Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-685-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-685-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires
William J. Massman
CORRESPONDING AUTHOR
United States Department of Agriculture (USDA) Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526, USA
Related authors
William J. Massman
Hydrol. Earth Syst. Sci., 24, 967–975, https://doi.org/10.5194/hess-24-967-2020, https://doi.org/10.5194/hess-24-967-2020, 2020
Short summary
Short summary
Studies of the surface energy balance of the earth (SEB) often show that measured incoming energy exceeds the sum of measured outgoing energy terms. The present study models two contributions to the outgoing terms of the SEB: (a) water vapor and dry air as non-ideal gases and (b) the contribution of evaporation to the convective heat. As anticipated, the results are insufficient to resolve the closure mystery, but they should provide insights into atmospheric thermodynamics and the SEB.
John M. Frank, William J. Massman, and Brent E. Ewers
Atmos. Meas. Tech., 9, 5933–5953, https://doi.org/10.5194/amt-9-5933-2016, https://doi.org/10.5194/amt-9-5933-2016, 2016
Short summary
Short summary
Ecosystem flux networks measure carbon dioxide and water vapor exchange and are integral to global studies of the biosphere and climate change. Yet recent evidence suggests a measurement error in sonic anemometry, the principal instrument for eddy-covariance research. A novel Bayesian analysis estimates the three-dimensional correction in these instruments and demonstrates that 60 % of the sites within the AmeriFlux network and numerous others globally underestimate all ecosystem fluxes by 8–12 %.
W. J. Massman
Geosci. Model Dev., 8, 3659–3680, https://doi.org/10.5194/gmd-8-3659-2015, https://doi.org/10.5194/gmd-8-3659-2015, 2015
William J. Massman
Hydrol. Earth Syst. Sci., 24, 967–975, https://doi.org/10.5194/hess-24-967-2020, https://doi.org/10.5194/hess-24-967-2020, 2020
Short summary
Short summary
Studies of the surface energy balance of the earth (SEB) often show that measured incoming energy exceeds the sum of measured outgoing energy terms. The present study models two contributions to the outgoing terms of the SEB: (a) water vapor and dry air as non-ideal gases and (b) the contribution of evaporation to the convective heat. As anticipated, the results are insufficient to resolve the closure mystery, but they should provide insights into atmospheric thermodynamics and the SEB.
John M. Frank, William J. Massman, and Brent E. Ewers
Atmos. Meas. Tech., 9, 5933–5953, https://doi.org/10.5194/amt-9-5933-2016, https://doi.org/10.5194/amt-9-5933-2016, 2016
Short summary
Short summary
Ecosystem flux networks measure carbon dioxide and water vapor exchange and are integral to global studies of the biosphere and climate change. Yet recent evidence suggests a measurement error in sonic anemometry, the principal instrument for eddy-covariance research. A novel Bayesian analysis estimates the three-dimensional correction in these instruments and demonstrates that 60 % of the sites within the AmeriFlux network and numerous others globally underestimate all ecosystem fluxes by 8–12 %.
W. J. Massman
Geosci. Model Dev., 8, 3659–3680, https://doi.org/10.5194/gmd-8-3659-2015, https://doi.org/10.5194/gmd-8-3659-2015, 2015
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Theory development
Hydro-pedotransfer functions: a roadmap for future development
The dimensions of deep-layer soil desiccation and its impact on xylem hydraulic conductivity in dryland tree plantations
Prediction of absolute unsaturated hydraulic conductivity – comparison of four different capillary bundle models
Snowmelt-mediated isotopic homogenization of shallow till soil
Prediction of the absolute hydraulic conductivity function from soil water retention data
Mixed formulation for an easy and robust numerical computation of sorptivity
Signal contribution of distant areas to cosmic-ray neutron sensors – implications for footprint and sensitivity
Technical note: A sigmoidal soil water retention curve without asymptote that is robust when dry-range data are unreliable
Compaction effects on evaporation and salt precipitation in drying porous media
Evaporation front and its motion
Hysteresis in soil hydraulic conductivity as driven by salinity and sodicity – a modeling framework
HESS Opinions: Unsaturated infiltration – the need for a reconsideration of historical misconceptions
Sigmoidal water retention function with improved behaviour in dry and wet soils
Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices
Beyond Perrault's experiments: repeatability, didactics and complexity
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Energy states of soil water – a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes
Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia
Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone
Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence
Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time
A thermodynamic formulation of root water uptake
Soil–aquifer phenomena affecting groundwater under vertisols: a review
How effective is river restoration in re-establishing groundwater–surface water interactions? – A case study
Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region
Relations between macropore network characteristics and the degree of preferential solute transport
Impacts of conservation tillage on the hydrological and agronomic performance of Fanya juus in the upper Blue Nile (Abbay) river basin
Averaged water potentials in soil water and groundwater, and their connection to menisci in soil pores, field-scale flow phenomena, and simple groundwater flows
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Nana He, Xiaodong Gao, Dagang Guo, Yabiao Wu, Dong Ge, Lianhao Zhao, Lei Tian, and Xining Zhao
Hydrol. Earth Syst. Sci., 28, 1897–1914, https://doi.org/10.5194/hess-28-1897-2024, https://doi.org/10.5194/hess-28-1897-2024, 2024
Short summary
Short summary
Deep-layer soil desiccation (DSD) can restrict the sustainability of deep-rooted plantations in water-limited areas. Thus, we explored the extreme effects of DSD based on mass data published and measured on the Loess Plateau and found that the permanent wilting point is a reliable indicator of the moisture limitation of DSD, regardless of tree species, with the corresponding maximum root water uptake depth varying among climatic zones. These dimensions increased the risk of planted trees' death.
