Articles | Volume 25, issue 2
Research article
18 Feb 2021
Research article |  | 18 Feb 2021

A time-varying parameter estimation approach using split-sample calibration based on dynamic programming

Xiaojing Zhang and Pan Liu

Related authors

Global soil moisture storage capacity at 0.5° resolution for geoscientific modelling
Kang Xie, Pan Liu, Qian Xia, Xiao Li, Weibo Liu, Xiaojing Zhang, Lei Cheng, Guoqing Wang, and Jianyun Zhang
Earth Syst. Sci. Data Discuss.,,, 2022
Revised manuscript not accepted
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114,,, 2023
Short summary
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004,,, 2023
Short summary
Changes in Mediterranean flood processes and seasonality
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987,,, 2023
Short summary
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745,,, 2023
Short summary
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644,,, 2023
Short summary

Cited articles

Alvisi, S., Mascellani, G., Franchini, M., and Bárdossy, A.: Water level forecasting through fuzzy logic and artificial neural network approaches, Hydrol. Earth Syst. Sci., 10, 1–17,, 2006. 
Bellman, R.: Dynamic programming, Princeton University Press, Princeton, 1957. 
Broderick, C., Matthews, T., Wilby, R. L., Bastola, S., and Murphy, C.: Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods, Water Resour. Res., 52, 8343–8373,, 2016. 
Bronstert, A.: Rainfall-runoff modelling for assessing impacts of climate and land-use change, Hydrol. Process., 18, 567–570,, 2004. 
Chen, Y. and Zhang, D.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Adv. Water Resour., 29, 1107–1122,, 2006. 
Short summary
Rainfall–runoff models are useful tools for streamflow simulation. However, efforts are needed to investigate how their parameters vary in response to climate changes and human activities. Thus, this study proposes a new method for estimating time-varying parameters, by considering both simulation accuracy and parameter continuity. The results show the proposed method is effective for identifying temporal variations of parameters and can simultaneously provide good streamflow simulation.