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Abstract. Although the parameters of hydrological models
are usually regarded as constant, temporal variations can oc-
cur in a changing environment. Thus, effectively estimat-
ing time-varying parameters becomes a significant challenge.
Two methods, including split-sample calibration (SSC) and
data assimilation, have been used to estimate time-varying
parameters. However, SSC is unable to consider the parame-
ter temporal continuity, while data assimilation assumes pa-
rameters vary at every time step. This study proposed a new
method that combines (1) the basic concept of split-sample
calibration, whereby parameters are assumed to be stable for
one sub-period, and (2) the parameter continuity assumption;
i.e. the differences between parameters in consecutive time
steps are small. Dynamic programming is then used to deter-
mine the optimal parameter trajectory by considering two ob-
jective functions: maximization of simulation accuracy and
maximization of parameter continuity. The efficiency of the
proposed method is evaluated by two synthetic experiments,
one with a simple 2-parameter monthly model and the second
using a more complex 15-parameter daily model. The results
show that the proposed method is superior to SSC alone and
outperforms the ensemble Kalman filter if the proper sub-
period length is used. An application to the Wuding River
basin indicates that the soil water capacity parameter varies
before and after 1972, which can be interpreted according to
land use and land cover changes. A further application to the
Xun River basin shows that parameters are generally station-
ary on an annual scale but exhibit significant changes over
seasonal scales. These results demonstrate that the proposed
method is an effective tool for identifying time-varying pa-
rameters in a changing environment.

1 Introduction

Conceptual models describe the physical processes that oc-
cur in the real world by means of certain assumptions and
empirically determined functions (Toth and Brath, 2007). In
spite of their simplicity, conceptual models are effective in
providing reliable runoff predictions for widespread appli-
cations (Refsgaard and Knudsen, 1996; Quoc Quan et al.,
2018), such as real-time flood forecasting, climate change
impact assessments (Stephens et al., 2019; Deng et al., 2019),
and water resources management. Conceptual hydrological
models typically have several inputs, a moderate number of
parameters, state variables, and outputs. Among these, the
parameters play an important role in accurate simulation and
should be related to the catchment properties. However, pa-
rameter values often cannot be obtained by field measure-
ments (Merz et al., 2011). An alternative approach is to cali-
brate parameters based on historical data.

Parameters are usually regarded as constants in time, be-
cause of the general idea that catchment conditions are tem-
porally stable. Constant parameters become inaccurate in
differential split-sample test (DSST) conditions (Klemes,
1986). For example, parameters calibrated based on data
from a wet (or dry) period may fail to simulate runoff
in a dry (or wet) period for the same catchment. Boder-
ick et al. (2016) used DSST to assess the transferability of
six conceptual models under contrasting climate conditions.
They found that performance declines most when models
are calibrated during wet periods but validated in dry ones.
Fowler et al. (2016) pointed out that the parameter set ob-
tained by mathematical optimization based on wet periods
may not be robust when applied in dry periods. Addition-
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ally, the catchment properties can change over time, such
as in the case of afforestation and deforestation (Siriwar-
dena et al., 2006; Guzha et al., 2018). These changes need
to be taken into account through model parameters (Bron-
stert, 2004; Hundecha and Bardossy, 2004). Hence, temporal
variations in parameters should reflect the changing environ-
ment.

One challenge here is the methodology used to identify
time-varying parameters. In the literature, three approaches
have been discussed. The first is split-sample calibration
(SSC), whereby available data are split into a moderate num-
ber of sub-periods and the parameters are calibrated individ-
ually for each period (Thirel et al., 2015). The second method
is data assimilation (Pathiraja et al., 2018; Deng et al., 2016).
This method assimilates observational data to enable errors,
states, and parameters to be updated (Li et al., 2013), making
it possible to identify time-varying parameters. The third ap-
proach is to construct a functional form or empirical equation
according to the correlation between parameters and some
climatic variates such as precipitation and potential evapo-
transpiration (Jeremiah et al., 2013; Westra et al., 2014; Deng
et al., 2019). Note that this study focuses on methods to
identify time-varying parameters rather than modelling them;
hence, only comparisons between SSC and data assimilation
are discussed.

SSC is the most commonly used method (Paik et al., 2005;
Coron et al., 2012; Fowler et al., 2018; Xie et al., 2018).
Merz et al. (2011) investigated the time stability of parame-
ters by estimating six parameter sets based on six consecutive
5-year periods. Lan et al. (2018) clustered calibration data
into 24 sub-annual periods to detect the seasonal hydrologi-
cal dynamic behaviour. Despite broad application, it remains
debatable whether a particular mathematical optimum gives
the parameter value during one period. Many equivalent op-
tima can exist simultaneously for one dataset when calibrat-
ing the model against observations (Poulin et al., 2011). Sev-
eral studies addressed this question by adding more con-
straints to the objective function over the respective period.
For example, Gharari et al. (2013) emphasized consistent
performance in different climatic conditions, while Xie et al.
(2018) modified SSC by selecting parameters with good sim-
ulation ability for both the current sub-period and the whole
period. Some conceptual hydrological parameters reflect the
catchment characteristics. When climate change and human
activities occur, watershed characteristics, such as soil wa-
ter storage capacity, are difficult to change dramatically in a
very short time. Hence, parameter continuity, defined as dif-
ferences between the parameters in consecutive time steps to
be small, is required for hydrological modelling. However,
few reports have considered the continuity of parameters in
the SSC method.

This assumption of parameter continuity is the basic idea
behind data assimilation methods. For example, the a priori
parameters in ensemble Kalman filter (EnKF) methods are
commonly derived from updated values from the previous

time step (Xiong et al., 2019; Moradkhani et al., 2005). From
this, a trade-off between simulation accuracy and parameter
continuity is established, and parameters that enable greater
continuity are more likely to be selected. Deng et al. (2016)
validated the ability of the EnKF to identify changes in two-
parameter monthly water balance (TMWB) model parame-
ters. Pathiraja et al. (2016) proposed two-parameter evolu-
tion models for improving conventional dual EnKF and ob-
tained superior results for diagnosing the non-stationarity in
a system. EnKF and its variants are relatively advanced ap-
proaches for identifying time-varying parameters (Lu et al.,
2013). However, for a hydrological model, the states may
change over every time step, whereas the parameters may
not, in particular for hourly timescales. This can be offset by
SSC, which assumes that the parameters remain stable for a
pre-determined period (such as decades, years, or months).
Compared to EnKF, the simplicity of SSC is another advan-
tage, as it has a less complex mechanism and reduced redun-
dancy (Chen and Zhang, 2006).