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023, https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Short summary
While various expressions for the water retention curve are commonly compared, the capillary conductivity model proposed by Mualem is widely used but seldom compared to alternatives. We compare four different capillary bundle models in terms of their ability to fully predict the hydraulic conductivity. The Mualem model outperformed the three other models in terms of predictive accuracy. Our findings suggest that the widespread use of the Mualem model is justified.
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
EGUsphere, https://doi.org/10.5194/egusphere-2023-884, https://doi.org/10.5194/egusphere-2023-884, 2023
Short summary
Short summary
Snowmelt event governs the hydrological cycle of sub-arctic areas. In this study, we conducted a tracer experiment on a forested hilltop in Lapland, to identify how high-volume infiltration events modify the soil water storage. We found that a strong tracer signal remained in deeper soil layers after the experiment and over the winter, but it got fully displaced during the snowmelt. We propose a conceptual infiltration model that explains how the snowmelt homogenizes the soil water storage.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 27, 895–915, https://doi.org/10.5194/hess-27-895-2023, https://doi.org/10.5194/hess-27-895-2023, 2023
Short summary
Short summary
Sorptivity is one of the most important parameters for quantifying water infiltration into soils. In this study, we propose a mixed formulation that avoids numerical issues and allows for the computation of sorptivity for all types of models chosen for describing the soil hydraulic functions and all initial and final conditions. We show the benefits of using the mixed formulation with regard to modeling water infiltration into soils.
Martin Schrön, Markus Köhli, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 27, 723–738, https://doi.org/10.5194/hess-27-723-2023, https://doi.org/10.5194/hess-27-723-2023, 2023
Short summary
Short summary
This paper presents a new analytical concept to answer long-lasting questions of the cosmic-ray neutron sensing community, such as
what is the influence of a distant area or patches of different land use on the measurement signal?or
is the detector sensitive enough to detect a change of soil moisture (e.g. due to irrigation) in a remote field at a certain distance?The concept may support signal interpretation and sensor calibration, particularly in heterogeneous terrain.
Gerrit Huibert de Rooij
Hydrol. Earth Syst. Sci., 26, 5849–5858, https://doi.org/10.5194/hess-26-5849-2022, https://doi.org/10.5194/hess-26-5849-2022, 2022
Short summary
Short summary
The way soils capture infiltrating water affects crops and natural vegetation as well as groundwater recharge. This retention of soil water is captured by a mathematical function that covers all water contents from very dry to water-saturated. Unfortunately, data in the dry range are often absent or unreliable. I modified an earlier function to be more robust in the absence of dry-range data, and present a computer program to estimate the parameters of the new function.
Nurit Goldberg-Yehuda, Shmuel Assouline, Yair Mau, and Uri Nachshon
Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022, https://doi.org/10.5194/hess-26-2499-2022, 2022
Short summary
Short summary
In this work the interactions between soil compaction, evaporation, and salt accumulation at the vadose zone are discussed. Changes at the micro and macro scales of the soil physical and hydraulic properties were studied using high-resolution imagining techniques, alongside column experiments, aiming to characterize water flow and evaporation processes at natural, compacted, and tilled soil conditions. In addition, salt accumulation at the soil profile was examined for these setups.
Jiří Mls
Hydrol. Earth Syst. Sci., 26, 397–406, https://doi.org/10.5194/hess-26-397-2022, https://doi.org/10.5194/hess-26-397-2022, 2022
Short summary
Short summary
In the paper the evaporation front is considered the interface that separates the wet part of a porous medium from its dry surroundings, and its exact definition in time and space is given. Subsequently, the law of the front's motion is derived. The general problem governing completely the front's motion is formulated and, for a special case, solved numerically. It is shown that the solution makes it possible to locate the rate of vaporization in time and space.
