Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-5805-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5805-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the selection of precipitation products for the regionalisation of hydrological model parameters
Oscar M. Baez-Villanueva
Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany
Faculty of Spatial Planning, TU Dortmund University, Dortmund, Germany
Mauricio Zambrano-Bigiarini
CORRESPONDING AUTHOR
Department of Civil Engineering, Universidad de la Frontera, Temuco, Chile
Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile
Pablo A. Mendoza
Department of Civil Engineering, Universidad de Chile, Santiago, Chile
Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago, Chile
Ian McNamara
Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany
Hylke E. Beck
GloH2O, Almere, the Netherlands
Joschka Thurner
Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany
Alexandra Nauditt
Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany
Lars Ribbe
Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany
Nguyen Xuan Thinh
Faculty of Spatial Planning, TU Dortmund University, Dortmund, Germany
Related authors
Xuetong Wang, Raied S. Alharbi, Oscar M. Baez-Villanueva, Amy Green, Matthew F. McCabe, Yoshihide Wada, Albert I. J. M. Van Dijk, Muhammad A. Abid, and Hylke Beck
EGUsphere, https://doi.org/10.5194/egusphere-2025-254, https://doi.org/10.5194/egusphere-2025-254, 2025
Short summary
Short summary
Our paper introduces Saudi Rainfall (SaRa), a high-resolution, near real-time rainfall product for the Arabian Peninsula. Using machine learning, SaRa combines multiple satellite and (re)analysis datasets with static predictors, outperforming existing products in the region. With the fast development and continuing growth in water demand over this region, SaRa could help to address water challenges and support resource management.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Sofía Segovia, Pablo A. Mendoza, Miguel Lagos-Zúñiga, Lucía Scaff, and Andreas Prein
EGUsphere, https://doi.org/10.5194/egusphere-2025-3061, https://doi.org/10.5194/egusphere-2025-3061, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
High-resolution climate simulations can improve our understanding of precipitation and temperature patterns in regions with complex terrain. We evaluate a new climate dataset against in-situ observations, and its potencial for hydrological modeling. Results show that, despite some limitations in dry areas, high-resolution climate models can provide information of a quality comparable to that of observation-based products, supporting their use in water resources planning and decision-making.
Daniel Nuñez-Ibarra, Mauricio Zambrano-Bigiarini, and Mauricio Galleguillos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2606, https://doi.org/10.5194/egusphere-2025-2606, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Soil moisture plays a key role in how land and climate interact, yet it remains difficult to measure in remote or natural areas. This study compared four state-of-the-art soil moisture datasets against ground data from ten sites in Chile. Results show that some products perform better in humid areas, while others do better in dry regions. The work highlights which datasets are most reliable and suggests new ways to assess how well they track changes after rainfall events.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025, https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite the fact that they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what they truly reflect in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and timescales for accurate drought characterization and monitoring.
Eduardo Muñoz-Castro, Bailey J. Anderson, Paul C. Astagneau, Daniel L. Swain, Pablo A. Mendoza, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-781, https://doi.org/10.5194/egusphere-2025-781, 2025
Short summary
Short summary
Flood impacts can be enhanced when they occur after droughts, yet the effectiveness of hydrological models in simulating these events remains unclear. Here, we calibrated four conceptual hydrological models across 63 catchments in Chile and Switzerland to assess their ability to detect streamflow extremes and their transitions. We show that drought-to-flood transitions are more difficult to capture in semi-arid high-mountain catchments than in humid low-elevation catchments.
René Garreaud, Juan Pablo Boisier, Camila Álvarez-Garreton, Duncan Christie, Tomás Carrasco-Escaff, Iván Vergara, Roberto O. Chávez, Paulina Aldunce, Pablo Camus, Manuel Suazo-Álvarez, Mariano Masiokas, Gabriel Castro, Ariel Muñoz, Mauricio Zambrano-Bigiarini, Rodrigo Fuster, and Lintsiee Godoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-517, https://doi.org/10.5194/egusphere-2025-517, 2025
Short summary
Short summary
This study focuses on hyperdroughts (HDs) in central Chile, defined as years with a regional rainfall deficit exceeding 75 %. Only five HDs occurred in the last century (1924, 1968, 1998, 2019, 2021), but they caused disproportionate environmental and social impacts. In some systems, the effects were larger than expected from those considering moderate droughts and dependent on the antecedent conditions. HDs have analogs from the remote past, and they are expected to increase in the near future.
Cristóbal Soto-Escobar, Mauricio Zambrano-Bigiarini, Violeta Tolorza, and René Garreaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-621, https://doi.org/10.5194/egusphere-2025-621, 2025
Short summary
Short summary
This study aims to better understand how the spatial distribution, temporal trends and data length of hourly precipitation data influence the computation of stationary and non-stationary annual maximum precipitation intensities in a study area with diverse climate zones and topography. Our results reveal spatial differences and similarities in rainfall intensities derived from five hourly gridded precipitation datasets. Non-stationary intensities were slightly lower values than stationary ones.
