Articles | Volume 26, issue 9
Hydrol. Earth Syst. Sci., 26, 2345–2364, 2022
https://doi.org/10.5194/hess-26-2345-2022

Special issue: Socio-hydrology and transboundary rivers

Hydrol. Earth Syst. Sci., 26, 2345–2364, 2022
https://doi.org/10.5194/hess-26-2345-2022
Research article
05 May 2022
Research article | 05 May 2022

Satellite observations reveal 13 years of reservoir filling strategies, operating rules, and hydrological alterations in the Upper Mekong River basin

Dung Trung Vu et al.

Related authors

Unfolding the relationship between seasonal forecast skill and value in hydropower production: a global analysis
Donghoon Lee, Jia Yi Ng, Stefano Galelli, and Paul Block
Hydrol. Earth Syst. Sci., 26, 2431–2448, https://doi.org/10.5194/hess-26-2431-2022,https://doi.org/10.5194/hess-26-2431-2022, 2022
Short summary
On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments
Thanh Duc Dang, A. F. M. Kamal Chowdhury, and Stefano Galelli
Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020,https://doi.org/10.5194/hess-24-397-2020, 2020
Short summary
Complex relationship between seasonal streamflow forecast skill and value in reservoir operations
Sean W. D. Turner, James C. Bennett, David E. Robertson, and Stefano Galelli
Hydrol. Earth Syst. Sci., 21, 4841–4859, https://doi.org/10.5194/hess-21-4841-2017,https://doi.org/10.5194/hess-21-4841-2017, 2017
Short summary
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
S. Galelli and A. Castelletti
Hydrol. Earth Syst. Sci., 17, 2669–2684, https://doi.org/10.5194/hess-17-2669-2013,https://doi.org/10.5194/hess-17-2669-2013, 2013

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Remote Sensing and GIS
A Framework for Irrigation Performance Assessment Using WaPOR data: The case of a Sugarcane Estate in Mozambique
Abebe Demissie Chukalla, Marloes L. Mul, Pieter van der Zaag, Gerardo van Halsema, Evaristo Mubaya, Esperança Muchanga, Nadja den Besten, and Poolad Karimi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-409,https://doi.org/10.5194/hess-2021-409, 2021
Revised manuscript accepted for HESS
Short summary
Satellite soil moisture data assimilation for improved operational continental water balance prediction
Siyuan Tian, Luigi J. Renzullo, Robert C. Pipunic, Julien Lerat, Wendy Sharples, and Chantal Donnelly
Hydrol. Earth Syst. Sci., 25, 4567–4584, https://doi.org/10.5194/hess-25-4567-2021,https://doi.org/10.5194/hess-25-4567-2021, 2021
Short summary
Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach
Oliver Miguel López Valencia, Kasper Johansen, Bruno José Luis Aragón Solorio, Ting Li, Rasmus Houborg, Yoann Malbeteau, Samer AlMashharawi, Muhammad Umer Altaf, Essam Mohammed Fallatah, Hari Prasad Dasari, Ibrahim Hoteit, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 24, 5251–5277, https://doi.org/10.5194/hess-24-5251-2020,https://doi.org/10.5194/hess-24-5251-2020, 2020
Short summary
Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring
Angel Martín, Sara Ibáñez, Carlos Baixauli, Sara Blanc, and Ana Belén Anquela
Hydrol. Earth Syst. Sci., 24, 3573–3582, https://doi.org/10.5194/hess-24-3573-2020,https://doi.org/10.5194/hess-24-3573-2020, 2020
Short summary
Can we trust remote sensing evapotranspiration products over Africa?
Imeshi Weerasinghe, Wim Bastiaanssen, Marloes Mul, Li Jia, and Ann van Griensven
Hydrol. Earth Syst. Sci., 24, 1565–1586, https://doi.org/10.5194/hess-24-1565-2020,https://doi.org/10.5194/hess-24-1565-2020, 2020
Short summary

Cited articles

Ahmad, S. K., Hossain, F., Holtgrieve, G. W., Pavelsky, T., and Galelli, S.: Predicting the likely thermal impact of current and future dams around the world, Earth's Future, 9, e2020EF001916, https://doi.org/10.1029/2020ef001916, 2021. a
Arias, M. E., Cochrane, T. A., Kummu, M., Lauri, H., Holtgrieve, G. W., Koponen, J., and Piman, T.: Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia's most important wetland, Ecol. Model., 272, 252–263, https://doi.org/10.1016/j.ecolmodel.2013.10.015, 2014. a
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445–6459, https://doi.org/10.5194/hess-21-6445-2017, 2017. a, b
Basheer, M., Wheeler, K. G., Elagib, N. A., Etichia, M., Zagona, E. A., Abdo, G. M., and Harou, J. J.: Filling Africa’s largest hydropower dam should consider engineering realities, One Earth, 3, 277–281, https://doi.org/10.1016/j.oneear.2020.08.015, 2020. a
Beveridge, C., Hossain, F., and Bonnema, M.: Estimating impacts of dam development and landscape changes on suspended sediment concentrations in the Mekong River Basin’s 3S tributaries, J. Hydrol. Eng., 25, 05020014, https://doi.org/10.1061/(asce)he.1943-5584.0001949, 2020.  a
Download
Short summary
The lack of data on how big dams are operated in the Upper Mekong, or Lancang, largely contributes to the ongoing controversy between China and the other Mekong countries. Here, we rely on satellite observations to reconstruct monthly storage time series for the 10 largest reservoirs in the Lancang. Our analysis shows how quickly reservoirs were filled in, what decisions were made during recent droughts, and how these decisions impacted downstream discharge.