they contain was still a matter of debate. Thanks to new analysis on groundwater samples, particularly carbon and helium isotopes together with dissolved gases, this study has demonstrated that the volcanic origin of the CO2 is presumably from the neighboring Eifel volcanic fields.
The Belgian city of Spa is known worldwide for its ferruginous and naturally sparkling...