Xuetong Wang, Raied S. Alharbi, Oscar M. Baez-Villanueva, Amy Green, Matthew F. McCabe, Yoshihide Wada, Albert I. J. M. Van Dijk, Muhammad A. Abid, and Hylke Beck
EGUsphere, https://doi.org/10.5194/egusphere-2025-254, https://doi.org/10.5194/egusphere-2025-254, 2025
Short summary
Short summary
Our paper introduces Saudi Rainfall (SaRa), a high-resolution, near real-time rainfall product for the Arabian Peninsula. Using machine learning, SaRa combines multiple satellite and (re)analysis datasets with static predictors, outperforming existing products in the region. With the fast development and continuing growth in water demand over this region, SaRa could help to address water challenges and support resource management.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, and Oscar Seguel
Earth Surf. Dynam., 12, 841–861, https://doi.org/10.5194/esurf-12-841-2024, https://doi.org/10.5194/esurf-12-841-2024, 2024
Short summary
Short summary
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2 catchment in the Chilean Coastal Range. Intensive management of exotic tree plantations involves short rotational cycles (planting and harvesting by replanting clear-cuts) lasting 9–25 years, dense forestry road networks (increasing connectivity), and a recent increase in wildfires. Concurrently, persistent drought conditions and the high water demand of fast-growing trees reduce water availability.
Helen Scholz, Gunnar Lischeid, Lars Ribbe, Ixchel Hernandez Ochoa, and Kathrin Grahmann
Hydrol. Earth Syst. Sci., 28, 2401–2419, https://doi.org/10.5194/hess-28-2401-2024, https://doi.org/10.5194/hess-28-2401-2024, 2024
Short summary
Short summary
Sustainable management schemes in agriculture require knowledge of site-specific soil hydrological processes, especially the interplay between soil heterogeneities and crops. We disentangled such effects on soil moisture in a diversified arable field with different crops and management schemes by applying a principal component analysis. The main effects on soil moisture variability were quantified. Meteorological drivers, followed by different seasonal behaviour of crops, had the largest impact.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Javier González, Roberto Rondanelli, Eugenia Gayó, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 28, 1605–1616, https://doi.org/10.5194/hess-28-1605-2024, https://doi.org/10.5194/hess-28-1605-2024, 2024
Short summary
Short summary
This opinion paper reflects on the risks of overusing groundwater savings to supply permanent water use requirements. Using novel data recently developed for Chile, we reveal how groundwater is being overused, causing ecological and socioeconomic impacts and concealing a Day Zero
scenario. Our argument underscores the need for reformed water allocation rules and sustainable management, shifting from a perception of groundwater as an unlimited source to a finite and vital one.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Diego Araya, Pablo A. Mendoza, Eduardo Muñoz-Castro, and James McPhee
Hydrol. Earth Syst. Sci., 27, 4385–4408, https://doi.org/10.5194/hess-27-4385-2023, https://doi.org/10.5194/hess-27-4385-2023, 2023
Short summary
Short summary
Dynamical systems are used by many agencies worldwide to produce seasonal streamflow forecasts, which are critical for decision-making. Such systems rely on hydrology models, which contain parameters that are typically estimated using a target performance metric (i.e., objective function). This study explores the effects of this decision across mountainous basins in Chile, illustrating tradeoffs between seasonal forecast quality and the models' capability to simulate streamflow characteristics.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci., 27, 3505–3524, https://doi.org/10.5194/hess-27-3505-2023, https://doi.org/10.5194/hess-27-3505-2023, 2023
Short summary
Short summary
This paper shows how important river models can be for water resource applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin using a combination of hydrologic model simulations obtained from a large sample of parameter sets and different routing methods. We find that routing can affect streamflow simulations, even at monthly time steps; the choice of parameters; and relevant streamflow metrics.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Cited articles
Abdelaziz, R., Merkel, B. J., Zambrano-Bigiarini, M., and Nair, S.: Particle swarm optimization for the estimation of surface complexation constants with the geochemical model PHREEQC-3.1.2, Geosci. Model Dev., 12, 167–177, https://doi.org/10.5194/gmd-12-167-2019, 2019. a
Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011. a
Addor, N., Nearing, G., Prieto, C., Newman, A., Le Vine, N., and Clark, M. P.:
A ranking of hydrological signatures based on their predictability in space,
Water Resour. Res., 54, 8792–8812, 2018. a
Adhikary, S. K., Yilmaz, A. G., and Muttil, N.: Optimal design of rain gauge
network in the Middle Yarra River catchment, Australia, Hydrol.