The aim of this study is to present a new method for time-
varying parameter estimation by combining the strengths of
the basic concept of SSC and the continuity assumption of
data assimilation, which is a useful tool for diagnosing the
non-stationarity caused by a changing environment. Com-
pared with data assimilation, the proposed split-sample cal-
ibration based on dynamic programming (SSC-DP) avoids
overly frequent changes of parameters, such as hourly or
daily variations. Compared with SSC, the distinctive element
is that SSC-DP considers the parameters to be related over
adjacent sub-periods and selects parameter sets with good
performance for each period and small differences between
adjacent time steps. In this study, three aspects of the pro-
posed method are evaluated: (1) the performance of SSC-DP
is compared with that of existing methods in terms of the es-
timation of time-varying parameters; (2) the applicability of
SSC-DP to more complex hydrological models with a con-
siderable number of parameters; (3) the ability of SSC-DP to
provide additional insights on parameter variations and their
correlations with the properties of real catchments. To in-
vestigate the above issues, the proposed method is compared
with SSC and EnKF in two synthetic experiments (one with a
two-parameter monthly model, the other with a 15-parameter
daily model). SSC-DP is also applied to two real catchments
for parameter estimation under different environmental con-
ditions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed method, reference methods,
and performance evaluation indices. Section 3 describes two
synthetic experiments and two real catchment case studies
for comparison among different time-varying parameter es-
timation methods. Sections 4 and 5 present the results and
discussion, respectively, before the conclusions to this study
are drawn in Sect. 6.
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Figure 1. Flow chart of the methodologies.

Table 1. Parameters of the TMWB model.

Parameter Physical meaning Range and units

C Evapotranspiration parameter 0.2–2.0 (–)
SC Catchment water storage capacity 100–2000 (mm)

2 Methodology

In this section, a SSC-DP method is proposed to identify
the time-varying parameters of hydrological models. The
two hydrological models considered in this study are the
TMWB and Xinanjiang models. Their concepts and differ-
ences are presented in Sect. 2.1. A sensitivity analysis is
employed to focus efforts on parameters important to cali-
bration and avoid prohibitive computational cost, as outlined
in Sect. 2.2. Three time-varying parameter estimation meth-
ods (SSC, SSC-DP, and data assimilation) are presented in
Sect. 2.3. The SSC and data assimilation are provided for
comparisons with the SSC-DP. Finally, to evaluate the perfor-
mance of the time-varying parameter estimation methods, six
evaluation criteria are selected and formulated in Sect. 2.4.
The flow chart of the methodologies is shown in Fig. 1.

2.1 Hydrological models

2.1.1 Two-parameter monthly water balance model

The TMWB model developed by Xiong and Guo (1999) is
efficient for monthly runoff simulations and forecasts (Kim
et al., 2016; Dai et al., 2018; Yang et al., 2017; Guo et al.,
2002). The model requires monthly precipitation and poten-
tial evapotranspiration as inputs. Its simplicity and efficiency
of performance mean that TMWB can easily be used to in-
vestigate the impacts of climate change (Deng et al., 2016;
Luo et al., 2019). Its outputs include monthly streamflow, ac-
tual evapotranspiration, and the soil moisture content index.
The model has only two parameters (Table 1), C and SC.

The parameter C takes account of the effect of the change
of timescale when simulating actual evapotranspiration. The
parameter SC represents the field capacity (mm).

2.1.2 Xinanjiang model

The Xinanjiang model (Zhao, 1992) is widely used in China
(Yin et al., 2018; Si et al., 2015; Li and Zhang, 2017). It
takes precipitation and pan-evaporation data as inputs and
estimates the actual evapotranspiration, soil moisture stor-
age, surface runoff, interflow, and groundwater runoff from
the watershed. The simulated streamflow is calculated by
summing the routing results of the surface, interflow, and
groundwater runoff (Sun et al., 2018). In this study, the sur-
face runoff is routed by the instantaneous unit hydrograph
(Lin et al., 2014), while the interflow and groundwater runoff
are routed by the linear reservoir method (Jayawardena and
Zhou, 2000). A schematic overview of the model is presented
in Fig. 2. The meaning, range, and units of all the parameters
in the Xinanjiang model are listed in Table 2.

There are two important differences between the TMWB
and Xinanjiang models: (1) the TMWB model has two pa-
rameters, while the Xinanjiang model has 15 parameters;
(2) TMWB is a monthly rainfall–runoff model, whereas the
Xinanjiang model can run on hourly or daily step sizes.

2.2 Parameter sensitivity analysis method

Sensitivity analysis is used to identify which parameters sig-
nificantly affect the performance of the Xinanjiang model
and reduce the number of parameters to be calibrated. Nu-
merous sensitivity analysis methods are available, such as
the Morris method (Morris, 1991) and Sobol analysis (Sobol,
1993). The Morris method provides similar results to Sobol
analysis with a reduced computational burden (Rebolho
et al., 2018; Teweldebrhan et al., 2018; Yang et al., 2018).

The Morris method assumes that if parameters change by
the same relative amount, the parameter that causes the larger
elementary effect is the more sensitive (King and Perera,
2013). The elementary effect is calculated as follows:

EEp(θ1,θ2, . . .,θNp ,1)

=

y(θ1,θ2, . . .,θp−1,θp +1,θp+1, . . .,θNp )

−y(θ1,θ2, . . .,θNp )

1
, (1)

where θp represents the pth parameter, 1 is the relative
amount, Np is the total number of parameters, and y is the
model output based on a particular parameter set.

Each parameter is changed in turn and every parameter set
produces an elementary effect. The parameter sensitivity is
evaluated using the mean value µ of the elementary effects.
If a parameter has a higher value of µ, it is more sensitive.
In fact, interactions between parameters should be taken into
account (Jie et al., 2018). Hence, the SD σ can be calculated.
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Figure 2. Flow chart of the Xinanjiang model.

Table 2. Parameters of the Xinanjiang model.

Category Parameter Physical meaning Range and units

Evapotranspiration WM Tension water capacity 80–400 (mm)
X WUM=X ·WM, WUM is the tension water capacity of the lower layer 0.01–0.8 (–)
Y WLM=Y ·WM, WLM is the tension water capacity of the deeper layer 0.01–0.8 (–)
K Ratio of potential evapotranspiration to pan evaporation 0.4–1.5 (–)
C The coefficient of deep evapotranspiration 0.01–0.4 (–)

Runoff production B The exponent of the tension water capacity curve 0.1–10 (–)
IMP The ratio of the impervious to the total area of the basin 0.01–0.15 (–)

Runoff separation SM The areal mean of the free water capacity of the surface soil layer 10–80 (mm)
EX The exponent of the free water capacity curve 0.6–6 (–)
CG The outflow coefficients of the free water storage to groundwater 0.01–0.45 (–)
CI The outflow coefficients of the free water storage to interflow 0.01–0.45 (–)

Flow concentration N Number of reservoirs in the instantaneous unit hydrograph 0.5–10 (–)
NK Common storage coefficient in the instantaneous unit hydrograph 1–20 (–)
KG The recession constant of groundwater storage 0.6–1 (–)
KI The recession constant of the lower interflow storage 0.9–1 (–)

A higher value of σ indicates a stronger nonlinear correlation
between parameters (Pappenberger et al., 2008).

2.3 Time-varying parameter estimation method

2.3.1 Split-sample calibration

SSC provides a simple way of diagnosing parameter non-
stationarity under a changing environment (Merz et al.,
2011). As illustrated in Fig. 3a, the method usually has two
steps (Kim et al., 2015; Hughes, 2015): (1) available data are
divided into several consecutive periods, which can be ar-
bitrarily chosen as hours, days, months, seasons, or years;
(2) parameters are calibrated separately for the respective
period. This procedure gives better simulation performance
than using constant parameters but leads to the estimated pa-

rameters fluctuating strongly over adjacent sub-periods, pro-
ducing false temporal variants.

