Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-5879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
Pengcheng Su
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences, Chengdu 610041, China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Jingjing Liu
CORRESPONDING AUTHOR
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences, Chengdu 610041, China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences, Chengdu 610041, China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Wei Liu
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences, Chengdu 610041, China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Yang Wang
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences, Chengdu 610041, China
Chun Ma
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences, Chengdu 610041, China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Qimin Li
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Mountain Hazards and Surface Process,Chinese Academy of Sciences, Chengdu 610041, China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Jun Zhang, Songtang He, Yong Li, and Yuan Xue
EGUsphere, https://doi.org/10.5194/egusphere-2025-6014, https://doi.org/10.5194/egusphere-2025-6014, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
To better predict mountain hazards like landslides, we studied how long soil retains rain moisture. Using 20 years of satellite data from China, we found a control shift at about five years. Short-term memory is governed by weather and plants, while long-term persistence is locked in by soil and terrain. This creates a lasting "background" wetness, especially in humid forests, pre-conditioning slopes for years.
Cited articles
Airbus: https://www.intelligence-airbusds.com/, last access: 10 September 2021.
Aizen, V. and Aizen, E.:
Hydrological cycles on the north and south peripheries of mountain–glacial basins of central Asia,
Hydrol. Process.,
11, 451–469, https://doi.org/10.1002/(SICI)1099-1085(199704)11:5<451::AID-HYP448>3.0.CO;2-M, 1997.
Bajracharya, B., Shrestha, A. B., and Rajbhandari, L.: Glacial lake outburst floods in the Sagarmatha region – Hazard assessment using GIS and hydrodynamic modeling, Mt. Res. Dev., 27, 336–344, https://doi.org/10.2307/25164154 https://doi.org/10.1659/mrd.0783, 2007.
Bhutiyani, M. R., Kale, V. S., and Pawar, N. J.:
Climate change and the precipitation variations in the north-western Himalaya: 1866–2006,
Int. J. Climatol., 30, 535–548, https://doi.org/10.1002/joc.1920, 2009.
Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., and Bajracharya, S.: Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery, Nat. Hazards Earth Syst. Sci., 8, 1329–1340, https://doi.org/10.5194/nhess-8-1329-2008, 2008.
Bookhagen, B. and Burbank, D. W.: Towards a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Braithwaite, R. J. and Olesen, O. B. (eds.):
Calculation of glacier ablation from air temperature, West Greenland,
Glac. Fluc. G.,
219–233, https://doi.org/10.1007/978-94-015-7823-3_15, 1989.
Chen, X. Q., Cui, P., Li, Y., Yang, Z., and Qi, Y. Q.:
Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet),
Geomorphology,
88, 298–311, https://doi.org/10.1016/j.geomorph.2006.11.012, 2007.
Copland, L., Sylvestre, T., Bishop, M. P., Shroder, J. F., Seong, Y. B., Owen, L. A., Bush, A., and Kamp, U.:
Expanded and Recently Increased Glacier Surging in the Karakoram,
Arct. Antarct. Alp. Res.,
43, 503–516, https://doi.org/10.1657/1938-4246-43.4.503, 2011.
Dowdeswell, J. A., Hodgkins, R., Nuttall, A.-M., Hagen, J. O., and Hamilton, G. S.:
Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic,
Geophys. Res. Lett.,
22, 2909–2912, https://doi.org/10.1029/95GL02821, 1995.
Farinotti, D., Huss, M., Fuerst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.:
A consensus estimates for the ice thickness distribution of all glaciers on Earth,
Nat. Geosci.,
12, 168–173, https://doi.org/10.3929/ethz-b-000315707, 2019.
Gao, J. F., Yang, Z. H., Su, W. C., and Cao, Y.:
Research Status and Prospect of Runoff Collection and Utilization in Karst Hillslope,
Water Saving Irrigation,
104, 97–99, 2019 (in Chinese with English abstract).
Haeberli, W., Frauenfelder, R., Hoelzle, M., and Maisch, M.:
On rates and acceleration trends of global glacier mass changes,
Geogr. Ann. A.,
81A, 585–591, https://doi.org/10.1111/1468-0459.00086, 1999.
Hassan, J., Kayastha, R. B., Shrestha, A., Bano, I., Ali, S. H., and Magsi, H. Z.:
Predictions of future hydrological conditions and contribution of snow and ice melt in total discharge of Shigar River Basin in Central Karakoram, Pakistan,
Sciences in Cold and Arid Regions,
9, 511–524, 2017.