Process., 29, 2582–2599, 2015. a
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. a, b, c, d
Arsenault, R. and Brissette, F. P.: Continuous streamflow prediction in
ungauged basins: The effects of equifinality and parameter set selection on
uncertainty in regionalization approaches, Water Resour. Res., 50,
6135–6153, 2014. a
Artan, G., Gadain, H., Smith, J. L., Asante, K., Bandaragoda, C. J., and
Verdin, J. P.: Adequacy of satellite derived rainfall data for stream flow
modeling, Nat. Hazards, 43, 167, https://doi.org/10.1007/s11069-007-9121-6, 2007. a
Astagneau, P. C., Thirel, G., Delaigue, O., Guillaume, J. H. A., Parajka, J., Brauer, C. C., Viglione, A., Buytaert, W., and Beven, K. J.: Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective, Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, 2021. a
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A.,
Giraldo-Osorio, J. D., and Thinh, N. X.: Temporal and spatial evaluation of
satellite rainfall estimates over different regions in Latin-America,
Atmos. Res., 213, 34–50, https://doi.org/10.1016/j.atmosres.2018.05.011,
2018. a, b
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Beck, H. E., McNamara, I.,
Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., Giraldo-Osorio, J. D., and
Thinh, N. X.: RF-MEP: A novel Random Forest method for merging gridded
precipitation products and ground-based measurements, Remote Sens. Environ., 239, 111606, https://doi.org/10.1016/j.rse.2019.111606, 2020. a, b, c, d, e, f, g
Bambach, N., Bustos, E., Meza, F., Morales, D., Suarez, F., and Na, V.:
Aplicación de La Metodología de Actualización del Balance
Hídrico Nacional en las Cuencas de la Macrozona Norte y Centro, Dirección General de Aguas (DGA), Santiago, 2018. a
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017a. a
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017b. a, b
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. a, b
Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M.,
Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J., and Karger,
D. N.: Bias correction of global high-resolution precipitation climatologies
using streamflow observations from 9372 catchments, J. Climate, 33,
1299–1315, 2020b. a
Bergström, S.: Development and application of a conceptual runoff model for
Scandinavian catchments, Sveriges Meteorologiska Och Hydrologiska Institut, Norrköping, 1976. a
Bergström, S.: The HBV model, Computer models of watershed hydrology, Water Resources Publications, Highlands Ranch, CO, 1995. a
Beven, K. J.: Changing ideas in hydrology - The case of physically-based
models, J. Hydrol., 105, 157–172,
https://doi.org/10.1016/0022-1694(89)90101-7, 1989. a
Beven, K. J.: Uniqueness of place and process representations in hydrological modelling, Hydrol. Earth Syst. Sci., 4, 203–213, https://doi.org/10.5194/hess-4-203-2000, 2000. a
Beven, K. J.: A manifesto for the equifinality thesis, J. Hydrol.,
320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. a
Biau, G. and Scornet, E.: A random forest guided tour, TEST, 25, 197,
https://doi.org/10.1007/s11749-016-0481-7, 2016. a, b, c, d
Bisselink, B., Zambrano-Bigiarini, M., Burek, P., and de Roo, A.: Assessing the
role of uncertain precipitation estimates on the robustness of hydrological
model parameters under highly variable climate conditions, J. Hydrol.-Regional Studies, 8, 112–129, https://doi.org/10.1016/j.ejrh.2016.09.003,
2016. a, b
Bitew, M. M., Gebremichael, M., Ghebremichael, L. T., and Bayissa, Y. A.:
Evaluation of High-Resolution Satellite Rainfall Products through Streamflow
Simulation in a Hydrological Modeling of a Small Mountainous Watershed in
Ethiopia, J. Hydrometeorol., 13, 338–350,
https://doi.org/10.1175/2011JHM1292.1, 2012. a
Bivand, R. and Rundel, C.: rgeos: Interface to Geometry Engine – Open
Source (“GEOS”),
available at: https://CRAN.R-project.org/package=rgeos (last access: 10 December 2020), r package version
0.5-3, 2020. a
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the
“Geospatial” Data Abstraction Library,
available at: https://CRAN.R-project.org/package=rgdal (last access: 10 December 2020), r package version
1.5-12, 2020. a
Boisier, J. P., Rondanelli, R., Garreaud, R. D., and Muñoz, F.:
Anthropogenic and natural contributions to the Southeast Pacific
precipitation decline and recent megadrought in central Chile, Geophys.