Isaac Kramer, Yuval Bayer, Taiwo Adeyemo, and Yair Mau
Hydrol. Earth Syst. Sci., 25, 1993–2008, https://doi.org/10.5194/hess-25-1993-2021, https://doi.org/10.5194/hess-25-1993-2021, 2021
Short summary
Short summary
Salinity and sodicity can cause irreversible degradation to soil, threatening agricultural production and food security. To date, very little is known about the degree to which soil degradation can be reversible. We introduce a model for describing this partial reversibility (hysteresis) and lay out the experimental procedures necessary for characterizing the soil in this regard. We must shift our focus from degradation measurements to reversal measurements so that we can maintain healthy soils.
Peter F. Germann
Hydrol. Earth Syst. Sci., 25, 1097–1101, https://doi.org/10.5194/hess-25-1097-2021, https://doi.org/10.5194/hess-25-1097-2021, 2021
Short summary
Short summary
This is the last paper submitted by Peter Germann before he died in December 2020. Peter reviews the development of capillary flow theory since the work of Briggs (1897) and Richards (1931), who raised capillary flow to a soil hydrological dogma. Attempts to correct the dogma led to concepts of non-equilibrium flow, macropore flow, and preferential flow during infiltration. Viscous film flow is proposed as an alternative approach to capillarity-driven flow during unsaturated infiltration.
Gerrit Huibert de Rooij, Juliane Mai, and Raneem Madi
Hydrol. Earth Syst. Sci., 25, 983–1007, https://doi.org/10.5194/hess-25-983-2021, https://doi.org/10.5194/hess-25-983-2021, 2021
Short summary
Short summary
The way soils capture infiltrating water affects crops and natural vegetation and groundwater recharge. This retention of soil water is described by a mathematical function that covers all water contents from very dry to water saturated. We combined two existing lines of research to improve the behaviour of a popular function for very dry and very wet conditions. Our new function could handle a wider range of conditions than earlier curves. We provide fits to a wide range of soils.
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
Stefano Barontini and Matteo Settura
Hydrol. Earth Syst. Sci., 24, 1907–1926, https://doi.org/10.5194/hess-24-1907-2020, https://doi.org/10.5194/hess-24-1907-2020, 2020
Short summary
Short summary
More than 300 years after its first appearance, Perrault's De l'origine des fontaines provokes intriguing stimuli and suggestions. We discuss its epistemological relevance through the lens of the repeatability of the experiments, of the didactic aspects which arise for modern teaching of hydrology, and of the author's attitude in facing the complexity of the hydrological processes. The analysis shows that the birth of modern hydrology and the scientific revolution were closely entwined.
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary
Short summary
We find that the stable isotopic compositions of mobile and matrix bound soil water are continuously different over 8 months. Long-term data further show that these isotopic differences result from the refilling of small soil pores by isotopically depleted rains during low soil moisture conditions. Thus, subsurface water is not well mixed, but flow velocities and storage in soils are highly variable; this has important implications for ecohydrological studies and soil hydrological modeling.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Kashif Mahmud, Gregoire Mariethoz, Andy Baker, and Pauline C. Treble
Hydrol. Earth Syst. Sci., 22, 977–988, https://doi.org/10.5194/hess-22-977-2018, https://doi.org/10.5194/hess-22-977-2018, 2018
Short summary
Short summary
This study explores the relationship between drip water and rainfall in a SW Australian karst, where both intra- and interannual hydrological variations are strongly controlled by seasonal variations in recharge. The hydrological behavior of cave drips is examined at daily resolution with respect to mean discharge and the flow variation. We demonstrate that the analysis of the time series produced by cave drip loggers generates useful hydrogeological information that can be applied generally.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
Yonggang Yang and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1757–1767, https://doi.org/10.5194/hess-21-1757-2017, https://doi.org/10.5194/hess-21-1757-2017, 2017
Short summary
Short summary
This paper investigates soil water migration processes in the Loess Plateau using isotopes. The soil water migration is dominated by piston-type flow, but rarely preferential flow. Soil water from the soil lay (20–40 cm) contributed to 6–12% of plant xylem water, while soil water at the depth of 40–60 cm is the largest component (range from 60 to 66 %), soil water below 60 cm depth contributed 8–14 % to plant xylem water, and only 5–8 % is derived from precipitation.
M. Levent Kavvas, Ali Ercan, and James Polsinelli
Hydrol. Earth Syst. Sci., 21, 1547–1557, https://doi.org/10.5194/hess-21-1547-2017, https://doi.org/10.5194/hess-21-1547-2017, 2017
Short summary
Short summary
In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. By the introduction of the Brooks–Corey constitutive relationships, an explicit form of the equations is obtained. The developed governing equations, in their fractional time but integer space forms, show behavior consistent with the previous experimental observations.
Anke Hildebrandt, Axel Kleidon, and Marcel Bechmann
Hydrol. Earth Syst. Sci., 20, 3441–3454, https://doi.org/10.5194/hess-20-3441-2016, https://doi.org/10.5194/hess-20-3441-2016, 2016
Short summary
Short summary
This theoretical paper describes the energy fluxes and dissipation along the flow paths involved in root water uptake, an approach that is rarely taken. We show that this provides useful additional insights for understanding the biotic and abiotic impediments to root water uptake. This approach shall be applied to explore efficient water uptake strategies and help locate the limiting processes in the complex soil–plant–atmosphere system.