Huss, M.:
Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe,
Water Resour. Res.,
47, W07511, https://doi.org/10.1029/2010WR010299, 2011.
Huss, M. and Hock, R.:
Global-scale hydrological response to future glacier mass loss,
Nat. Clim. Change,
8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Immerzeel, W. W. and Bierkens, M. F. P.:
Asia's water balance,
Nat. Geosci.,
5, 841–842, https://doi.org/10.1038/ngeo1643, 2012.
IPCC: Climate change 2013 – the physical science basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Ji, Q., Dong, J., Liu, R., Xiao, Z. L., and Yang, T. B.:
Glacier Changes in Response to Climate Change in the Himalayas in 1990–2015,
Scientia Geographica Sinica,
40, 486–496, https://doi.org/10.13249/j.cnki.sgs.2020.03.017, 2020 (in Chinese with English abstract).
Kayastha, R. B., Ageta, Y., and Fujita, K.: Use of positive degree–day methods for calculating snow and ice melting and discharge in glacierized basins in the Langtang Valley, Central Nepal, in: Climate and Hydrology of Mountain Areas, edited by: de Jong, C., Collins, D., and Ranzi, R., John Wiley & Sons Ltd., 5–14, https://doi.org/10.1002/0470858249.ch2, 2005.
Komori, J.:
Recent expansions of glacial lakes in the Bhutan Himalayas,
Quatern. Int.,
184, 177–186, https://doi.org/10.1016/j.quaint.2007.09.012, 2008.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W. W.:
Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers,
Nature,
549, 257–260, https://doi.org/10.1038/nature23878, 2017.
Lambrecht, A. and Mayer, C.:
Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria,
J. Hydrol.,
376, 353–361, https://doi.org/10.1016/j.jhydrol.2009.07.045, 2009.
Li, Y., Zhou, X., Su, P., Kong, Y., and Liu, J.:
A scaling distribution for grain composition of debris flow,
Geomorphology,
192, 30–42, https://doi.org/10.1016/j.geomorph.2013.03.015, 2013.
Li, Y., Huang, C. M., Wang, B. L., Tian, X. F., and Liu, J. J.:
A unified expression for grain size distribution of soils,
Geoderma,
288, 105–119, https://doi.org/10.1016/j.geoderma.2016.11.011, 2017.
Liang, S. M. and Yu, Z. Y.:
Global Distribution Fields of Runoff Depths Calculated by Empirical Runoff Coefficient,
Arid Zone Research,
35, 1–11, https://doi.org/10.13866/j.azr.2018.01.01, 2018 (in Chinese with English abstract).
Liu, J. J., Cheng, Z. L., and Su, P. C.: The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China,
Quatern. Int., 321, 7–87, https://doi.org/10.1016/j.quaint.2013.11.023, 2014a.
Liu, W. G., Xiao, C. D., Liu, J. S., Wang, J., Wang, H., Liu, J. F., Liu, N., Zhang, T., and Lin, X.: Study of the degree-day factors on the Rongbuk Glacier in the Mt. Qomolangma, Central Himalayas, Journal of Glaciology and Geocryology, 36, 1101–1110, 2014b.
Liu, X. D. and Chen, B. D.:
Climatic warming in the Tibetan Plateau during recent decades,
Int. J. Climatol.,
20, 1729–1742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000.
Lu, M. M., Zhou, S. Q., and He, X.: A comparison of the formulas for estimation of the lake evaporation on the Tibetan Plateau: taking Lake Nam Co as an example, Journal of Glaciology and Geocryology, 39, 281–291, 2017.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation,
Nat. Clim. Change,
4, 587–592, https://doi.org/10.1038/nclimate2237, 2014.
Mergili, M., Müller, J. P., and Schneider, J. F.:
Spatial-temporal development of high mountain lakes in the headwaters of the Amu Darya River (Central Asia),
Glob. Planet. Change,
107, 13–24, https://doi.org/10.1016/j.gloplacha.2013.04.001, 2013.
Miller, J. D., Immerzeel, W. W., and Rees, G.:
Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu Kush–Himalay as A Synthesis of the Scientific Basis,
Mt. Res. Dev.,
32, 461–467, https://doi.org/10.1659/MRD-JOURNAL-D-12-00027.1, 2012.
Mir, R. A., Jain, S. K., Saraf, A. K., and Goswami, A.:
Detection of Changes in Glacier Mass Balance Using Satellite and Meteorological Data in Tirungkhad Basin Located in Western Himalaya,
J. Indian Soc. Remote,
42, 91–105, https://doi.org/10.1007/s12524-013-0303-2, 2014.
Mir, R. A., Jain, S. K., Saraf, A. K., and Goswami, A.:
Decline in snowfall in response to temperature in Satluj basin, western Himalaya,
J. Earth Syst. Sci.,
124, 365–382, https://doi.org/10.1007/s12040-015-0539-z, 2015a.
Mir, R. A., Jain, S. K., and Saraf, A. K.:
Analysis of current trends in climatic parameters and its effect on discharge of Satluj River basin, western Himalaya,
Nat. Hazards,
79, 587–619, https://doi.org/10.1007/s11069-015-1864-x, 2015b.
NASA: Earthdata Search, available at: https://search.earthdata.nasa.gov/search, last access: 12 October 2020.
Nie, Y., Liu, Q., and Liu, S.:
Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010,
PLoSOne,
8, e83973, https://doi.org/10.1371/journal.pone.0083973, 2014.
Nie, Y., Sheng, Y. W., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.:
A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015,
Remote Sens. Environ.,
189, 1–13, https://doi.org/10.1016/j.rse.2016.11.008, 2017.
Nie, Y., Liu, Q., Wang, J. D., Zhang, Y. L., Sheng, Y. W., and Liu, S. Y.:
An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis,
Geomorphology,
308, 91–106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.
Pradhananga, N. S., Kayastha, R. B., Bhattarai, B. C., Adhikari, T. R., Pradhan, S. C., Devkota, L. P., Shrestha, A. B., and Mool, P. K.:
Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a glacio-hydrological model, Ann. Glaciol., 55, 223–230, https://doi.org/10.3189/2014aog66a123, 2014.
Prakash, C. and Nagarajan, R.:
Glacial Lake Inventory and Evolution in Northwestern Indian Himalaya,
IEEE J.-STARS,
10, 5284–5294, https://doi.org/10.1109/JSTARS.2017.2767098, 2017.
Qin, J., Yang, K., Liang, S., and Guo, X.:
The altitudinal dependence of recent rapid warming over the Tibetan Plateau,
Climatic Change,
97, 321–327, https://doi.org/10.1007/s10584-009-9733-9, 2009.
Radić, V. and Hock, R.:
Glaciers in the earth's hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales,
Surv. Geophys.,
35, 813–837, https://doi.org/10.1007/s10712-013-9262-y, 2013.
Raj, K. B. G., Kumar, V. K., and Remya, S. N.:
Remote sensing-based inventory of glacial lakes in Sikkim Himalaya: semi-automated approach using satellite data,
Geomat. Nat. Haz. Risk,
4, 241–253, https://doi.org/10.1080/19475705.2012.707153, 2013.
Richardson, S. D. and Reynolds, J. M.:
An overview of glacial hazards in the Himalayas,
Quatern. Int.,
65–66, 31–47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Shangguan, D. H., Liu, S. Y., Ding, Y. J., Wu, L. Z., Deng, W., Guo, W. Q., Wang, Y., Xu, J., Yao, X. J., Guo, Z. L., and Zhu, W. W.: Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery, Ann. Glaciol., 55, 61–68, https://doi.org/10.3189/2014aog66a057, 2014.
Shrestha, A. B. and Aryal, R.:
Climate change in Nepal and its impact on Himalayan glaciers,
Reg. Environ. Change,
111, S65–S77, https://doi.org/10.1007/s10113-010-0174-9, 2011.
Singh, P., Kumar, N., and Arora, M.:
Degree-day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas,
J. Hydrol.,
235, 1–11, https://doi.org/10.1016/S0022-1694(00)00249-3, 2000.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.:
Glacier fluctuations during the past 2000 years,
Quaternary Sci. Rev.,
149, 61–90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.
USGS: EarthExplorer, available at: https://earthexplorer.usgs.gov/, last access: 12 September 2020.
Wang, L. Q, Pan, G. D., Ding, J., and Yao, D. S.: Tectonic Map and Instructions for the Tibet Plateau and Adjacent Areas, Geological Publishing House, Beijing, China, 2013.
Wang, S. J. and Jiao, S. T.:
Evolution and outburst risk analysis of moraine-dammed lakes in the central Chinese Himalaya,
J. Earth Syst. Sci.,
124, 567–576, https://doi.org/10.1007/s12040-015-0559-8, 2015.