Res. Lett., 43, 413–421, https://doi.org/10.1002/2015GL067265, 2016. a
Brauer, C. C., Torfs, P. J. J. F., Teuling, A. J., and Uijlenhoet, R.: The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and the Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007–4028, https://doi.org/10.5194/hess-18-4007-2014, 2014. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C., and Sawicz, K.: Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient, Hydrol. Earth Syst. Sci., 15, 3411–3430, https://doi.org/10.5194/hess-15-3411-2011, 2011. a, b
Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., and Wagener, T.: Virtual laboratories: new opportunities for collaborative water science, Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, 2015. a
Ciabatta, L., Brocca, L., Massari, C., Moramarco, T., Gabellani, S., Puca, S.,
and Wagner, W.: Rainfall-runoff modelling by using SM2RAIN-derived and
state-of-the-art satellite rainfall products over Italy, Int. J. Appl. Earth Obs., 48, 163–173, 2016. a
Clark, M. P. and Hay, L. E.: Use of medium-range numerical weather prediction
model output to produce forecasts of streamflow, J. Hydrometeorol.,
5, 15–32, 2004. a
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta,
H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural
Errors (FUSE): A modular framework to diagnose differences between
hydrological models, Water Resour. Res., 44, W00B02, https://doi.org/10.1029/2007WR006735, 2008. a
Clerc, M.: From theory to practice in particle swarm optimization, in: Handbook
of Swarm Intelligence, 3–36, Springer, Berlin, Germany, 2011a. a
Clerc, M.: Standard particle swarm optimisation from 2006 to 2011, Particle
Swarm Central, France, 253, 1–15, 2011b. a
Coughlan de Perez, E., van den Hurk, B., van Aalst, M. K., Amuron, I., Bamanya, D., Hauser, T., Jongma, B., Lopez, A., Mason, S., Mendler de Suarez, J., Pappenberger, F., Rueth, A., Stephens, E., Suarez, P., Wagemaker, J., and Zsoter, E.: Action-based flood forecasting for triggering humanitarian action, Hydrol. Earth Syst. Sci., 20, 3549–3560, https://doi.org/10.5194/hess-20-3549-2016, 2016. a
Dallery, D., Squividant, H., De Lavenne, A., Launay, J., and Cudennec, C.: An
end-user-friendly hydrological Web Service for hydrograph prediction in
ungauged basins, Hydrol. Sci. J., 0, 1–9, https://doi.org/10.1080/02626667.2020.1797045, 2020. a
Dembélé, M., Hrachowitz, M., Savenije, H. H., Mariéthoz, G., and
Schaefli, B.: Improving the predictive skill of a distributed hydrological
model by calibration on spatial patterns with multiple satellite data sets,
Water Resour. Res., 56, e2019WR026085, https://doi.org/10.1029/2019WR026085, 2020. a
DGA: Plan director para la gestión de los recursos hídricos en
la cuenca del río San José, Tech. rep., Dirección General
de Aguas, Santiago, available at: https://snia.mop.gob.cl/sad/ADM600v1.pdf (last access: 9 June 2021),
1998. a
DGA: Recursos hídricos compartidos con la República Argentina :
ficha temática de la cuenca del río Grande de Tierra del Fuego,
Tech. rep., Dirección General de Aguas, Santiago,
available at: https://snia.mop.gob.cl/sad/CUH2087.pdf (last access: 9 June 2021), 1999. a
DGA: Cuenca Quebrada de Tarapacá, Tech. rep., Dirección General
de Aguas, Santiago,
available at: https://mma.gob.cl/wp-content/uploads/2017/12/Tarapaca.pdf (last access: 9 June 2021),
2004a. a
DGA: Cuenca Río Loa, Tech. rep., Dirección General de Aguas,
Santiago,
available at: https://mma.gob.cl/wp-content/uploads/2017/12/Loa.pdf (last access: 9 June 2021),
2004b. a
DGA: Cuenca del Río Elqui, Tech. rep., Dirección General de
Aguas, Santiago,
available at: https://mma.gob.cl/wp-content/uploads/2017/12/Elqui.pdf (last access: 9 June 2021),
2004c. a
DGA: Evaluación de los recursos hídricos superficales de las
cuencas de los ríos Petorca y La Ligua V Región, Tech. rep.,
Dirección General de Aguas, Santiago,
available at: https://snia.mop.gob.cl/sad/SUP4496.pdf (last access: 9 June 2021), 2006. a
DGA: Análisis integral de soluciones a la escasez hídrica,
región de Arica y Parinacota: informe final, Tech. rep.,
Dirección General de Aguas, Santiago,
available at: https://snia.mop.gob.cl/sad/REH5720.pdf (last access: 9 June 2021), 2016a. a
DGA: Actualización de Información y Modelación
Hidrológica Acuíferos de la XII Región, de Magallanes y la
Antártica Chilena : Informe definitivo etapa II, Tech. rep.,
Dirección General de Aguas, Santiago,
available at: https://snia.mop.gob.cl/sad/SUB5698.pdf (last access: 9 June 2021), 2016b. a
DGA: Herramientas de gestión y actualización de los modelos
numéricos del acuífero de Copiapó: informe final, Tech.