2.3.2 Split-sample calibration based on dynamic
programming

To overcome this problem, the SSC-DP method identifies
time-varying parameters with consideration of temporal con-
tinuity. SSC-DP has five steps (Fig. 3b):

1. Split the sample periods. This process is the same as the
first step of the SSC.

2. Generate an ensemble of near-optimal parameters.
Multiple parameter sets with objective values close to
the optimum for each sub-period are obtained using
Markov chain–Monte Carlo (MCMC) sampling (Chib
and Greenberg, 1995). The likelihood measure of the
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Figure 3. Flow chart of SSC-DP.

ith sub-period links the parameter to observations us-
ing the Nash–Sutcliffe efficiency (NSE) (Nash and Sut-
cliffe, 1970) as follows:

Li(θ)= 1−

i·l∑
t=(i−1)·l+1

(
Qt −

_

Qt

)2

i·l∑
t=(i−1)·l+1

(
Qt −Qt

)2 , (2)

whereQt and
_

Qt are the observed and simulated runoff
at time step t , respectively, and l is the length of the
sub-period.

3. Optimize by using dynamic programming. The goal is
to find parameters that provide both accurate stream-
flow simulations and continuity. The continuity condi-
tion aims to minimize the difference between the esti-
mated parameters for sub-periods i and i+1. ForN sub-
periods, the objective function can be expressed as fol-
lows:

MaxF =
N∑
i=1

[
(NSEi +NSEln,i +NSEabs,i)

−α ·

NP∑
p=1

∣∣θi+1,p − θi,p
∣∣

θmax,p − θmin,p

]
, (3)

NSEln,i = 1−

i·l∑
t=(i−1)·l+1

(
ln(Qt )− ln

(
_

Qt

))2

i·l∑
t=(i−1)·l+1

(ln(Qt )− ln(Qt ))2

, (4)

NSEabs,i = 1−

i·l∑
t=(i−1)·l+1

∣∣∣∣Qt −
_

Qt

∣∣∣∣
i·l∑

t=(i−1)·l+1

∣∣Qt −Qt

∣∣ , (5)

where θi,p is the pth estimated parameter over the ith
sub-period; θmax,p and θmin,p are its maximum and min-
imum values, respectively; NP is the number of the pa-
rameters; and α is the weight, reflecting parameter con-
tinuity. The weights of NSEi , NSEln,i , and NSEabs,i are
set to 1 following the work of Merz et al. (2011), who
used equal weights for the NSE and its variants.

As the decision-making process during the current sub-
period is related to that of the previous sub-period, the
parameter estimation over N periods becomes a multi-
stage optimization problem. To solve this, a dynamic
programming technique (Bellman, 1957) is employed
to decompose the optimization into a number of single-
stage problems and determine the optimal trajectory of
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the time-varying parameters. Dynamic programming is
a useful method for handling sequential operation deci-
sions. It allows the problem to be solved using a back-
ward recursive procedure, whereby the decision-making
for each sub-period maximizes the sum of current and
future benefits (Ming et al., 2017; Li et al., 2018). In
this study, the objective function is formulated as the
following recursive equation:{
F ∗i =max

{
fi
[
ϑi,1,ϑi,2,ϑi,3, · · ·,ϑi,p

]
+F ∗i+1

}
,

F ∗N = 0, (6)

where F ∗i is the evaluation index using the optimal time-
varying parameters from the N th to the ith sub-periods,
and Eq. (6) calculates the objective function from the
N th sub-period to the first sub-period.

4. Update initial states. The initial states, such as that of
the soil water content, are important in model simula-
tion and calibration. As the final states for sub-period i
are not used as the initial states for sub-period i+ 1
during steps (1)–(3), the time-varying parameter set ob-
tained from step (3) is applied to the hydrological model
to update the initial states of each sub-period for the next
iteration.

5. Repeat steps (1)–(4). Steps (1)–(4) are repeated until the
initial states of each sub-period are generally stable.

2.3.3 Data assimilation

Another approach for diagnosing variations in parameters is
data assimilation, using methods such as the EnKF and en-
semble Kalman smoother (EnKS). These are used here as
reference methods. The EnKF has been widely applied to
conceptual models, including TMWB (Deng et al., 2016). Li
et al. (2013) noted that the EnKF struggles to handle the time-
lag in routing processes. However, the routing component is
vital to the Xinanjiang model. EnKS can efficiently deter-
mine the states of the Xinanjiang model (Meng et al., 2017),
but the estimation of routing parameters deserves discussion.
Most previous studies have used a fixed distribution of the
routing hydrograph in data assimilation (Lu et al., 2013); i.e.
the parameters are constant for routing processes. With re-
spect to these issues, a modified EnKF (named SSC-EnKF)
is established as a third data assimilation reference method
in the synthetic experiment with the Xinanjiang model (de-
scribed in Sect. 3.1).

The EnKF includes two main steps: model prediction and
assimilation. The state vector is augmented with parameter
variables so that time-varying parameters can be estimated
simultaneously with model states. For model prediction, the
augmented vector is derived by adding noise on that from the
previous time step through the following equation:

(
ϑk−t+1
xk−t+1

)
=

(
ϑk+t

f
(
xk+t ,θk−t+1,ut+1

))
+

(
δkt
εkt

)
,

δkt ∼N(0,Rt ),ε
k
t ∼N(0,Gt ) (7)

where ϑ t is the parameter vector at time step t , represented
as (θ t,1,θ t,2, . . .,θ t,Np ); xt is the state vector; ϑk−t+1 and xk−t+1
are the kth ensemble member forecasts at time step t+1; ϑk+t
and xk+t are the updated values of the kth ensemble member
forecasts at time step t ; ut+1 denotes the forcing data (e.g.
precipitation) at time step t + 1; and δkt and εkt are the white
noise for the kth ensemble member, which follow a Gaussian
distribution with zero mean and specified covariance of Rt
and Gt , respectively.

In the assimilation process, the augmented vector is up-
dated using the following equations if suitable observations
are available:

(
xk+t+1
ϑk+t+1

)
=

(
xk−t+1
ϑk−t+1

)
+

 Kx
t+1

[
ykt+1−

_
y
k

t+1

]
Kϑ
t+1

[
ykt+1−

_
y
k

t+1

]
 , (8)

ykt+1 = yt+1+ ξ
k
t+1, ξ

k
t+1 ∼N (0,Wt ) , (9)

_
y
k

t+1 = h
(
xk−t+1,ϑ

k−
t+1

)
, (10)

where yt+1 is the observation vector at time t+1; ykt+1 is the

kth observation ensemble member at time step t+1;
_
y t+1 is

the simulation vector at time t+1; h is the observational op-
erator that converts the model states to observations; ξ kt+1 is
the measurement error, which follows a Gaussian distribu-
tion with a covariance of Wt ; and Kk

t+1 is the Kalman gain
matrix (for details, see Feng et al., 2017).