Wang, S. J. and Zhang, T.:
Spatially change detection of glacial lakes in the Koshi River Basin, the Central Himalaya,
Environ. Earth Sci.,
72, 4381–4391, https://doi.org/10.1007/s12665-014-3338-y, 2014.
Wang, W. C., Xiang, Y., Gao, Y., Lu, A. X., and Yao, T. D.:
Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas,
Hydrol. Process.,
29, 859–874, https://doi.org/10.1002/hyp.10199, 2015.
Wang, W. C., Gao, Y., Anacona, P. I., Lei, Y. B., Xiang, Y., Zhang, G. Q., Li, S. H., and Lu, A. X.:
Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas,
Geomorphology,
306, 292–305, https://doi.org/10.1016/j.geomorph.2015.08.013, 2018.
Wang, X., Liu, S. Y., Guo, W. Q., Yao, X. J., Jiang, Z. L., and Han, Y. S.:
Using Remote Sensing Data to Quantify Changes in Glacial Lakes in the Chinese Himalaya,
Mt. Res. Dev.,
32, 203–212, https://doi.org/10.1659/MRD-JOURNAL-D-11-00044.1, 2012.
Wei, J. F., Liu, S. Y., Guo, W. Q., and Yao, X. J.: Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps, Ann. Glaciol., 55, 213–222, https://doi.org/10.3189/2014aog66a038, 2014.
Winiger, M., Gumpert, M., and Yamout, H.:
Karakorum–Hindukush–western Himalaya: Assessing high-altitude water resources,
Hydrol. Process.,
19, 2329–2338, https://doi.org/10.1002/hyp.5887, 2005.
Xiang, Y., Gao, Y., and Yao, T. D.:
Glacier change in the Poiqu River basin inferred from Landsat data from 1975 to 2010,
Quatern. Int.,
349, 392–401, https://doi.org/10.1016/j.quaint.2014.03.017, 2014.
Xiang, Y., Yao, T. D., Gao, Y., Zhang, G. Q., Wang, W. C., and Tian, L. D.:
Retreat rates of debris-covered and debris-free glaciers in the Koshi River Basin, central Himalayas, from 1975 to 2010,
Environ. Earth Sci.,
77, 285, https://doi.org/10.1007/s12665-018-7457-8, 2018.
Xu, D. M. and Feng, Q. H.:
Studies on catastrophes of glacial debris flow and glacial lake outburst flood in China,
Journal of Glaciology and Geocryology,
10, 284–289, 1988 (in Chinese with English abstract).
Yao, T. D.:
Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau,
Chinese Sci. Bull.,
55, 2071–2071, https://doi.org/10.1007/s11434-010-4327-5, 2010 (in Chinese with English abstract).
Yao, T. D., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X. X., Duan, K. Q., Zhao, H. B., Xu, B. Q., Pu, J. C., Lu, A. X., Xiang, Y., Kattel, D. B., and Joswiak, D.:
Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings,
Nat. Clim. Change,
2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Zhang, G. Q., Yao, T. D., Xie, H. J., Wang, W. C., and Yang, W.:
An inventory of glacial lakes in the Third Pole region and their changes in response to global warming,
Glob. Planet. Change,
131, 148–157, https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015.
Zhang, G. Q., Bolch, T., Allen, S., Linsbauer, A., Chen, W. F., and Wang, W. C.:
Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964–2017,
J. Glaciol.,
65, 347–365, https://doi.org/10.1017/jog.2019.13, 2019.
Zhang, Y., Liu, S. Y., and Ding.,Y. J.:
Spatial Variation of Degree-day Factors on the Observed Glaciers in Western China,
Acta Geographica Sinica,
61, 89–98, https://doi.org/10.3321/j.issn:0375-5444.2006.01.009, 2006.
Zheng, Y., Zhang, J. J., Wang, J. M., Wang, X. X., and Wang, M.: Rapid denudation of the Himalayan orogen in the Nyalam area, southern Tibet, since the Pliocene and implications for tectonics–climate coupling, Chin. Sci. Bull., 59, 874–885, https://doi.org/10.1007/s11434-014-0116-x, 2014.
Short summary
We identified ± 150 glacial lakes in the Poiqu River basin (central Himalayas), and we explore the changes in five lakes over the last few decades based on remote sensing images, field surveys, and satellite photos. We reconstruct the lake basin topography, calculate the water capacity, and propose a water balance equation (WBE) to explain glacial lake evolution in response to local weather conditions. The WBE also provides a framework for the water balance in rivers from glacierized sources.
We identified ± 150 glacial lakes in the Poiqu River basin (central Himalayas), and we explore...