rep., Dirección General de Aguas, Santiago,
available at: https://snia.mop.gob.cl/sad/SUB5851v1.pdf (last access: 9 June 2021), 2018. a
Díaz-Uriarte, R. and Alvarez de Andrés, S.: Gene selection and
classification of microarray data using random forest., BMC Bioinformatics,
7, 3, https://doi.org/10.1186/1471-2105-7-3, 2006. a
Ding, J., Wallner, M., Müller, H., and Haberlandt, U.: Estimation of
instantaneous peak flows from maximum mean daily flows using the HBV
hydrological model, Hydrol. Process., 30, 1431–1448, 2016. a
Eberhart, R. and Kennedy, J.: A new optimizer using particle swarm theory, in:
Micro Machine and Human Science, 1995. MHS '95, Proceedings of the Sixth
International Symposium on, 39–43, https://doi.org/10.1109/MHS.1995.494215, 1995. a
Fernandez, W., Vogel, R., and Sankarasubramanian, A.: Regional calibration of a
watershed model, Hydrol. Sci. J., 45, 689–707, 2000. a
Galleguillos, M., Gimeno, F., Puelma, C., Zambrano-Bigiarini, M., Lara, A., and
Rojas, M.: Disentangling the effect of future land use strategies and climate
change on streamflow in a Mediterranean catchment dominated by tree
plantations, J. Hydrol., 595, 126047,
https://doi.org/10.1016/j.jhydrol.2021.126047, 2021. a
Garcia, F., Folton, N., and Oudin, L.: Which objective function to calibrate
rainfall–runoff models for low-flow index simulations?, Hydrol. Sci. J., 62, 1149–1166, 2017. a
Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., and Zambrano-Bigiarini, M.: The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation, Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, 2017. a, b
Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda,
H. H., and Veloso-Aguila, D.: The Central Chile Mega Drought (2010–2018): A
climate dynamics perspective, International J. Climatol., 40,
421–439, 2020. a
Guo, Y., Zhang, Y., Zhang, L., and Wang, Z.: Regionalization of hydrological
modeling for predicting streamflow in ungauged catchments: A comprehensive
review, Wiley Interdisciplinary Reviews: Water, e1487, https://doi.org/10.1002/wat2.1487, 2021. a, b
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Hann, H., Nauditt, A., Zambrano-Bigiarini, M., Thurner, J., McNamara, I., and
Ribbe, L.: Combining satellite-based rainfall data with rainfall-runoff
modelling to simulate low flows in a Southern Andean catchment, J. Nat. Res. Dev., 11, 1–19,
https://doi.org/10.18716/ojs/jnrd/2021.11.02, 2021. a
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
ambient air temperature, American Society of Agricultural Engineers, (fiche
no. 85-2517), (Microfiche collection), USA, 1985. a
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gräler, B.:
Random Forest as a generic framework for predictive modeling of spatial and
spatio-temporal variables, PeerJ, 6, e5518, https://doi.org/10.7717/peerj.5518, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, 2020. a, b, c, d
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling,
available at: https://CRAN.R-project.org/package=raster (last access: 12 December 2021), r package version
3.3-13, 2020. a
Hofstra, N., New, M., and McSweeney, C.: The influence of interpolation and
station network density on the distributions and trends of climate variables
in gridded daily data, Clim. Dynam., 35, 841–858, 2010. a
Hrachowitz, M., Savenije, H., Blöschl, G., McDonnell, J., Sivapalan, M.,
Pomeroy, J., Arheimer, B., Blume, T., Clark, M., Ehret, U., et al.: A decade
of Predictions in Ungauged Basins (PUB) – a review, Hydrol. Sci. J., 58, 1198–1255, 2013. a
Huang, S., Eisner, S., Magnusson, J. O., Lussana, C., Yang, X., and Beldring,
S.: Improvements of the spatially distributed hydrological modelling using
the HBV model at 1 km resolution for Norway, J. Hydrol., 577,
123585, https://doi.org/10.1016/j.jhydrol.2019.03.051, 2019. a
Jansen, K. F., Teuling, A. J., Craig, J. R., Dal Molin, M., Knoben, W. J.,
Parajka, J., Vis, M., and Melsen, L. A.: Mimicry of a Conceptual Hydrological
Model (HBV): What's in a Name?, Water Resour. Res., 57,
e2020WR029143, https://doi.org/10.1029/2020WR029143, 2021. a
Jehn, F. U., Bestian, K., Breuer, L., Kraft, P., and Houska, T.: Using hydrological and climatic catchment clusters to explore drivers of catchment behavior, Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, 2020. a
Karl, T. R., Nicholls, N., and Ghazi, A.: Clivar/GCOS/WMO workshop on indices
and indicators for climate extremes workshop summary, in: Weather and climate
extremes, 3–7, Springer, Dordrecht, the Netherlands, 1999. a
Kearney, M. R. and Maino, J. L.: Can next-generation soil data products improve
soil moisture modelling at the continental scale? An assessment using a new
microclimate package for the R programming environment, J. Hydrol., 561, 662–673, https://doi.org/10.1016/j.jhydrol.2018.04.040, 2018. a
Kennedy, J. and Eberhart, R.: Particle swarm optimization, in: Neural Networks,
1995. Proceedings., IEEE International Conference on, 4, 1942–1948,
https://doi.org/10.1109/ICNN.1995.488968, 1995. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol.,
424, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a, b, c, d
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019. a
Koffler, D., Gauster, T., and Laaha, G.: lfstat: Calculation of Low Flow
Statistics for Daily Stream Flow Data,
available at: https://CRAN.R-project.org/package=lfstat (last access: 12 December 2020), r package version
0.9.4, 2016. a
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017. a
Kundu, D., Vervoort, R. W., and van Ogtrop, F. F.: The value of remotely sensed
surface soil moisture for model calibration using SWAT, Hydrol.