D. Kurtzman, S. Baram, and O. Dahan
Hydrol. Earth Syst. Sci., 20, 1–12, https://doi.org/10.5194/hess-20-1-2016, https://doi.org/10.5194/hess-20-1-2016, 2016
Short summary
Short summary
Vertisols are cracking clayey, arable soils that often overlay groundwater reservoirs. The soil cracks enable flow that bypasses soil blocks, which results in both relatively fresh recharge of the underlying groundwater and contamination with reactive contaminants. These special phenomena, as well as unique mechanism of salinization after cultivation and relative resilience to contamination by nitrate typical to groundwater under vertisols, are reviewed in this study.
A.-M. Kurth, C. Weber, and M. Schirmer
Hydrol. Earth Syst. Sci., 19, 2663–2672, https://doi.org/10.5194/hess-19-2663-2015, https://doi.org/10.5194/hess-19-2663-2015, 2015
Short summary
Short summary
This study investigates the effects of river restoration on groundwater–surface water interactions in a losing urban stream. Investigations were performed using Distributed Temperature Sensing (DTS). The results indicate that the highest surface water downwelling occurred at the tip of a gravel island newly installed during river restoration, leading to the conclusion that in this specific setting, river restoration was effective in locally enhancing groundwater–surface water interactions.
F. Ries, J. Lange, S. Schmidt, H. Puhlmann, and M. Sauter
Hydrol. Earth Syst. Sci., 19, 1439–1456, https://doi.org/10.5194/hess-19-1439-2015, https://doi.org/10.5194/hess-19-1439-2015, 2015
Short summary
Short summary
Soil moisture was observed along a strong semi-arid climatic gradient in a Mediterranean karst area. Soil moisture data and soil hydraulic modelling with Hydrus-1D revealed a strong dependency of percolation fluxes with rainfall amounts and intensity during heavy rainfall events. Spatial and temporal extrapolation of the model illustrated the high variability of seasonal percolation amounts among single years and showed strong correlations between soil depth and potential groundwater recharge.
M. Larsbo, J. Koestel, and N. Jarvis
Hydrol. Earth Syst. Sci., 18, 5255–5269, https://doi.org/10.5194/hess-18-5255-2014, https://doi.org/10.5194/hess-18-5255-2014, 2014
Short summary
Short summary
The characteristics of the macropore network determine the potential for fast transport of solutes through soil. Such characteristics computed from 3-dimensional X-ray tomography images were combined with measured solute breakthrough curves and near-saturated hydraulic conductivities. At a given flow rate, smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities resulted in a greater degree of preferential transport.
M. Temesgen, S. Uhlenbrook, B. Simane, P. van der Zaag, Y. Mohamed, J. Wenninger, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 16, 4725–4735, https://doi.org/10.5194/hess-16-4725-2012, https://doi.org/10.5194/hess-16-4725-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 15, 1601–1614, https://doi.org/10.5194/hess-15-1601-2011, https://doi.org/10.5194/hess-15-1601-2011, 2011
Cited articles
Abatzogloua, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016. a
Arya, L. M., Leij, F. J., van Genuchten, M. T., and Shouse, P. J.: Scaling parameter to predict the soil water characteristic from particle-size distribution data, Soil Sci. Soc. Am. J., 63, 510–519, https://doi.org/10.2136/sssaj1999.03615995006300030013x, 1999. a
Assouline, S.: A model for the relative hydraulic conductivity based on the water retention curve, Water Resour. Res, 37, 265–271, https://doi.org/10.1029/2000WR900254, 2001. a
Barnett, C. R.: BFD curve: A new empirical model for fire compartment temperatures, Fire Safe. J., 37, 437–463, https://doi.org/10.1016/S0379-7112(02)00006-1, 2002. a
Bauer, T. H.: A general analytical approach toward the thermal conductivity of porous media, Int. J. Heat Mass Tran., 36, 4181–4191, https://doi.org/10.1016/0017-9310(93)90080-P, 1993. a
Bear, J.: Dynamics of Fluids in Porous Media, American Elsevier Pub. Co, New York, NY, USA, ISBN-13 978-0-486-65675-5, ISBN-10 0-486-65675-6, 1972. a
Blagojevic̀, M. D. and Pešic̀, D. J.: A new curve for temperature-time relationship in compartment fire, Thermal Sci., 5, 339–352, https://doi.org/10.2298/tsci100927021B, 2011. a
Borujerdi, P. R., Shotorban, B., Mahalingam, S., and Weise, D. R.: Modeling of water evaporation from a shrinking moist biomass slab subject to heating: Arrhenius approach versus equilibrium approach, Int. J. Heat Mass Tran., 145, 118672, https://doi.org/10.1016/j.ijheatmasstransfer.2019.118672, 2019. a
Brusseau, M. L., Peng, S., Schnaar, G., and Costanza-Robinson., M. S.: Relationships among air-water interfacial area, capillary pressure, and water saturation for a sandy porous medium. Water Resour. Res., 42, W03501, https://doi.org/10.1029/2005WR004058, 2006. a
Brutsaert, W.: Evaporation into the atmosphere: Theory, history and applications, D. Reidel Publishing Co., Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-017-1497-6, 1984. a
Campbell, G. S. and Shiozawa, S.: Prediction of hydraulic properties of soils using particle-size distribution and bulk density data, in: Indirect methods for estimating the hydraulic properties of unsaturated soils, edited by: van Genuchten, M. T., University of California, Riverside, CA, 317–328, 1992. a
Chen, J., Shang, C., Eick, M. J., and Stewart, R. D.: Water repellency decreases vapor sorption of clay minerals, Water Resour. Res., 55, 6114–6125, https://doi.org/10.1029/2018WR023352, 2018. a, b
de Vries, D. A.: Simultaneous heat and moisture transfer in porous media, EOS Trans. AGU, 39, 909–916, https://doi.org/10.1029/TR039i005p00909, 1958. a, b, c, d
Dey, D. C. and Schweitzer, C. J.: A Review on the dynamics of prescribed fire, tree mortality, and injury in managing oak natural communities to minimize economic loss in North America, Forests, 9, 461, https://doi.org/10.3390/f9080461, 2018. a
Finney, M. A., Cohen, J. D., Forthofer, J. M., McAllister, S. S., Gollner, M. J., Gorham, D. J., Saito, K., Akafuah, N. K., Adam, B. A., and English, D. D.: Role of buoyant flame dynamics in wildfire spread, P. Natl. Acad. Sci. USA, 112, 9833–9838, https://doi.org/10.1073/pnas.1504498112, 2015. a
Fredlund, D. G. and Xing, A.: Equations for the soil-water characteristic curve, Can. Geotech. J., 31, 521–532, https://doi.org/10.1139/t94-061, 1994. a, b
Grant, S. A.: Extension of a temperature effects model for capillary pressure saturation relations, Water Resour. Res., 39, 1003, https://doi.org/10.1029/2000WR000193, 2003. a
Groenevelt, P. H. and Grant, C. D.: A new model for the soil-water retention curve that solves the problem of residual water contents, Eur. J. Soil Sci., 55, 479–485, https://doi.org/10.1111/j.1365-2389.2004.00617.x, 2004. a
Harrison, S. P., Marlon, J. R., and Bartlein, P. J.: Fire in the earth system, in: Changing Climates, Earth Systems and Society, International Year of Planet Earth, edited by: Dodson, J., Springer-Verlag, Berlin, Germany, 21–48, https://doi.org/10.1007/978-90-481-8716-4_3, 2010. a
Heuze, F. E.: High-temperature mechanical, physical and thermal properties of granitic rocks – a review, Int. J. Rock Mech., Min. Sci. & Geomech. Abstr., 20, 3–10, https://doi.org/10.1016/0148-9062(83)91609-1, 1983. a
Hillel, D.: Introduction to environmental soil physics, Elsevier Academic Press, Amsterdam, the Netherlands, 2004. a
Huber, M. L., Perkins, R. A., Laeseche, A., Friend, D. G., Sengers, J. V., Assael, M. J., Metaxa, I. N., Vogel, E., Mares̆, R., and Miyagawa, K.: New international formulation for the viscosity of H2O, J. Phys. Chem. Ref. Data, 38, 101–125, https://doi.org/10.1063/1.3088050, 2009. a
Jiménez Esquilín, A. E., Stromberger, M. E., and Shepperd, W. D.: Soil scarification and wildfire interactions and effects on microbial communities and carbon, Soil Sci. Soc. Am. J., 72, 111–118, https://doi.org/10.2136/sssaj2006.0292, 2008. a
Kanamori, H., Fujii, N., and Mizutani, H.: Thermal diffusivity measurement of rock-forming minerals from 300∘ to 1100 ∘K, J. Geophys. Res., 73, 595–605, https://doi.org/10.1029/JB073i002p00595, 1968. a
Kasischke, E. S. and Turetsky, M. R.: Recent changes in the fire regime across the North American boreal region–Spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, https://doi.org/10.1029/2006GL025677, 2006. a
Ki, H., Mohanty, P. S., and Mazumder, J.: A numerical method for multiphase incompressible thermal flows with solid-liquid and liquid-vapor phase transformations, Numer. Heat Transf. Pt. B, 48, 125–145, https://doi.org/10.1080/10407790590963596, 2005. a
Kojima, Y., Heitman, J. L., Sakai, M., Kato, C., and Horton, R.: Bulk density effects on soil hydrologic and thermal characteristics: A numerical investigation, Hydrol. Process., 32, 2203–2216, https://doi.org/10.1002/hyp.13152, 2018. a, b, c
Linn, R.: Fluid dynamics of wildfires, Phys. Today, 72, 70–71, https://doi.org/10.1063/PT.3.4350, 2019. a
Lutz, J. F., and Kemper, W. D.: Intrinsic permeability of clay as affected by clay-water interaction, Soil Sci., 88, 83–90, https://doi.org/10.1097/00010694-195988020-00005, 1959. a
Massman, W. J.: A non-equilibrium model for soil heating and moisture transport during extreme surface heating: the soil (heat-moisture-vapor) HMV-Model Version 1, Geosci. Model Dev., 8, 3659–3680, https://doi.org/10.5194/gmd-8-3659-2015, 2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah
Massman, W. J.: Data and modeling and graphics source code for “The challenges of an in situ validation of a nonequilibrium model of heat and moisture dynamics during fires”, Forest Service Research Data Archive, Fort Collins, CO, https://doi.org/10.2737/RDS-2020-0077, 2021. a
Massman, W. J. and Frank, J. M.: Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux plate, Int. J. Wildland Fire, 13, 427–442, https://doi.org/10.1071/WF04018, 2004. a, b, c, d
Massman, W. J., Frank, J. M., Shepperd, W. D., and Platten, M. J.: In situ soil temperature and heat flux measurements during controlled burns at a southern Colorado forest site, in: Fire, fuel treatments, and ecological restoration, USDA Forest Service Proceedings RMRS-P-29, Conference proceedings: 16–18 April 2002, Fort Collins, CO, edited by: Omi, P. N. and Joyce, L. A., 69–87, available at: http://www.fs.fed.us/rm/pubs/rmrs_p029.pdf (last access: 4 February 2021), 2003. a
Massman, W. J., Frank, J. M., Jiménez Esquilin, A. E., Stromberger, M. E., and Shepperd, W. D.: Long term consequences of a controlled slash burn and slash mastication to soil moisture and CO2 at a southern Colorado site, in: 27th Conference on Agricultural and Forest Meteorology, paper 2.2, 22–25 May 2006, San Diego, CA, available at: https://www.fs.fed.us/rm/pubs exp for/manitou/exp for manitou 2006 massman02.pdf, 2006 (last access: 4 February 2021), 2006. a
Massman, W. J., Nobles, M. M., Butters, G., and Mooney, S.: Transport of CO2 and other combustion products in soils during slash-pile burns, in: VI International Conference on Forest Fire Research, Submission 086, 15–18 November 2010, ADAI/CEIF, Coimbra, Portugal, edited by: Viegas, D. X., Abstracts Volume and accompanying CD, ISBN 978-989-20-2157-7, 2010b. a, b, c
Mathews, E. B.: The granitic rocks of the Pikes Peak quadrangle, J. Geol., 8, 214–240, https://doi.org/10.1086/620795, 1900. a
McCaffrey, S., Toman, E., Stidham, M., and Shindler, B.: Social Science Findings in the United States, in: Wildfire Hazards, Risks, and Disasters, edited by: Paton, D., Buergelt, P. T., McCaffrey, S., Tedim, F., and Shroder J. F., Elsevier, Amsterdam, the Netherlands, 15–34, https://doi.org/10.1016/B978-0-12-410434-1.00002-6, 2015. a
Miao, S. Q., Li, H. P., and Chen, G.: Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks, J. Therm. Anal. Calorim., 115, 1057–1063, https://doi.org/10.1007/s10973-013-3427-2, 2014. a
Millar, C. I., Stephenson, N. L., and Stephens, S. L.: Climate change and forests of the future: Managing in the face of uncertainty, Ecol. Appl., 17, 2145–2151, https://doi.org/10.1890/06-1715.1, 2007. a
Milly, P. C. D.: A simulation analysis of thermal effects on evaporation from soil, Water Resour. Res., 20, 1087–1098, https://doi.org/10.1029/WR020i008p01087, 1984. a, b
Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz, D. J., and Hayhoe, K.: Climate change and disruptions to global fire activity, Ecosphere, 3, 49, https://doi.org/10.1890/ES11-00345.1, 2012. a
Mottaghy, D., Vosteen, H.-D., and Schellschmidt, R.: Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks, Int. J. Earth Sci. (Geol. Rundsch.), 97, 435–442, https://doi.org/10.1007/s00531-007-0238-3, 2008. a
Nobles, M. M., Massman, W. J., Mbila, M., and Butters, G.: Mineralogical and micromorphological modifications in soil affected by slash pile burn, in: VI International Conference on Forest Fire Research, Submission 288, 15–18 November 2010, ADAI/CEIF, Coimbra, Portugal, edited by: Viegas, D. X., Abstracts Volume and accompanying CD, ISBN 978-989-20-2157-7, 2010. a, b
Novak, M. D.: Comment on “Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium- and nonequilibrium-based approaches” by Kathleen M. Smits, Abdullah Cihan, Toshihiro Sakaki, and Tissa H. Illangasekare, Water Resour. Res., 48, W05549, https://doi.org/10.1029/2011WR011393, 2012. a
Novak, M. D.: Validity of assuming equilibrium between liquid water and vapor for simulating evaporation, Water Resour. Res., 55, 9858–9872, https://doi.org/10.1029/2019WR025113, 2019. a, b
O'Brian, P. J., Shenogin, S., Liu, J., Chow, P. K., Laurencin, D., Mutin, P. H., Yamaguchi, M., Keblinski, P., and Ramanath, G.: Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers, Nat. Mater., 12, 118–122, https://doi.org/10.1038/nmat3465, 2013. a
Olivella, S. and Gens, A.: Vapour transport in low permeability unsaturated soils with capillary effects, Transp. Porous Media, 40, 219–241, https://doi.org/10.1023/A:1006749505937, 2000. a, b
Ouedraogo, F., Cherblanc, F., Naon, B., and Bénet, J.-C.: Water transfer in soil at low water content. Is the local equilibrium assumption still appropriate?, J. Hydrol., 492, 117–127, https://doi.org/10.1016/j.jhydrol.2013.04.004, 2013. a
Pasquale, V., Verdoya, M., and Chiozzi, P.: Heat in the Groundwater Flow, in: Geothermics (Heat flow in the lithosphere), Springer, Dordrecht, the Netherlands, 101–116, https://doi.org/10.1007/978-3-319-02511-7_5, 2014. a
Pearce, H. G., Finney, M., Strand, T., Katurji, M., and Clements, C.: New Zealand field-scale fire experiments to test convective heat transfer
in wildland fires, Proceedings for the 6th International Fire Behavior and Fuels Conference, 29 April–3 May 2019, Sydney, Australia, International Association of Wildland Fire, Missoula, Montana, USA, 2019. a
Philip, J. R.: The theory of heat flux meters, J. Geophys. Res., 66, 571–579, https://doi.org/10.1029/JZ066i002p00571, 1961. a, b
Philip, J. R. and de Vries, D. A.: Moisture movement in porous materials under temperature gradients, EOS Trans. AGU, 38, 222–232, https://doi.org/10.1029/TR038i002p00222, 1957. a
Prunty, L. and Bell, J.: Soil temperature change over time during infiltration, Soil Sci. Soc. Am. J., 69, 766–775, https://doi.org/10.2136/sssaj2004.0219, 2005. a
Retzer, J. L.: Soils and physical conditions of Manitou Experimental Forest, Rocky Mountain Forest and Range Experiment Station, Fort
Collins, CO, 37 pp., available at: https://www.fs.usda.gov/treesearch/pubs/59506 (last access: 4 February 2021), 1949. a
Salager, S., El Youssoufui, M. S., and Saix, C.: Effect of temperature on soil water retention phenomena in deformable soils: theoretical and experimental aspects, Eur. J. Soil Sci., 61, 97–107, https://doi.org/10.1111/j.1365-2389.2009.01204.x, 2010. a, b
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., Ferrari, D., Maianti, P., Vivancos, T. A., Oom, D., Pfeiffer, H., Nuijten, D., and Leray, T.: Forest Fires in Europe, Middle East and North Africa 2018, Publication Office of the European Union, Luxembourg, EUR 29856 EN, ISBN 978-92-76-11234-1, https://doi.org/10.2760/1128, 2019. a
Sauer, T. J., Meek, D. W., Ochsner, T. E., Harris, A. R., and Horton, R.: Errors in heat flux measurement in flux plates of contrasting design and thermal conductivity, Vadose Zone J., 2, 580–588, https://doi.org/10.2113/2.4.580, 2003. a
Schoennagel, T., Balch, J. K., Brenkert-Smith, H., Dennison, P. E., Harvey, B. J., Krawchuk, M. A., Mietkiewicz, N., Morgan, P., Moritz, M. A., Rasker, R., Turner, M. G., and Whitlock, C.: Adapt to more wildfire in western North American forests as climate changes, P. Natl. Acad. Sci. USA, 14, 4582–4590, https://doi.org/10.1073/pnas.1617464114, 2017. a
Smith, D. R., Wobus, R. A., Noblett, J., Unruh, D., and Chamberlain, K. R.: A review of the pikes peak batholith, front range, central Colorado: A “type example” of A-type granitic magmatism, Rocky Mount. Geol., 34, 93–116, https://doi.org/10.2113/34.2.289, 1999. a
Smits, K. M., Cihan, A., Sakaki, T., and Illangasekare, T. H.: Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium- and nonequilibrium-based approaches, Water Resour. Res., 47, W05540, https://doi.org/10.1029/2010WR009533, 2011. a, b
Smits, K. M., Kirby, E., Massman, W. J., and Baggett, L. S.: Experimental and modeling study of forest fire effect on soil thermal conductivity, Pedosphere, 26, 462–473, https://doi.org/10.1016/S1002-0160(15)60057-1, 2016. a
Stallman, R. W.: Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature, J. Geophys. Res., 70, 2821–2827, https://doi.org/10.1029/JZ070i012p02821, 1965. a
Stambaugh, M. C., Marschall, J. M., Abadir, E. R., Jones, B. C., Brose, P. H., Dey, D. C., and Guyette, R. P.: Wave of fire: an anthropogenic signal in historical fire regimes across central Pennsylvania, USA, Ecosphere, 9, e02222, https://doi.org/10.1002/ecs2.2222, 2018. a
Steward, F. R., Peters, S., and Richon, J. B.: A method for predicting the depth of lethal heat penetration into mineral soils exposed to fires of various intensities, Can. J. Forest Res., 20, 919–926, https://doi.org/10.1139/x90-124, 1990. a
Stoof, C. R., Moore, D., Fernandes, P. M., Stoorvogel, J. J., Fernandes, R. E. S., Ferreira, A. J. D., and Ritsema, C. J.: Hot fire, cool soil, Geophys. Res. Lett., 40, 1534–1539, https://doi.org/10.1002/grl.50299, 2013. a
Tian, Z., Lu, Y., Horton, R., and Ren, T.: A simplified de Vries-based model to estimate thermal conductivity of unfrozen and frozen soil, Eur. J. Soil Sci., 67, 564–572, https://doi.org/10.1111/ejss.12366, 2016. a
Tian, Z., Gao, W., Kool, D., Ren, T., Horton, R., and Heitman, J. L.: Approaches for estimating soil water retention curves at various bulk densities with the extended van Genuchten model, Water Resour. Res., 54, 5584–5601, https://doi.org/10.1029/2018WR022871, 2018. a
Tong, B., Sauer, T. J., Gao, Z., Xiao, X., and Horton, R.: Improving soil heat flux accuracy with the Philip correction technique, J. Hydrometeorol., 20, 1435–1448, https://doi.org/10.1175/JHM-D-18-0243.1, 2019. a
Trautz, A. C., Smits, K. M., and Cihan, A.: Continuum-scale investigation of evaporation from bare soil under different boundary and initial conditions: An evaluation of nonequilibrium phase change, Water Resour. Res., 51, 7630–7648, https://doi.org/10.1002/2014WR016504, 2015. a
USDA Forest Service, Rocky Mountain Research Station, Fire, Fuel, Smoke Science Program, FOFEM files, avaialable at: https://www.firelab.org/document/fofem-files (last access: 4 February 2021), 2020. a
Vallejo, V. R. and Alloza, J. A.: Postfire Ecosystem Restoration, in: Wildfire Hazards, Risks, and Disasters, edited by: Paton, D., Buergelt, P. T., McCaffrey, S., Tedim, F., and Shroder, J. F., Elsevier, Amsterdam, the Netherlands, 229–246, https://doi.org/10.1016/B978-0-12-410434-1.00012-9, 2015. a
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
a
Vargaftik, N. B., Volkov, B. N., and Voljak, L. D.: International tables of the surface tension of water, J. Phys. Chem. Ref. Data, 12, 817–820, https://doi.org/10.1063/1.555688, 1983. a
Yoon, Y.-S., Car, R., Srolovitz, D. J., and Scandolo, S.: Thermal conductivity of crystalline quartz from classical simulations, Physical Rev. B, 70, 012302, https://doi.org/10.1103/PhysRevB.70.012302, 2004. a, b
Zeng, Y., Su, Z., Wan, L., and Wen, J.: Numerical analysis of air-water-heat flow in unsaturated soil: Is it necessary to consider airflow in land surface models?, J. Geophys. Res., 116, D20107, https://doi.org/10.1029/2011JD015835, 2011. a
Zhou, A.-N., Sheng, D., and Li, J.: Modelling water retention and volume change behaviours of unsaturated soils in non-isothermal conditions, Comput. Geotech., 55, 1–13, https://doi.org/10.1016/j.compgeo.2013.07.011, 2014. a
Short summary
Increasing fire frequency and severity now poses a threat to most of the world's wildlands and forested ecosystems and their benefits. The HMV (Heat–Moisture–Vapor) model is a tool to manage fuels to help mitigate the consequences of fire and promote soil and vegetation recovery after fire. The model's performance is surprisingly good, but it also provides insights into the existence of previously unobserved feedbacks and other physical processes that occur during fire.
Increasing fire frequency and severity now poses a threat to most of the world's wildlands and...