The EnKS is based on the EnKF. Whereas the EnKF up-
dates the model states and parameters at the current time step,
the EnKS takes account of those values over the past time
steps. The main steps of the EnKS are identical to those of
the EnKF, but the equation of the assimilation process is for-
mulated as follows:(
xk+t+1→t−n+2
ϑk+t+1→t−n+2

)
=

(
xk−t+1→t−n+2
ϑk−t+1→t−n+2

)

+

 Kx∗
t+1

[
ykt+1−

_
y
k

t+1

]
Kϑ∗
t+1

[
ykt+1−

_
y
k

t+1

]
 , (11)

_
y
k

t+1 = h
(
xk−t+1→t−n+2,ϑ

k−
t+1→t−n+2

)
, (12)

where K∗t+1 is the Kalman gain matrix of EnKS. The fixed
time window n of EnKS is pre-determined based on the re-
sponse function or unit hydrograph. Meng et al. (2017) sug-
gested that the time window should be set as half of the re-
cession time of a flood.
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A third data assimilation approach is constructed based on
the SSC. Instead of assimilating one observed variable, it as-
similates the observed variables during a given period in one
assimilation process. Assuming that the parameters are con-
stant in the given period, the equation of the assimilation pro-
cess for the ith sub-period is expressed as follows:(
xk+i+1
ϑk+i+1

)
=

(
xk−i+1
ϑk−i+1

)

+

 Kx∗
i+1

[
yki·l+1→(i+1)·l ,

−
_
y
k

i·l+1→(i+1)·l

]
Kϑ∗
i+1

[
yki·l+1→(i+1)·l −

_
y
k

i·l+1→(i+1)·l

]
 , (13)

_
y
k

i·l+1→(i+1)·l = h(x
k−
i+1,ϑ

k−
i+1), (14)

where ϑ i is the parameter vector for sub-period i, repre-
sented as (θi,1,θi,2, . . .,θi,Np ); xi is the initial state vector for
sub-period i; and l is the length of the sub-period.

This approach addresses the routing-lag issue by allow-
ing parameters of the routing processes, such as the instan-
taneous unit hydrograph, to remain constant for each sub-
period and to be time-varying over the whole period.

2.4 Model evaluation criteria

The streamflow simulations given by the proposed method
are verified using the NSE, relative error (RE), and NSE on
logarithm of streamflow (NSEln) (Hock, 1999). RE evalu-
ates the error of the total volume of streamflow, while NSE
and NSEln evaluate the agreement between the hydrograph of
observations and simulations. NSE is more sensitive to high
flows, but NSEln focuses more on low flows. Higher values
of NSE, and NSEln and lower absolute values of RE indicate
better streamflow simulations. The NSE, RE, and NSEln are
expressed as followed:

NSE= 1−

m∑
t=1

(
Qt −

_

Qt

)2

m∑
t=1
(Qt −Qt )2

, (15)

RE=

m∑
t=1

(
Qt −

_

Qt

)
m∑
t=1
Qt

, (16)

NSEln = 1−

m∑
t=1

(
ln(Qt )− ln

(
_

Qt

))2

m∑
t=1
(ln(Qt )− ln(Qt ))2

. (17)

The estimated parameters are evaluated by the RMSE (Alvisi
et al., 2006), MARE (Khalil et al., 2001), and R2 (Kim et al.,
2007) in the synthetic experiments (see details in Sect. 3.1).

RMSE is more sensitive to high values than MARE, while
R2 is based on the linear assumption (Dawson et al., 2007).
Smaller values of RMSE and MARE and higher values of R2

indicate stronger parameter identification ability. For the pth
parameter, the formulations are as follows:

RMSEp =

√√√√ 1
m

m∑
t=1

(
θt,p −

_

θ t,p

)2

, (18)

MAREp =
1
m

m∑
t=1

∣∣∣∣θt,p −_

θ t,p

∣∣∣∣
θt,p

, (19)

R2
p =

m∑
t=1

(
_

θ t,p −
_̄

θ p

)(
θt,p − θ̄p

)
√

m∑
t=1

(
_

θ t,p −
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where θt and
_

θ t are the true parameter and its estimated value

at the t th time step, respectively; θ̄p and
_̄

θ p are the mean
value of the true parameters and its estimated values, respec-
tively; and m is the length of the data during the whole pe-
riod.

3 Synthetic experiment and real catchment case study

Two synthetic experiments and two real catchment case stud-
ies were designed to assess the performance of SSC-DP. The
experiments are described in Table 3.

3.1 Synthetic experiments

The two synthetic experiments examine the ability of SSC-
DP to identify the time-varying parameters of the TMWB
and Xinanjiang hydrological models. The merit of synthetic
experiments is that the parameters can be synthetically gen-
erated to be either constant or time-varying. Hence, it is
convenient to compare the estimated values with the pre-
determined parameters to evaluate different parameter esti-
mation methods. Note that synthetic experiments have been
successfully used in several time-varying parameter identifi-
cation studies (Deng et al., 2016; Pathiraja et al., 2016; Xiong
et al., 2019).

3.1.1 Synthetic experiment with the TMWB model

Synthetic data of monthly precipitation and potential evap-
otranspiration were collected from the 03451500 catchment
of the Model Parameter Estimation Experiment (MOPEX)
(Duan et al., 2006). The data cover 252 months. Runoff was
derived by the TMWB model using synthetic precipitation,
potential evapotranspiration, and the pre-determined parame-
ters. Gaussian noise was added to the simulated runoff to rep-
resent uncertainties. The mean of the noise was set to zero,
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Table 3. Different cases of synthetic experiments and real catchment case studies for comparison and evaluation.

Data Hydrological
model

Time-varying parameter estimation methods

SSC SSC-DP Data assimilation

Synthetic
experiment

Monthly synthetic data TMWB
model

X X

Hourly synthetic data Xinanjiang
model

X X X

Real catchment
case study

Daily data from Wuding River basin Xinanjiang
model

X X X

Daily data from Xun River basin Xinanjiang
model

X X X

and the SD was assumed to be 3 % of the magnitude of the
values (Deng et al., 2016).

Eight scenarios with different pre-determined parameters
were investigated (Table 4). The first scenario considered
constant parameters. Scenarios 2 and 3 considered month-
by-month variations in TMWB model parameters; i.e. the
parameters remain constant during each month but change
from month to month. Scenarios 4 and 5 considered param-
eters that change every 6 months. Scenarios 6–8 considered
year-by-year variations. The changes in both C and SC were
considered to be linear in scenarios 2, 4, and 6 (trend) and
sinusoidal in scenarios 3, 5, and 7 (periodicity), reflecting
the impacts of climate change and human activities (Pathi-
raja et al., 2016). Scenario 8 considered a periodic variation
with an increasing trend for parameter C and only the linear
variation in SC.

3.1.2 Synthetic experiment with the Xinanjiang model

Hourly precipitation and pan evaporation data were collected
from the Baiyunshan Reservoir basin in China. The data
cover a period of 18 000 h. The Xinanjiang model has 15 pa-
rameters, which can lead to a significant computational bur-
den. To reduce the total number of model runs, only the
sensitive parameters were considered to be free. The Morris
method was used to detect the free parameters (Fig. 4), with
the results showing that KE, CI, CG, KI, KG, and NK are
sensitive parameters. Thus, the other parameters were held
constant for the whole period.

Similar to the experiment with the TMWB model, the syn-
thetic runoff was derived from the Xinanjiang model with
added Gaussian noise. The mean of the noise was set to zero,
and the SD was assumed to be 5 % of the magnitude of the
values. As presented in Table 5, all 15 parameters were set
to be constant in the first scenario. The pre-determined sensi-
tive parameters were considered to vary with a certain trend
and periodicity in scenarios 2 and 3, respectively. Scenario 4
considered a combined variation of trend and periodicity for
the parameter KE, with the other free parameters set to vary

linearly. The parameter variations in scenarios 2–4 were as-
sumed to occur once a month.

3.2 Study area: Wuding River basin

The Wuding River basin (Fig. 5a) examined in the first case
study is a large sub-basin of the Yellow River basin lo-
cated on the Loess Plateau (Xu, 2011). The Wuding River
has a drainage area of 30 261 km2 and a total length of
491 km. The average slope is 0.2 %, and the elevation varies
from 600–1800 ma.s.l. The area is a semi-arid region with
mean annual precipitation of ∼ 401 mm. The annual poten-
tial evapotranspiration is 1077 mm, and the mean annual
runoff is 39 mm. The data for this basin were collected over
the period 1958–2000. The daily precipitation was obtained
from Thiessen polygons using records from 122 rain gauges.
Based on meteorological data from the China Meteorological
Data Sharing Service System (http://data.cma.cn, last access:
12 February 2018), areal pan evaporation data were obtained.
As illustrated in Fig. 5a, the station furthest downstream,
Baijiachuan, drains an area of 29 662 km2 (98 % of the total
basin) and records the daily runoff data. The data of the daily
precipitation and streamflow in the Wuding River basin were
obtained from the local Hydrology and Water Resources Bu-
reau of China, the quality of which has been checked by the
official authorities, and there are no gaps among these data
for all the hydrological stations. It can be seen from Fig. 5c
that the annual streamflow in the Wudinghe River basin has
a distinct decreasing trend, while seasonal variations are not
significant, but the annual precipitation and pan evaporation
generally have no trend, suggesting the impacts of human ac-
tivities on rainfall–runoff relationships.

Soil and water conservation measures, such as the con-
struction of the check dams and afforestation, have been un-
dertaken since the 1960s. The areas of two soil and water
conservation measures are plotted in Fig. 5e, the data of
which were collected from Zhang et al. (2002). The areas
of tree planting have an increasing trend, but the slope gets
much larger after 1972. It indicates that greater efforts have
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Table 4. True parameters of different scenarios in the synthetic experiment with the TMWB model.

Scenario Description

1 Both C and SC are constant

2 Both C and SC have increasing linear trends and change every month

3 Both C and SC have periodic variations and change every month

4 Both C and SC have increasing linear trends and change every 6 months

5 Both C and SC have periodic variations and change every 6 months

6 Both C and SC have increasing linear trends and change every year

7 Both C and SC have periodic variations and change every year
C has a periodic variation with an increasing linear trend, whereas SC only has an increasing linear trend.

8 The parameters change every year

Figure 4. Results of the Morris method for the synthetic experiment with the Xinanjiang model. The sensitivity analysis is based on three
different kinds of model responses: (a) NSE, (b) NSEabs, (c) NSEln. Only the most sensitive parameters are labelled.

been made for afforestation since the turning point. Simi-
larly, the areas of dammed lands also increase, but the rate
gets slower after 1972. These two soil and water conserva-
tion measures had changed the underlying surface of the wa-
tershed and impacted the relationship between precipitation
and runoff (Jiao et al., 2017; Gao et al., 2017).

3.3 Study area: Xun River basin

The proposed method was also applied to the Xun River
basin, China (Fig. 5b). Located between 108◦24′–109◦26′ E
and 32◦52′–33◦55′ N, the study area covers approximately
6448 km2. The Xun River is ∼ 218 km long and has an av-
erage annual flow of 73 m3 s−1 (Li et al., 2016). The basin
has a subtropical monsoon climate. The weather is wet and

moderate with an annual average temperature of 15–17 ◦C.
The daily hydrological data from 1991–2001 include precip-
itation from 28 rainfall stations, pan evaporation from three
hydrological gauged stations, and discharge at the outlet of
the Xun River basin. Areal precipitation was obtained using
the Thiessen polygon method, and areal pan evaporation was
computed using the average value of the data from gauged
stations. The data in the Xun River basin were also obtained
from the local Hydrology and Water Resources Bureau of
China, and there are no gaps among these data for all the
hydrological stations.

It can be observed from Fig. 5d that no trend is found in
annual precipitation, pan evaporation, and streamflow, sug-
gesting that the relationship between precipitation and runoff
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Table 5. True parameters of different scenarios in the synthetic experiment with the Xinanjiang model

Scenario Description

1 KE, CI, CG, KI, KG, and NK remain constant

2 KE, CI, CG, KI, KG, and NK have linear trends and change every month

3 KE, CI, CG, KI, KG, and NK have periodic variations and change every month
KE has a periodic variation with an increasing linear trend, whereas CI, CG, KI, KG, and NK only have periodic variations

4 The parameters change every month

Figure 5. Location of (a) Wuding River basin and (b) Xun River basin. The plots (c) and (d) show the average yearly and monthly variations
of precipitation, pan evaporation, and streamflow in the Wuding River basin and Xun River basin, respectively. The plot (e) shows the
temporal variations in the soil and water conservation measures undertaken in the Wuding River basin.
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of the Xun River basin is rarely affected by human activi-
ties during 1991–2001. However, strong seasonal patterns are
exhibited in these three climatic and hydrological variables,
suggesting that seasonal variations in hydrological parame-
ters should be considered.

4 Results

4.1 Synthetic experiment

4.1.1 Results of synthetic experiment with the TMWB
model

When using SSC-DP, the first task is to define how the hy-
drological data series should be split into the k sub-periods
within which the parameters are assumed to be constant. As
climate change can induce seasonal or half-annual variations
while human activities usually influence the watershed an-
nually, lengths of 3 months, 6 months, and 12 months were
arbitrarily chosen. Thus, this experiment compared the fol-
lowing four methods: (1) EnKF, (2) 3-SSC-DP, (3) 6-SSC-
DP, and (4) 12-SSC-DP.

Figure 6a presents the runoff simulation performance for
various scenarios. In scenario 1, the NSE values of the three
SSC-DP methods are all higher than that of EnKF. The re-
sults of NSEln show no significant differences among various
methods. For scenarios 2, 4, and 6, where true parameters
have linear trends, the 6-SSC-DP and 12-SSC-DP are supe-
rior to the EnKF and 3-SSC-DP in terms of NSE and NSEln.
In scenario3, where the true parameters have periodic vari-
ations and change every month, the NSE and NSEln values
of 6-SSC-DP and 12-SSC-DP decrease significantly, because
the assumed sub-period length is longer than the timescale of
actual variations. Similarly, in scenario 5, 12-SSC-DP per-
forms worst for NSE and NSEln, but 6-SSC-DP performs
best. In scenario 7 and 8, both 6-SSC-DP and 12-SSC-DP
perform better than EnKF. According to the evaluations of
NSE and NSEln, the SSC-DP offers improved accuracy com-
pared to the EnKF if the proper length is chosen. Another
advantage of the SSC-DP is the small RE. For all scenarios,
the SSC-DP methods significantly outperform for RE com-
pared with EnKF. Among the SSC-DP methods, the RE of
3-SSC-DP is the smallest.

Figure 6b and c focuses on the ability of the four methods
to identify time-varying parameters. It can be seen that the
RMSE and MARE values of the 3-SSC-DP are larger than
those of other methods in most cases. That is because the sub-
period length that serves as a calibration period for MCMC
is so short (i.e. 3 months) that the estimated parameters are
associated with higher uncertainties.

Regarding the synthetic true parameters having constant
values (scenario 1), 12-SSC-DP gives the best performance
with the lowest RMSE and MARE and highest R2. The ob-
servations and estimated parameters are presented in Fig. 7b.

It shows that the estimated parameters obtained by EnKF
vary at every time step, resulting in larger deviations from
the observations than 6-SSC-DP and 12-SSC-DP.

When the synthetic true parameters vary linearly (scenar-
ios 2, 4, and 6), 12-SSC-DP produces the best estimations in
comparison with EnKF, 3-SSC-DP, and 6-SSC-DP. The per-
formances of 6-SSC-DP and EnKF are similar.

When the synthetic true parameters vary sinusoidally from
month to month, EnKF gives the best estimations in sce-
nario 3. The poor performances of 6-SSC-DP and 12-SSC-
DP can be explained by the sub-period length being much
longer than the actual one. When the parameters vary peri-
odically at 6-month intervals (scenario 5), 6-SSC-DP yields
the best performance with the lowest RMSE and MARE
and highest R2. The differences in estimation performances
among 3-SSC-DP, 12-SSC-DP, and EnKF are small. The
estimated parameters for scenario 5 have been plotted in
Fig. 7a. Although 3-SSC-DP and 12-SSC-DP have differ-
ent lengths of sub-periods, they can also detect the correct
seasonal signal of the parameters. For the annual variation
in parameters (scenario 7), 12-SSC-DP and 6-SSC-DP pro-
duce better results than EnKF. Similar results can be seen in
scenario 8, where C has a combined variation from year to
year. In summary, the results indicate that the SSC-DP with
a suitable length can estimate more accurate parameters than
EnKF.

4.1.2 Results of synthetic experiment with the
Xinanjiang model

The Xinanjiang model is more complex than TMWB, and
so some sensitivity analysis is necessary. As stated in
Sect. 3.1.2, the sensitive parameters are KE, CI, CG, KI, KG,
and NK. The 18 000 hourly hydrological data points were
divided into 25 sub-periods (monthly timescale) and 12 sub-
periods (bimonthly timescale). It is considered that a monthly
timescale helps diagnose seasonal variations, whereas a 2-
month timescale provides data for longer calibration lengths.

Three data assimilation methods (see Sect. 2.3.2 for de-
tails) were applied to the synthetic data: (1) EnKF, (2) EnKS,
and (3) SSC-EnKF. The results in Fig. 8 indicate that EnKS
is superior to EnKF, as previously observed (Li et al., 2013),
although SSC-EnKF gives the best results. This is probably
because SSC-EnKF is based on the assumption that the pa-
rameters remain constant during each sub-period.

The simulated streamflow and identification of time-
varying parameters were compared across four methods: 1-
SSC, SSC-EnKF, 1-SSC-DP, and 2-SSC-DP. The simulation
performance is summarized in Fig. 9a. For all scenarios, the
NSE of 2-SSC-DP is the lowest, but it performs better for
low flows. The SSC-EnKF produces the highest RE in sce-
narios 2, 3, and 4, indicating the problem of simulating water
balance. The SSC and 1-SSC-DP perform well for all scenar-
ios in terms of NSE, RE, and NSEln. However, the SSC per-
forms better than the 1-SSC-DP with regard to RE, while 1-
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Figure 6. Comparison between the EnKF and SSC-DP methods for (a) streamflow simulation and identification of (b) parameter C and
(c) parameter SC.

SSC-DP is slightly superior to SSC in scenario 3 with higher
NSEln.

Figure 9b and c compares the time-varying parameter esti-
mation performance among the four methods. In scenarios 1
and 2, 2-SSC-DP produces the lowest RMSE, MARE, and
R2, followed by the 1-SSC-DP. The 1-SSC-DP is slightly su-
perior to the 1-SSC and significantly outperforms the SSC-
EnKF for the two scenarios.

When the synthetic true parameters vary sinusoidally from
month to month (scenario 3), the estimated parameters are
plotted in Fig. 10. It can be seen that 1-SSC-DP successfully
detects a seasonal signal in every parameter. The SSC-EnKF
performs well for R2, but it has high MARE. Although the

average MARE values of the SSC and 2-SSC-DP are lower
than those of SSC-EnKF, their R2 are relatively low. From
Fig. 10, the estimated parameters by the 1-SSC generally
fluctuate periodically, but the variations are dramatic, result-
ing in the lowest R2 for CI, KI, KG, and NK. The estimated
parameters of the 2-SSC-DP fluctuate more slowly, but the
sub-period length is too long. In scenario 4, 1-SSC performs
better than the SSC-EnKF and 2-SSC-DP but is still slightly
inferior to the 1-SSC-DP. Overall, the 1-SSC-DP achieves
higher-quality and more robust parameter estimations perfor-
mances than the other methods.
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Figure 7. Comparison among different methods for (a) scenario 5 and (b) scenario 1 of the synthetic experiment with the TMWB model.

Figure 8. Comparison among EnKF, SSC-EnKF, and EnKS in the synthetic experiment with the Xinanjiang model.

4.2 Case study: Wuding River basin

Figure 11a and b show the double mass curves between daily
runoff and precipitation for the Wuding River basin. Simi-
lar to the work of Deng et al. (2016), the two linear slopes
(p value< 0.05) of the curves are different before and af-

ter 1972, demonstrating the relationship between precipita-
tion and runoff changes under the soil and water conserva-
tion measures. This suggests that there are annual variations
in the watershed characteristics. Hence, the length of each
sub-period was set to 12 months, and the time-varying pa-
rameters were identified using 12-SSC-DP. Based on daily
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Figure 9. Comparison among the SSC, SSC-EnKF, and SSC-DP methods in the synthetic experiment with the Xinanjiang model for
(a) streamflow simulation and parameter identification in terms of (b) RMSE, (c) MARE, and (d) R2.
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Figure 10. Comparison between estimated parameters and their true values for scenario 3 of the synthetic experiment with the Xinanjiang
model.

Figure 11. Double mass curves between daily runoff and precipitation for (a) Wuding River basin from 1958–1972; (b) Wuding River basin
from 1973–2000; (c) Xun River basin from 1991–2001. Subgraph (d) represents the double mass curve between the mean daily runoff and
precipitation from 1991–2001.
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Figure 12. Simulation performance for streamflow in the Wuding
River basin. The results of NSE and NSEln are shown on the pri-
mary axis, while the values of RE are shown on the secondary axis.

Wuding data from 1958–2000, sensitivity analysis showed
that nine parameters of the Xinanjiang model are relatively
sensitive: WM, WUM, WLM, KE, IMP, KI, KG,N , and NK.

The simulation results given by 12-SSC-DP were bench-
marked against those from 12-SSC, data assimilation, and the
conventional method in which all Xinanjiang model param-
eters remain constant. The simulation performance is pre-
sented in Fig. 12. The values of the NSEs are relatively low,
because the streamflow in dry regions is difficult to simulate.
It can be seen that the 12-SSC-DP gives the best simulation
results among different methods with the highest NSE and
NSEln and small RE. Although the 12-SSC produces rela-
tively high NSE, it performs the worst simulations for low
flows. The SSC-EnKF has relatively high NSEln, but its RE
is the largest. Overall, the 12-SSC-DP significantly improves
the simulation performance of the Xinanjiang model in the
Wuding River basin.

Although the objective function of 12-SSC-DP consid-
ers the trade-off between simulation accuracy and parameter
continuity, 12-SSC-DP gives a higher NSE value. This may
be because 12-SSC locates a local peak over one sub-period,
resulting in unreasonable model states for the beginning of
the next sub-period, whereas 12-SSC-DP uses dynamic pro-
gramming to explore more reasonable parameter values and
model states. Figure 13 shows the quantile–quantile plots,
from which it can be seen that if the parameters are assumed
to be constant, streamflow is highly underestimated. The un-
derestimation mainly derives from the deficiencies of the
model structure. Methods 12-SSC and 12-SSC-DP reduce
this underestimation by using time-varying parameters. Ad-
ditionally, 12-SSC-DP is slightly inferior to 12-SSC in terms
of peak flows but is superior in terms of simulating stream-
flow lower than 100 m3 s−1, which accounts for 80 % of the
whole streamflow time series. It can be inferred that the 12-
SSC-DP is more applicable to the simulation of streamflow
in the Wuding River basin.

The estimated time-varying parameters estimated by 12-
SSC-DP are plotted in Fig. 14. The results show that WM
remains constant before and after 1972, but WUM varies
significantly over this period, indicating that the distribution

of soil water capacity may change, i.e. WUM decreases but
WLM increases. A Person correlation analysis is applied to
investigate the relationship between the areas of tree plant-
ing and WUM as well as WLM. It is found that there is a
significant negative correlation (Pearson correlation efficient
ρ=−0.38, P < 0.05) between the areas of tree planting and
WUM, while WLM has a non-significant positive correla-
tion (ρ= 0.26, P > 0.05) with the areas of tree planting. It
can be inferred that less severe soil erosion occurred, because
the upper layers became thinner while the lower layer, where
vegetation roots dominate, became thicker (Jayawardena and
Zhou, 2000). Additionally, IMP is significantly correlated
with the areas of tree planting (ρ=−0.33, P < 0.05). Except
for afforestation, the areas of the dammed lands are signifi-
cantly correlated with WLM (ρ= 0.46, P < 0.05), suggest-
ing that the construction of the check dams also has an in-
fluence on the soil water capacity of the Wuding river basin.
Other parameters, KE, KI, KG,N , and NK, show little differ-
ence before and after 1972. The variations in WLM and IMP
slowed down after the turning point, similar to the results of
Deng et al. (2016).

4.3 Case study: Xun River basin

Figure 11c and d show the double mass curves between
runoff and precipitation for the Xun River basin. The linear
slope of the curve is generally stationary for the whole 10-
year period shown in Fig. 11c, with a correlation coefficient
of 99.6 %. In contrast, the linear slope for an intra-annual
timescale is non-stationary (Fig. 11d). Based on these results,
it can be inferred that the relationship between precipitation
and runoff is stable from 1990–2000 but varies over the intra-
annual timescale. Hence, sub-periods of 3 and 12 months
were examined in the Xun River basin using models 3-SSC-
DP and 12-SSC-DP. From the Xun River basin data from
1991–2000, sensitivity analysis suggested that five parame-
ters of the Xinanjiang model are relatively sensitive, namely
KE, B, KI, KG, and NK.

Similar to the case study of the Wuding River basin,
the simulation performance of 3-SSC-DP was benchmarked
against that of 3-SSC, data assimilation, and the conventional
calibration method. Among the data assimilation methods
described in Sect. 2.3.2, 3-SSC-EnKF gives the highest sim-
ulation accuracy. The simulation performance is presented
in Fig. 15. All methods performed well, with NSE values
of 92.5 %, 93.0 %, 95.0 %, and 94.8 % for the conventional
method, 3-SSC-EnKF, 3-SSC, and 3-SSC-DP, respectively.
3-SSC and 3-SSC-DP also perform well for NSEln compared
with 3-SSC-EnKF and the conventional method. However,
with regard to RE, the values are 0.0007 and 0.0324 for 3-
SSC-DP and 3-SSC-DP, respectively. This indicated that the
3-SSC-DP can better simulate water balance than the 3-SSC
in the Xun River basin. Figure 16 illustrates the hydrograph
and quantile–quantile plots for the simulations in the Xun
river basin. It is evident that the peak flows estimated by the
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Figure 13. The simulated and observed streamflow using the conventional method, SSC-EnKF, SSC, and SSC-DP for the Wuding River
basin. (a) Streamflow simulation hydrograph. (b) The quantile–quantile plot for all streamflow. (c) The quantile–quantile plot for streamflow
lower than 100 m3 s−1.

Figure 14. Estimated sensitive parameters of the Xinanjiang model for the Wuding River basin. The blue and orange solid lines represent
the estimated parameters pre- and post-1972, respectively.
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Figure 15. Simulation performance for streamflow in the Xun River
basin. The results of NSE and NSEln are shown on the primary axis,
while the values of RE are shown on the secondary axis.

3-SSC are higher than those of 3-SSC-DP, and 3-SSC-DP
simulates better the flows ranging from 100 to 200 m3 s−1.

The estimated parameters using 3-SSC-DP are presented
in Fig. 17a. Some parameters vary significantly over an intra-
annual timescale. Among them, the parameter KE, represent-
ing the ratio of potential evapotranspiration to pan evapo-
ration, exhibits the most distinct seasonal variations. A fast
Fourier transform was used to calculate the spectral power of
the KE time series to explore its periodic characteristics. As
can be observed from Fig. 17b, 3-SSC-DP had the greatest
spectral power, for a period of 4.0 cycles per year, somewhat
higher than the power obtained by 3-SSC and 3-SSC-EnKF.
This means a stronger periodic pattern is captured by 12-
SSC-DP. Given that the estimated KE varies at 3-month inter-
vals, it has a 1-year periodicity. The other parameters do not
exhibit significant 1-year periodic patterns. This may be be-
cause only KE, linking potential evapotranspiration and pan
evaporation, is directly impacted by seasonal climate varia-
tions, such as temperature.

5 Discussion

As noted in the methodology section, the performance of
the proposed method is influenced by several factors, such
as the weights in the objective function and the choice of
lengths. Some suggestions regarding the improvement of the
proposed approach are now discussed in detail.

5.1 Objective function of dynamic programming in
SSC-DP

In the conventional method, a parameter set is identified as
optimal for providing the best simulation over the calibration
period. However, other parameter sets with slightly worse
(but still good) performance can also be candidates. Allowing
for input data uncertainty and local optima, SSC-DP identi-
fies parameter sets that perform near-optimally and display
fewer fluctuations over sub-periods. This can be adjusted by
weights in the objective function of the dynamic program-
ming approach (see Eq. 3). As the weighting for accuracy

increases, parameters providing more accurate simulations
are chosen, but parameter continuity is less important. If
too much importance is given to continuity, the variations
in real-world processes may be underestimated. Here, the in-
fluence of different weights has been assessed for simulation
accuracy and parameter continuity based on synthetic experi-
ments with the TMWB and Xinanjiang models, respectively.
Specifically, the weight for simulation accuracy was set to 1,
and the weight for parameter continuity α varied from zero to
a small positive value (e.g. 1). When α = 0, only simulation
accuracy was considered.

Figure 18a shows theR2 value of 12-SSC-DP with various
continuity weights for scenario 4 in the synthetic experiment
with the TMWB model. It can be seen thatR2 is lowest when
α = 0 for both C and SC. There is some improvement when
a nonzero weight is applied. As α increases, the performance
of 12-SSC-DP improves and then worsens; the differences
among schemes with nonzero weights are not distinct. Simi-
lar results can be observed in Fig. 18b, which presents the R2

value of 12-SSC-DP with various α values for scenario 2 in
the synthetic experiment with the Xinanjiang model. There-
fore, nonzero continuity weights can significantly improve
the parameter estimation performance compared with the
zero-weight case. It is suggested that weights of 1 (accuracy)
and 0.005 (continuity) be used with the TMWB model and
weights of 1 (accuracy) and 0.2 (continuity) be applied with
the Xinanjiang model, as in this study.

5.2 Choice of sub-period length in SSC-DP

As mentioned by Gharari et al. (2013), there are differ-
ent ways of determining the sub-period lengths. The sub-
periods can be non-continuous hydrological years (Seiller
et al., 2012), months or seasons (Deng et al., 2018; Paik et al.,
2005), and discharge or precipitation events (Singh and Bar-
dossy, 2012). This introduces a controversial issue whereby
parameters are impacted by the length of the calibration pe-
riod. Merz et al. (2009) suggested that 3–5 years is an accept-
able calibration period, whereas Singh and Bardossy (2012)
indicated that a small number of events may be sufficient for
parameter identification. It is suggested that the determina-
tion of the sub-period length considers three factors:

1. The temporal scale of climate change or human activ-
ities. For example, the Wudinghe River basin is taken
as a case study. The soil and water conservation mea-
sures have led to long-term change in the catchment
characteristic since the 1960s. Due to this, the yearly
sub-period is preferred.

2. The seasonality. Contrary to the Wudinghe River basin,
the relationship between precipitation and runoff of the
Xun River basin is rarely affected by human activities
during 1991–2001. However, its significant seasonal dy-
namics can be observed and has been studied in the lit-
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Figure 16. The simulated and observed streamflow using the conventional method, SSC-EnKF, SSC, and SSC-DP for the Xun River basin. (a)
Streamflow simulation hydrograph. (b) The quantile–quantile plot for all streamflow. (c) The quantile–quantile plot for streamflow ranging
from 100 to 200 m3 s−1.

Figure 17. Estimated sensitive parameters of the Xinanjiang model for the Xun River basin over (a) a seasonal timescale and (c) an annual
timescale. Plot (b) illustrates the spectral power of parameter KE using different methods.

erature (Lan et al., 2020, 2018). In order to diagnose the
seasonality, the stable period of 3 months is adopted.

3. The simulation accuracy. The length should be neither
too long nor too short so as to increase the reliability of
the calibration while guaranteeing that variations in real
processes are captured. Thus, given that the timescale of

the variations is unknown, the proposed SSC-DP can be
used with different split-sample lengths. It is suggested
that the length should be as long as possible without
degrading the simulation performance significantly. For
example, in the synthetic experiment with the TMWB
model, if the difference between the NSE values of 6-
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Figure 18. Correlation efficiency results of SSC-DP using different
weights of parameter continuity for synthetic experiments with (a)
the TMWB model and (b) the Xinanjiang model. The mean R2 is
the average value of the R2 such that the identification results for
parameters with different ranges can be summarized.

SSC-DP and 3-SSC-DP is small, the preferred length is
6 months.

However, many studies are based on the conventional as-
sumption that the parameters of different sub-periods are
independent. Hence, the sub-period lengths should be long
enough to reduce the degree of uncertainty. In this study, the
assumption of parameter continuity is introduced to give an-
other constraint that considers correlations between parame-
ters of adjacent sub-periods. It appears that the determination
of sub-period lengths deserves further investigation.

6 Conclusions

This paper has described a time-varying parameter estima-
tion approach based on dynamic programming. The pro-
posed SSC-DP combines the basic concept of SSC and the
continuity assumption of data assimilation to estimate more
continuous parameters while providing comparably good
streamflow simulations. Two synthetic experiments were de-
signed to evaluate its applicability and efficiency for time-
varying parameter identification. Furthermore, two case stud-
ies were conducted to explore the advantages of SSC-DP in
real catchments. From the results, the following conclusions
can be drawn:

1. The proposed method with a suitable length not only
produces better simulation performance, but also en-
sures more accurate parameter estimates than SSC and
EnKF in the synthetic experiment using the TMWB
model with two parameters. The impact of sub-period
lengths on the performance of SSC-DP is significant
when the pre-determined parameters vary sinusoidally.

2. The proposed method can be used to deal with com-
plex hydrological models involving a large number of
parameters, demonstrated by the synthetic experiment
using the Xinanjiang model with 15 parameters. A sen-
sitivity analysis was performed to reduce the probable
computational cost and improve the efficiency of iden-
tifying the time-varying parameters.

3. The proposed method has the potential to detect the re-
lationship between the time-varying parameters and dy-
namic catchment characteristics. For example, SSC-DP
produces the best simulation performance in the case
study of the Wuding River basin and detects that pa-
rameters representing soil water capacity and impervi-
ous areas changed significantly after 1972, reflecting the
soil and water conservation projects carried out from
1958–2000. Additionally, SSC-DP detects the strongest
seasonal signal in the case study of Xun River basin,
indicating the distinct impacts of seasonal climate vari-
ability.

This study has demonstrated that the proposed method
is an effective approach for identifying time-varying pa-
rameters under changing environments. Further work is still
needed, such as to determine an objective method for choos-
ing the sub-period lengths.
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