Process., 31, 2764–2780, https://doi.org/10.1002/hyp.11219, 2017. a
Lagos, M., Mendoza, P., Rondanellu, R., Daniele, D., and Tomaás, G.:
Aplicación de La metodología de actualización del balance
hídrico nacional en las cuencas de la Macrozona Sur y parte de la
Macrozona Austral, Dirección General de Aguas (DGA), Santiago, Chile, 2019. a
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos., 99,
14415–14428, 1994. a
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R
News, 2, 18–22, 2002. a
Lindström, G.: A simple automatic calibration routine for the HBV model,
Hydrol. Res., 28, 153–168, 1997. a
Melsen, L. A., Addor, N., Mizukami, N., Newman, A. J., Torfs, P. J. J. F., Clark, M. P., Uijlenhoet, R., and Teuling, A. J.: Mapping (dis)agreement in hydrologic projections, Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, 2018. a
Mendoza, P. A., Clark, M. P., Mizukami, N., Gutmann, E. D., Arnold, J. R.,
Brekke, L. D., and Rajagopalan, B.: How do hydrologic modeling decisions
affect the portrayal of climate change impacts?, Hydrol. Process., 30,
1071–1095, 2016. a
Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters,
J. Hydrol., 287, 95–123, 2004. a
Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., and Kumar, R.: On the choice of calibration metrics for “high-flow” estimation using hydrologic models, Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, 2019. a
Neri, M., Parajka, J., and Toth, E.: Importance of the informative content in the study area when regionalising rainfall-runoff model parameters: the role of nested catchments and gauging station density, Hydrol. Earth Syst. Sci., 24, 5149–5171, https://doi.org/10.5194/hess-24-5149-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m
Nikolopoulos, E. I., Anagnostou, E. N., and Borga, M.: Using high-resolution
satellite rainfall products to simulate a major flash flood event in northern
Italy, J. Hydrometeorol., 14, 171–185, 2013. a
Ollivier, C., Mazzilli, N., Olioso, A., Chalikakis, K., Carrière, S. D.,
Danquigny, C., and Emblanch, C.: Karst recharge-discharge semi distributed
model to assess spatial variability of flows, Sci. Total
Environ., 703, 134368, https://doi.org/10.1016/j.scitotenv.2019.134368, 2020. a
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.:
Spatial proximity, physical similarity, regression and ungaged catchments:
A comparison of regionalization approaches based on 913 French
catchments, Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007WR006240, 2008. a, b, c, d, e, f, g, h, i, j, k, l, m
Parajka, J., Viglione, A., Rogger, M., Salinas, J. L., Sivapalan, M., and Blöschl, G.: Comparative assessment of predictions in ungauged basins – Part 1: Runoff-hydrograph studies, Hydrol. Earth Syst. Sci., 17, 1783–1795, https://doi.org/10.5194/hess-17-1783-2013, 2013. a, b
Parajka, J., Blaschke, A. P., Blöschl, G., Haslinger, K., Hepp, G., Laaha, G., Schöner, W., Trautvetter, H., Viglione, A., and Zessner, M.: Uncertainty contributions to low-flow projections in Austria, Hydrol. Earth Syst. Sci., 20, 2085–2101, https://doi.org/10.5194/hess-20-2085-2016, 2016. a
Perpiñán, O. and Hijmans, R.: rasterVis,
available at: https://oscarperpinan.github.io/rastervis/ (last access: 12 December 2020), r package version
0.49, 2020. a
Pokhrel, P., Yilmaz, K. K., and Gupta, H. V.: Multiple-criteria calibration of
a distributed watershed model using spatial regularization and response
signatures, J. Hydrol., 418, 49–60, 2012. a
Pool, S., Vis, M. J. P., Knight, R. R., and Seibert, J.: Streamflow characteristics from modeled runoff time series – importance of calibration criteria selection, Hydrol. Earth Syst. Sci., 21, 5443–5457, https://doi.org/10.5194/hess-21-5443-2017, 2017. a, b
Prasad, A. M., Iverson, L. R., and Liaw, A.: Newer Classification and
Regression Tree Techniques: Bagging and Random Forests for Ecological
Prediction, Ecosystems, 9, 181, https://doi.org/10.1007/s10021-005-0054-1, 2006. a, b
R Core Team: R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: 12 December 2020), 2020. a
Ren, Z. and Li, M.: Errors and correction of precipitation measurements in
China, Adv. Atmos. Sci., 24, 449–458, https://doi.org/10.1007/s00376-007-0449-3, 2007. a
Robertson, A. W., Baethgen, W., Block, P., Lall, U., Sankarasubramanian, A.,
de Souza Filho, F. d. A., and Verbist, K. M.: Climate risk management for
water in semi–arid regions, Earth Perspectives, 1, 12, https://doi.org/10.1186/2194-6434-1-12, 2014. a
Rojas, R., Feyen, L., and Watkiss, P.: Climate change and river floods in the
European Union: Socio-economic consequences and the costs and benefits
of adaptation, Global Environ. Change, 23, 1737–1751,
https://doi.org/10.1016/j.gloenvcha.2013.08.006, 2013. a
Saadi, M., Oudin, L., and Ribstein, P.: Random forest ability in regionalizing
hourly hydrological model parameters, Water, 11, 1540, https://doi.org/10.3390/w11081540, 2019. a, b
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010. a, b, c
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, https://doi.org/10.5194/hess-15-2895-2011, 2011. a
Sevruk, B., Ondrás, M., and Chvíla, B.: The WMO precipitation
measurement intercomparisons, Atmos. Res., 92, 376–380,
https://doi.org/10.1016/j.atmosres.2009.01.016, 2009. a
Shafii, M. and Tolson, B. A.: Optimizing hydrological consistency by
incorporating hydrological signatures into model calibration objectives,
Water Resour. Res., 51, 3796–3814, 2015. a
Sharma, S., Siddique, R., Reed, S., Ahnert, P., Mendoza, P., and Mejia, A.: Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system, Hydrol. Earth Syst. Sci., 22, 1831–1849, https://doi.org/10.5194/hess-22-1831-2018, 2018. a
Silal, S. P., Little, F., Barnes, K. I., and White, L. J.: Predicting the
impact of border control on malaria transmission: a simulated focal screen
and treat campaign, Malar J., 14, 268, https://doi.org/10.1186/s12936-015-0776-2, 2015. a
Sleziak, P., Szolgay, J., Hlavčová, K., Danko, M., and Parajka, J.:
The effect of the snow weighting on the temporal stability of hydrologic
model efficiency and parameters, J. Hydrol., 583, 124639, https://doi.org/10.1016/j.jhydrol.2020.124639, 2020. a
Stisen, S. and Sandholt, I.: Evaluation of remote-sensing-based rainfall
products through predictive capability in hydrological runoff modelling,
Hydrol. Process., 24, 879–891, https://doi.org/10.1002/hyp.7529, 2010. a
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A
Review of Global Precipitation Data Sets: Data Sources, Estimation, and
Intercomparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2017RG000574, 2018. a
Swain, J. B. and Patra, K. C.: Streamflow estimation in ungauged catchments
using regional flow duration curve: comparative study, J. Hydrol.
Eng., 22, 04017010, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001509, 2017. a, b, c
Széles, B., Parajka, J., Hogan, P., Silasari, R., Pavlin, L., Strauss, P.,
and Blöschl, G.: The added value of different data types for calibrating
and testing a hydrologic model in a small catchment, Water Resour. Res., 56, e2019WR026153, https://doi.org/10.1029/2019WR026153, 2020. a, b, c, d
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020. a
Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., and De Roo, A.: Hydrological
evaluation of satellite-based rainfall estimates over the Volta and
Baro-Akobo Basin, J. Hydrol., 499, 324–338,
https://doi.org/10.1016/j.jhydrol.2013.07.012, 2013. a
Uhlenbrook, S., Seibert, J., Leibundgut, C., and Rohde, A.: Prediction
uncertainty of conceptual rainfall-runoff models caused by problems to
identify model parameters and structure, Hydrol. Sci. J., 44,
779–797, 1999. a
Unduche, F., Tolossa, H., Senbeta, D., and Zhu, E.: Evaluation of four
hydrological models for operational flood forecasting in a Canadian
Prairie watershed, Hydrol. Sci. J., 63, 1133–1149, 2018. a
Vandewiele, G. and Elias, A.: Monthly water balance of ungauged catchments
obtained by geographical regionalization, J. Hydrol., 170,
277–291, 1995. a
Vásquez, N., Cepeda, J., Gómez, T., Mendoza, P. A., Lagos, M., Boisier,
J. P., Álvarez-Garretón, C., and Vargas, X.: Catchment-Scale
Natural Water Balance in Chile, in: Water Resources of Chile,
189–208, Springer, Switzerland, 2021. a
Verbist, K., Robertson, A. W., Cornelis, W. M., and Gabriels, D.: Seasonal
predictability of daily rainfall characteristics in central northern Chile
for dry-land management, J. Appl. Meteorol. Climatol., 49,
1938–1955, 2010. a
Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., and Hattermann, F.: Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, 2015. a
Viglione, A. and Parajka, J.: TUWmodel: Lumped/Semi-Distributed
Hydrological Model for Education Purposes,
available at: https://CRAN.R-project.org/package=TUWmodel (last access: 12 December 2020), r package
version 1.1-1, 2020. a
Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled
Complex Evolution Metropolis algorithm for optimization and uncertainty
assessment of hydrological model parameters, Water Resour. Res., 39,
1201, https://doi.org/10.1029/2002WR001642, 2003. a
Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.: Response
to comment by Keith Beven on “Equifinality of formal (DREAM) and
informal (GLUE) Bayesian approaches in hydrologic modeling?”, Stoch.
Env. Res. Risk A., 23, 1061–1062,
https://doi.org/10.1007/s00477-008-0284-9, 2009. a
Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V., and Sorooshian, S.: A framework for development and application of hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26, https://doi.org/10.5194/hess-5-13-2001, 2001. a
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification
and Hydrologic Similarity, Geography Compass, 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007. a
Woldemeskel, F. M., Sivakumar, B., and Sharma, A.: Merging gauge and satellite
rainfall with specification of associated uncertainty across Australia,
J. Hydrol., 499, 167–176, https://doi.org/10.1016/j.jhydrol.2013.06.039,
2013. a
Xavier, A. C., King, C. W., and Scanlon, B. R.: Daily gridded meteorological
variables in Brazil (1980–2013), Int. J. Climatol., 36,
2644–2659, 2016. a
Xue, X., Hong, Y., Limaye, A. S., Gourley, J. J., Huffman, G. J., Khan, S. I.,
Dorji, C., and Chen, S.: Statistical and hydrological evaluation of
TRMM-based Multi-satellite Precipitation Analysis over the Wangchu
Basin of Bhutan: Are the latest satellite precipitation products
3B42V7 ready for use in ungauged basins?, J. Hydrol., 499,
91–99, 2013. a
Yang, Y., Pan, M., Beck, H. E., Fisher, C. K., Beighley, R. E., Kao, S.-C.,
Hong, Y., and Wood, E. F.: In quest of calibration density and consistency in
hydrologic modeling: distributed parameter calibration against streamflow
characteristics, Water Resour. Res., 55, 7784–7803, 2019. a
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective global
optimization for hydrologic models, J. Hydrol., 204, 83–97,
https://doi.org/10.1016/S0022-1694(97)00107-8, 1998. a
Young, A. R.: Stream flow simulation within UK ungauged catchments using a
daily rainfall-runoff model, J. Hydrol., 320, 155–172, 2006. a
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison
of simulated and observed hydrological time series, r package version 0.4-0,
https://doi.org/10.5281/zenodo.839854, 2020a. a
Zambrano-Bigiarini, M.: hydroTSM: Time Series Management, Analysis
and Interpolation for Hydrological Modelling, r package version 0.6-0, https://doi.org/10.5281/zenodo.839864, 2020b. a
Zambrano-Bigiarini, M. and Baez-Villanueva, O.: Tutorial for using hydroPSO to
calibrate TUWmodel, https://doi.org/10.5281/zenodo.3772176, 2020. a
Zambrano-Bigiarini, M. and Rojas, R.: A model-independent Particle Swarm
Optimisation software for model calibration, Environ. Model.
Softw., 43, 5–25, https://doi.org/10.1016/j.envsoft.2013.01.004, 2013. a, b
Zambrano-Bigiarini, M., Nauditt, A., Birkel, C., Verbist, K., and Ribbe, L.: Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile, Hydrol. Earth Syst. Sci., 21, 1295–1320, https://doi.org/10.5194/hess-21-1295-2017, 2017. a, b, c, d
Zambrano-Bigiarini, M., Baez-Villanueva, O. M., and Giraldo-Osorio, J.:
RFmerge: Merging of Satellite Datasets with Ground Observations using Random
Forests, r
package version 0.1-10, https://doi.org/10.5281/zenodo.3581515, 2020. a
Zessner, M., Schönhart, M., Parajka, J., Trautvetter, H., Mitter, H.,
Kirchner, M., Hepp, G., Blaschke, A. P., Strenn, B., and Schmid, E.: A novel
integrated modelling framework to assess the impacts of climate and
socio-economic drivers on land use and water quality, Sci. Total
Environ., 579, 1137–1151, 2017. a
Zhang, L., Li, X., Zheng, D., Zhang, K., Ma, Q., Zhao, Y., and Ge, Y.: Merging
multiple satellite-based precipitation products and gauge observations using
a novel double machine learning approach, J. Hydrol., 594,
125969, https://doi.org/10.1016/j.jhydrol.2021.125969, 2021. a, b
Zhang, Y. and Chiew, F. H.: Relative merits of different methods for runoff
predictions in ungauged catchments, Water Resour. Res., 45, W07412, https://doi.org/10.1029/2008WR007504, 2009. a
Zhang, Y. and Wang, K.: Global precipitation system size, Environ.
Res. Lett., 16, 054005, https://doi.org/10.1088/1748-9326/abf394, 2021. a, b
Zhang, Y., Vaze, J., Chiew, F. H., and Li, M.: Comparing flow duration curve
and rainfall–runoff modelling for predicting daily runoff in ungauged
catchments, J. Hydrol., 525, 72–86, 2015. a
Zhao, Y., Feng, D., Yu, L., Wang, X., Chen, Y., Bai, Y., Hernández, H. J.,
Galleguillos, M., Estades, C., Biging, G. S., Radke, J. D., and Gong, P.:
Detailed dynamic land cover mapping of Chile: Accuracy improvement by
integrating multi-temporal data, Remote Sens. Environ., 183,
170–185, https://doi.org/10.1016/j.rse.2016.05.016, 2016. a, b
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources....