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Abstract. Over the past decades, novel parameter regionali-
sation techniques have been developed to predict streamflow
in data-scarce regions. In this paper, we examined how the
choice of gridded daily precipitation (P ) products affects the
relative performance of three well-known parameter region-
alisation techniques (spatial proximity, feature similarity, and
parameter regression) over 100 near-natural catchments with
diverse hydrological regimes across Chile. We set up and cal-
ibrated a conceptual semi-distributed HBV-like hydrological
model (TUWmodel) for each catchment, using four P prod-
ucts (CR2MET, RF-MEP, ERA5, and MSWEPv2.8). We as-
sessed the ability of these regionalisation techniques to trans-
fer the parameters of a rainfall-runoff model, implementing
a leave-one-out cross-validation procedure for each P prod-
uct. Despite differences in the spatio-temporal distribution
of P , all products provided good performance during cali-
bration (median Kling–Gupta efficiencies (KGE′s) > 0.77),
two independent verification periods (median KGE′s > 0.70
and 0.61, for near-normal and dry conditions, respectively),
and regionalisation (median KGE′s for the best method rang-
ing from 0.56 to 0.63). We show how model calibration is
able to compensate, to some extent, differences between P
forcings by adjusting model parameters and thus the water
balance components. Overall, feature similarity provided the
best results, followed by spatial proximity, while parameter
regression resulted in the worst performance, reinforcing the

importance of transferring complete model parameter sets to
ungauged catchments. Our results suggest that (i) merging
P products and ground-based measurements does not nec-
essarily translate into an improved hydrologic model per-
formance; (ii) the spatial resolution of P products does not
substantially affect the regionalisation performance; (iii) a P
product that provides the best individual model performance
during calibration and verification does not necessarily yield
the best performance in terms of parameter regionalisation;
and (iv) the model parameters and the performance of region-
alisation methods are affected by the hydrological regime,
with the best results for spatial proximity and feature simi-
larity obtained for rain-dominated catchments with a minor
snowmelt component.

1 Introduction

Daily streamflow (Q) data are crucial for a wide range of
scientific and operational water resources applications, such
as climate change impact assessment (e.g. Kling et al., 2012;
Rojas et al., 2013; Mendoza et al., 2016; Galleguillos et al.,
2021), Q and flood forecasting (e.g. Clark and Hay, 2004;
Addor et al., 2011; Coughlan de Perez et al., 2016; Sharma
et al., 2018), and catchment classification (e.g. Wagener
et al., 2007; Sawicz et al., 2011; Kuentz et al., 2017; Jehn
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et al., 2020), among others. Q is typically estimated through
the implementation of hydrological models, which rely on
parameters to represent hypotheses about the dominant pro-
cesses in a catchment (Beven, 2006). In most cases, these
parameters cannot be measured at the scales relevant for
model applications (Beven, 1989; Uhlenbrook et al., 1999;
Beven, 2000; Wagener et al., 2001) and are therefore esti-
mated through model calibration. To this end, optimisation
techniques are used to provide reliable estimates of model
parameters, requiring the comparison of observed Q against
simulatedQ data (Yapo et al., 1998; Vrugt et al., 2003, 2009;
Pokhrel et al., 2012; Shafii and Tolson, 2015; Pool et al.,
2017). Because the vast majority of streams worldwide re-
main ungauged (Young, 2006; Beck et al., 2016), the sci-
entific initiative Prediction in Ungauged Basins (PUB; see
review by Hrachowitz et al., 2013) has fostered the devel-
opment of novel regionalisation techniques to predict Q in
ungauged basins, a task that is far from complete (Yang
et al., 2019; Dallery et al., 2020). The spatial transfer of
hydrological model parameters from monitored to ungauged
catchments, a process known as regionalisation (Oudin et al.,
2008), remains an active research topic (see review by Guo
et al., 2021).

In the hydrological modelling literature, there are three
main regionalisation approaches (Oudin et al., 2008; Parajka
et al., 2013): (i) spatial proximity, (ii) feature similarity, and
(iii) parameter regression. Spatial proximity assumes that cli-
matic and physiographic characteristics are relatively homo-
geneous within a region, and, therefore, neighbouring catch-
ments exhibit similar hydrological behaviour (Vandewiele
and Elias, 1995; Oudin et al., 2008). Although this method
requires a dense network of gauging stations to perform
well, it may lead to inadequate representations of rainfall-
runoff behaviour over areas with heterogeneous climate and
geomorphological characteristics (Beck et al., 2016). Fea-
ture similarity techniques transfer calibrated model param-
eter sets from donor to ungauged catchments based on ge-
omorphological and climatic similarities (McIntyre et al.,
2005; Carrillo et al., 2011; Beck et al., 2016). Finally, pa-
rameter regression methods develop statistical relationships
between calibrated model parameters and catchment charac-
teristics, which are subsequently used to estimate parame-
ter values for ungauged catchments (Fernandez et al., 2000;
Carrillo et al., 2011). Recently, Samaniego et al. (2010) and
Beck et al. (2020a) applied multiscale parameter regional-
isation techniques that link model parameters to predictors
related to geomorphological and climatological characteris-
tics by optimising coefficients in transfer equations, which
helps to account for problems related to equifinality. The
performances of these three regionalisation techniques vary
due to many factors, including the selected sample of catch-
ments, the presence of nested catchments, hydroclimatic con-
ditions, physiographic catchment properties, model configu-
ration (including meteorological forcings, model structure,

and simulation setup), and evaluation criteria (Parajka et al.,
2013; Neri et al., 2020; Guo et al., 2021).

Most regionalisation studies have been conducted over
regions with a dense network of meteorological stations
(see Table 1), including Europe (e.g. McIntyre et al., 2005;
Parajka et al., 2005; Oudin et al., 2008; Singh et al.,
2012; Zelelew and Alfredsen, 2014; Garambois et al., 2015;
Rakovec et al., 2016; Neri et al., 2020), the conterminous
United States (Athira et al., 2016; Saadi et al., 2019), In-
dia (Swain and Patra, 2017), and China (Bao et al., 2012).
However, in developing countries, P has traditionally been
estimated through interpolation within sparse rain gauge
networks, which is subject to large uncertainties (Hofstra
et al., 2010; Woldemeskel et al., 2013; Adhikary et al., 2015;
Xavier et al., 2016), hindering an accurate spatio-temporal
representation of P patterns. Over the last decades, the emer-
gence of near-global and high-resolution gridded P products
has introduced new possibilities for hydrological modelling
in data-scarce regions (Maggioni and Massari, 2018; Sun
et al., 2018), despite these products still being affected by
systematic, random, and detection errors (Ren and Li, 2007;
Sevruk et al., 2009; Zambrano-Bigiarini et al., 2017; Baez-
Villanueva et al., 2018), which are more pronounced over
mountainous regions (Maggioni and Massari, 2018; Beck
et al., 2019). Although hydrological model calibration can
partly compensate for errors in the representation of P (El-
sner et al., 2014; Maggioni and Massari, 2018), this may lead
to unrealistic model behaviour (Nikolopoulos et al., 2013;
Xue et al., 2013; Ciabatta et al., 2016), thus affecting the
quality of parameter regionalisation results.

To date, few regionalisation studies have used gridded P
products at the daily temporal scale. Beck et al. (2016) used
the Climate Prediction Center unified gauge-based P prod-
uct (CPC) to provide spatially distributed HBV parameters at
the global scale. They selected CPC because it yielded better
performance than ERA-Interim during calibration. Rakovec
et al. (2016) used the European daily high-resolution grid-
ded dataset (E-OBSv8.0) to force a mesoscale hydrologi-
cal model over 400 catchments in Europe, providing region-
alised model parameters through a multivariate parameter es-
timation technique. More recently, Beck et al. (2020a) com-
bined MSWEPv2.2 with a novel multiscale parameter re-
gionalisation approach to provide global gridded parame-
ter estimates using daily Q observations from 4229 catch-
ments. Although these studies have successfully used grid-
ded P products for parameter regionalisation, they only se-
lected one product, and thus the effects that the choice of a P
dataset can have on regionalisation results remain unknown.
This study aims to answer the following questions:

(i) To what extent does the choice of gridded P forcing
used in calibration affect the relative performance of re-
gionalisation techniques?

(ii) How does this relative performance vary across catch-
ments with different hydrological regimes?
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2 Study area and selection of catchments

Our study domain is continental Chile (Fig. 1), which is
bounded to the west by the Pacific Ocean, to the north by
Peru, and to the east by Bolivia and Argentina. The terri-
tory spans 4300 km of latitudinal extension (17.5–56.0◦ S)
and on average 180 km of longitudinal extension (76.0–
66.0◦W), with elevation (Jarvis et al., 2008) ranging from
0 to 6892 m a.s.l. in the Andes Mountains. Figure 1 shows
the elevation, land cover (Zhao et al., 2016), Köppen–Geiger
climate classification (Beck et al., 2018), and hydrological
regimes for the five major macroclimatic zones presented
in Zambrano-Bigiarini et al. (2017). A large variety of cli-
mates are present across the country, with the macrocli-
matic zones transitioning from the (hyper)arid and semi-
arid climates in the Far North (17.50–26.00◦ S) and Near
North (26.00–32.18◦ S), through temperate climates in Cen-
tral Chile (32.18–36.40◦ S), to more humid and polar cli-
mates in the South (36.40–43.70◦ S) and Far South (43.70–
56.00◦ S). P increases with elevation and latitude (in the
southern direction), ranging from almost zero in the Atacama
Desert to ∼ 6000 mm yr−1 in the surroundings of Puerto
Cárdenas (∼ 43.2◦ S). Similar to the P patterns, both the
mean annualQ and rainfall-runoff ratio tend to increase from
north to south (Alvarez-Garreton et al., 2018; Vásquez et al.,
2021).

The El Niño–Southern Oscillation (ENSO) has a large im-
pact on winter P , with negative anomalies during La Niña
and positive anomalies during El Niño events (Verbist et al.,
2010; Robertson et al., 2014). Although neutral ENSO con-
ditions have prevailed since 2011 (except for a strong El Niño
event during 2015), an uninterrupted sequence of dry years
with increased temperatures has been observed from 2010–
2018, with annual P deficits of about 25 %–45 % across
Chile. This long-term deficit in P volume, also known as the
Chilean megadrought (Boisier et al., 2016; Garreaud et al.,
2017), has reduced snow cover, river flows, reservoir stor-
age, and groundwater levels across Chile (Garreaud et al.,
2017, 2020).

Hydroclimatic indices and characteristics for 516 catch-
ments in continental Chile were acquired from the Catch-
ment Attributes and MEteorology for Large-sample Stud-
ies dataset in Chile (CAMELS-CL; Alvarez-Garreton et al.,
2018). The dataset includes location, topography, geology,
soil types, land cover, hydrological signatures, and human in-
tervention degree, among others. Q data were obtained from
the Center for Climate and Resilience Research (CR2; http:
//www.cr2.cl/datos-de-caudales/, last access: October 2020)
for 1930–2018 because Q data from CAMELS-CL ended
in 2016 at the time of conducting this study. We selected
the near-natural catchments from the CAMELS-CL database
that fulfilled the following criteria:

1. less than 25 % of missing values in the daily Q time
series for 1990–2018 (may be non-consecutive)

2. absence of large dams (big_dam= 0)

3. less than 10 % of Q allocated to consumptive uses (in-
terv_degree< 0.1)

4. not dominated by glaciers (lc_glacier< 5 %)

5. less than 5 % of the area defined as urban
(imp_frac< 5 %)

6. absence of substantial irrigation abstractions
(crop_frac< 20 %)

7. less than 20 % of the area covered by forest plantations
(fp_frac< 20 %)

8. no signs of artificial regulation in the hydrograph (10
excluded in total).

The drainage areas of the selected catchments (100) range
from 35 to 11 137 km2, with a median value of 645 km2.
The selected catchments contain 42 nested catchments (i.e.
catchments that are contained in a larger catchment). We ad-
justed the classification of these catchments according to hy-
drological regime, building on the classifications presented
in several national and regional technical reports (e.g. DGA,
1998, 1999, 2004a, b, c, 2006, 2016a, b, 2018), by visu-
ally analysing the contribution of solid and liquid P to the
mean monthly Q values. These regimes were classified as
(i) snow-dominated; (ii) nivo-pluvial, i.e. snow-dominated
with a rain component; (iii) pluvio-nival, i.e. rain-dominated
with a snow component; and (iv) rain-dominated, as shown
in Fig. 1d. Figure A1 shows conceptual hydrographs for each
of these regimes and is presented in Appendix A.

3 Methods

3.1 Meteorological forcings

3.1.1 Precipitation products

Four P products were used to investigate how the choice of
P forcing affects the performance of regionalisation tech-
niques. The P products are presented in Table 2 and were
selected because previous studies have reported good agree-
ment when evaluated against in situ measurements over con-
tinental Chile (Zambrano-Bigiarini et al., 2017; Boisier et al.,
2018; Baez-Villanueva et al., 2018, 2020).

The Center for Climate and Resilience Research Meteoro-
logical dataset version 2.0 (CR2MET; Boisier et al., 2018)
provides daily gridded P estimates over continental Chile
at a 5 km spatial resolution for 1979–2018. These estimates
are produced by combining rain gauge observations with re-
analysis data from ERA5, while CR2MET version 1.0 of this
product was produced using ERA-Interim data (Boisier et al.,
2018). As CR2MET was developed specifically for Chile and
uses all the Chilean rain gauges (874 across Chile; see Fig. S1
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Table 1. Summary of selected regionalisation studies that used spatial proximity (SP), feature similarity (FS), parameter regression (PR), or
multiscale parameter regionalisation (MPR). This study has been added for completeness.

Study Region Catchments
(donor/evaluation)

Approach Relevant conclusion

McIntyre et al. (2005) United
Kingdom

127/leave-one-out
cross-validation

SP and FS The transfer of complete model parameter sets increased the
performance of regionalisation. The use of the 10 best model
parameter sets provided a more robust representation of flood
peaks and generated a better ensemble of the overall flow
regime, although flow peaks were underestimated. A compar-
ison against the PR approach showed that FS produced better
results.

Parajka et al. (2005) Austria 320/leave-one-out
cross-validation

SP, FS, and
PR

All methods performed better than the average of the model pa-
rameters of all catchments. Two methods performed the best:
FS and an SP kriging approach, where the model parameters
were regionalised independently based on their spatial corre-
lation. Local regression methods outperformed the global re-
gression method, highlighting the importance of accounting for
regional differences during PR.

Oudin et al. (2008) France 913/leave-one-out
cross-validation

SP, FS, and
PR

SP performed the best, followed closely by FS. The reduced
performance of FS was attributed to the lack of soil-related
properties used as inputs. To construct the ensemble output us-
ing multiple catchments, averaging theQ time series performed
better than averaging the model parameters. They concluded
that the dense network of catchments favoured the SP method.

Samaniego et al. (2010) Germany 1/10 stations within the
study area

MPR The MPR method showed improved results compared to the
standard PR when the global parameters were calibrated at a
coarser modelling scale and then transferred to a finer scale.

Bao et al. (2012) China 55/leave-one-out
cross-validation

FS and PR FS outperformed PR over both humid and arid regions. Moving
from humid to arid regions, the degree to which the FS approach
outperformed PR increased.

Zelelew and Alfredsen (2014) Southern
Norway

11/Leave-one-out
cross-validation

SP and FS The ensemble of the 10 most similar catchments outperformed
the other approaches (the performance increased when two to
six catchments were used). They recommended identifying the
parameters that influence the model response in order to min-
imise the model parametric dimensionality.

Garambois et al. (2015) Southern
France

16/leave-one-out
cross-validation

SP and FS FS outperformed SP. They reported only a small decrease
in performance from calibration/verification to regionalisation
(∼ 10 %) when evaluated during flash flood events. Using an
ensemble of two to four donor catchments yielded the best
regionalisation performance. Using well-modelled catchments
does not always produce good performances during regionali-
sation, and parameter sets from low-performing catchments can
produce higher performances when transferred to ungauged set-
tings.

Athira et al. (2016) Conterminous
United
States

8/leave-one-out
cross-validation

PR The parameter values using multi-linear regression models were
different to those obtained through model calibration, indicat-
ing the deficiency of regionalising the parameters directly as a
function of catchment attributes. For the one catchment where
SP was also tested, PR performed better.

Beck et al. (2016) Global 674/1113; independent
evaluation

FS The derived global maps of HBV parameter sets conform well
with large-scale climate patterns, demonstrating the effect of
climate on rainfall-runoff patterns. For 79 % of catchments, the
averaging of model outputs (from 10 donor catchments) out-
performed the use of spatially uniform parameters. P underes-
timation appeared to be the dominant cause of low calibration
scores, particularly for tropical and arid catchments.

Rakovec et al. (2016) Europe 36/400,
cross-validation

MPR The model performed well in simulating daily Q over a wide
range of physiographic and climatic conditions, with median
KGE′s greater than 0.55. This performance was reduced in
heavily regulated catchments. Further evaluation against com-
plementary datasets showed the best agreement for evaporation,
followed by total water storage, and the lowest for soil moisture.
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Table 1. Continued.

Study Region Catchments
(donor/evaluation)

Approach Relevant conclusion

Swain and Patra (2017) India 32/leave-one-out
cross-validation

SP, FS, and
PR

SP (both kriging and inverse distance weighting, IDW) outper-
formed PR and FS. The methods were evaluated against a global
mean approach, which produced worse results than all tested re-
gionalisation methods.

Beck et al. (2020a) Global 4229/10-fold
cross-validation

MPR They incorporated within-catchment variability in climate and
landscape and yielded an improvement in 88 % of the catch-
ments (median KGE′ improved from 0.19 to 0.46). They found
a weak positive correlation between regionalisation perfor-
mance and catchment humidity. Considerable improvements
were obtained for catchments located both near and far from
those used for optimisation.Q simulation performance was best
in humid regions and worst in arid regions.

Neri et al. (2020) Austria 209/leave-one-out
cross-validation

SP and FS Compared to the results of the independent calibra-
tion/verification, the regionalisation performance using
the TUWmodel deteriorated less than using the GR6J model.
With a high density of gauged stations, both the SP and FS
performed similarly well, but the results deteriorated with
reduced gauge density (especially for SP). Transferring the
parameter sets of more than one single catchment improves the
regionalisation performance.

This study Chile 100/leave-one-out
cross-validation

SP, FS, and
PR

FS was the best-performing method, followed by SP. The use
of merged P products does not necessarily translate into an
improved hydrological modelling performance. Strong perfor-
mance of a P product for calibration and validation does not
necessarily translate into strong performance for regionalisa-
tion. The performance of regionalisation methods depends on
the hydrological regime.

Table 2. Gridded P products used in this study.

P product Period Spatial and temporal resolution References

CR2MET 1979–2018 0.05◦; daily Boisier et al. (2018)
RF-MEP 1983–2018 0.05◦; daily Baez-Villanueva et al. (2020)
ERA5 1950–present ∼0.28◦; hourly Hersbach et al. (2020)
MSWEPv2.8 1979–present 0.10◦; 3-hourly Beck et al. (2017b, 2019)

in the Supplement), it is considered as the “reference” P
product of Chile.

The random forest merging procedure (RF-MEP; Baez-
Villanueva et al., 2020) combines gridded P products,
ground-based measurements, and other spatial covariates to
generate P estimates. We applied this methodology to gen-
erate a spatially distributed, daily P product for continen-
tal Chile, using daily records from 334 rain gauges (ob-
tained from CR2; http://www.cr2.cl/datos-de-precipitacion/,
last access: 10 January 2021), gridded P data from the ERA5
reanalysis (Hersbach et al., 2020) aggregated to the Chilean
time, and elevation (SRTMv4.1; Jarvis et al., 2008) as covari-
ates. This RF-MEP version 2 product (hereafter, RF-MEP)
was generated for 1990–2018 with a spatial resolution of
0.05◦ using the RFmerge R package (Zambrano-Bigiarini
et al., 2020).

ERA5 (Hersbach et al., 2020) is a reanalysis product that
provides hourly P estimates (as well as other variables)
from 1950 to present at a spatial resolution of around 30 km
(∼ 0.28◦). There are important improvements in its P esti-
mates compared to its predecessor ERA-Interim, such as im-
proved (i) representation of mixed-phase clouds, (ii) prog-
nostics variables for rain and snow, (iii) parameterisation
of microphysics, and (iv) representation of tropical variabil-
ity (Hersbach et al., 2020). Although ERA5 also assimi-
lates NCEP Stage IV P estimates over the conterminous
United States, which combine NEXRAD data with in situ
measurements, it does not incorporate information from any
ground-based P stations over Chile. Hourly ERA5 estimates
were aggregated into daily P values, taking into account
the reporting times of the Chilean rain gauges (08:00–07:59
local time, which represents 11:00–10:59 UTC). Although
this product has a relatively low spatial resolution com-
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Figure 1. Study area: (a) elevation (SRTMv4.1; Jarvis et al., 2008); (b) land cover classification (Zhao et al., 2016); (c) Köppen–Geiger
climate classification (Beck et al., 2018); and (d) hydrological regimes of the selected catchments over the five major macroclimatic zones
according to Zambrano-Bigiarini et al. (2017).

pared to the other selected products, we included it because
(i) Chile is dominated by large-scale, frontal systems (Zhang
and Wang, 2021), and therefore, coarse-resolution products
may perform well even over small catchments; (ii) reanalysis
products tend to perform well at high latitudes (Beck et al.,
2017a); and (iii) we consider that its inclusion represents a re-
alistic situation that may exist in many practical applications
(i.e. where a catchment size is small relative to P product
resolution).

The Multi-Source Weighted-Ensemble Precipitation
(MSWEPv2.8; Beck et al., 2017b, 2019) is a 3-hourly P
product with a spatial resolution of 0.10◦, which takes
advantage of the complementary strengths of satellite,
reanalysis, and ground-based data. MSWEPv2.8 applies
daily and monthly corrections to its estimates using data
from around 77 000 rain gauge stations globally (628 of
these are over Chile; see Fig. S1), accounting for their local
reporting times. The 3-hourly MSWEPv2.8 estimates were
also aggregated into daily P to account for the difference in
the reporting times.

Figure 2a shows the spatial distribution of mean annual P
for all products over 1990–2018, while Fig. 2b shows box
plots of the mean monthly P averaged over catchments lo-
cated within each macroclimatic zone. All P products show
relatively similar patterns of spatial variability across con-

tinental Chile; however, there are substantial differences in
their total P amounts. In general, P increases from the
(hyper-arid) Far North to the South and decreases again in
the Far South. P also increases from the west coast towards
the Andes Mountains. ERA5 provides higher P amounts
over all five macroclimatic zones, while RF-MEP generally
yields the lowest annual P values. Over the Far North, all
products show a marked rainy season during December–
March due to summer convective P , which differs from
the marked seasonality evident over the Near North, Cen-
tral Chile, and South regions. Over the Far North, ERA5
presents the highest mean annual P (157 mm), which is al-
most twice the amount provided by the second-highest prod-
uct MSWEPv2.8 (83 mm), followed by CR2MET (63 mm),
while RF-MEP has the lowest mean annual P (40 mm). Al-
though ERA5 presents the highest mean annual P values
over the Near North, Central Chile, and South regions (208,
902, and 2172 mm, respectively), when considering only our
case study catchments (Fig. 2b), CR2MET has the highest
mean monthly values over the Central Chile and South re-
gions during April–June. RF-MEP and MSWEPv2.8 have
similar mean annual P values over Central Chile (670 mm
for both products) and the South (1670 and 1735 mm, re-
spectively) regions, although RF-MEP consistently shows
the largest monthly P amounts of the two products over the
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corresponding catchments. ERA5 provides the highest mean
annual P values over the Far South (3018 mm), followed
by CR2MET (1888 mm), MSWEPv2.8 (1714 mm), and RF-
MEP (815 mm). Finally, each product shows low seasonality
over the Far South. Here, ERA5 presents higher monthly P
values throughout the year, with the largest difference from
the other products between January–March and September–
December.

To gain a deeper understanding of the differences between
the four P products, we examined the spatial distribution of
median annual values of four Climdex indices (Karl et al.,
1999) for 1990–2018 (Fig. 3). First, to account for days
without rain (P < 1 mm), we used the consecutive dry days
index (CDD; Fig. 3a), which retrieves the maximum dry
spell length. It is evident that CR2MET yields longer dry
spells, mainly across the Far North and Near North regions,
while ERA5 has shorter dry spells over these regions, espe-
cially over the Andes Mountains. CR2MET, RF-MEP, and
MSWEPv2.8 have similar spatial patterns over the Central
Chile and South regions, while ERA5 has fewer consecutive
dry days over the Andes Mountains. Similarly, ERA5 pro-
vides shorter dry spells over the Far South, while CR2MET
and RF-MEP present similar patterns. These results are con-
sistent with the consecutive wet days index (CWD; Fig. 3b),
which assesses the frequency and intermittency of P . ERA5
provides the highest CWD values over the driest regions
(Far North and Near North), with medians ranging from 0
to 25 d, followed by MSWEPv2.8 (0 to 15 d). ERA5 also
shows higher CWD values over high-elevation areas in Cen-
tral Chile, while the remaining products show similar spatial
patterns to each other. The four products show agreement in
the CWD over the South region, with values ranging from
5 to 25 d. Finally, RF-MEP shows the lowest consecutive
days with P in the Far South, followed by CR2MET and
MSWEPv2.8, while ERA5 shows substantially higher CWD
values at latitudes greater than 47◦ S.

To characterise high P intensities, we used the Rx5day
(Fig. 3c) and R95pTOT (Fig. 3d) indices, which represent
the maximum P accumulated over 5 consecutive days and
the total P above the 95th percentile of the daily P for
wet days, respectively. Figure 3c shows that ERA5 and
CR2MET generally yield the highest Rx5day values, fol-
lowed by MSWEPv2.8 and RF-MEP. A similar spatial vari-
ability is obtained with R95pTOT (Fig. 3d), indicating that
there is a greater contribution of P from extreme events
in ERA5 over high-elevation areas. These spatial patterns
are replicated to some extent by CR2MET, which provides
R95pTOT values up to 1200 mm over the Andes Mountains
in Central Chile.

3.1.2 Air temperature and potential evaporation

Maximum and minimum daily air temperature (T ) at a spa-
tial resolution of 0.05◦ were taken from CR2MET. T is
estimated using multivariate regression from the Moder-

ate Resolution Imaging Spectroradiometer (MODIS) land
surface temperature (LST) and ERA5 estimates as covari-
ates (Alvarez-Garreton et al., 2018; Boisier et al., 2018).
The Hargreaves–Samani equation (Hargreaves and Samani,
1985) was used to obtain daily potential evaporation (PE)
from CR2MET maximum and minimum daily T at the same
spatial resolution (0.05◦).

3.2 Hydrological model

The TUWmodel (Viglione and Parajka, 2020) is a concep-
tual hydrological model that follows the structure of the
Hydrologiska Byråns Vattenbalansavdelning (HBV) model
(Bergström, 1976; Bergström, 1995; Lindström, 1997). The
model simulates the catchment-scale water balance at daily
time steps, including processes related to snow accumulation
and melting, change of moisture in the soil profile, and sur-
face flow in the drainage network. The TUWmodel was val-
idated over 320 catchments in Austria (Parajka et al., 2007)
and has subsequently been used in numerous studies (e.g.
Parajka et al., 2016; Zessner et al., 2017; Melsen et al., 2018;
Sleziak et al., 2020). We selected a HBV-like conceptual
model because it has shown good results in (i) many region-
alisation studies (e.g. Parajka et al., 2005; Singh et al., 2012;
Beck et al., 2016; Neri et al., 2020) and (ii) catchments with
diverse hydroclimatic and geomorphological characteristics
(Vetter et al., 2015; Ding et al., 2016; Unduche et al., 2018;
Huang et al., 2019).

The TUWmodel requires as inputs daily time series of P ,
T , and PE. The parameters used by the TUWmodel to repre-
sent the hydrological processes are listed in Table 3, includ-
ing the ranges selected for model calibration, which were
adopted from previous studies (Parajka et al., 2007; Ceola
et al., 2015) that calibrated the TUWmodel over a large num-
ber of mountainous catchments with snow influence. We ran
the TUWmodel with a semi-distributed configuration for the
period 1990–2018 based on meteorological andQ data avail-
ability. For each catchment, the number of equal-area ele-
vation bands (EZ) was defined as EZ= (Hmax−Hmin)/200,
where H represents elevation. In cases where EZ> 10, EZ
was set to 10 to reduce the computational demand of the
simulations. Furthermore, in catchments with Hmin below
900 m a.s.l., the upper bound of the first EZ band was set
to 900 m under the assumption that there is no snow influ-
ence below this elevation for the particular case of continen-
tal Chile. For more details about the TUWmodel implemen-
tation in R and the comparison of different HBV-like models,
readers are referred to Astagneau et al. (2021) and Jansen
et al. (2021), respectively.

3.3 Independent catchment calibration and verification

The simulation period used for this study was 1990–2018.
For calibration purposes, we used the first 10 years as a con-
servative warm-up period to initialise the model stores, as
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Figure 2. Comparison of P products over 1990–2018 (full time period): (a) mean annual P for each product resampled to a 0.05◦ spatial
resolution using the nearest neighbour method. The dark red horizontal lines represent the limits of each major macroclimatic zone and
(b) mean monthly P averaged over each catchment located within each macroclimatic zone (see Fig. 1d).

Table 3. Summary of the TUWmodel parameters considered for calibration, following the conceptualisation presented in Széles et al. (2020).

No. Parameter ID Description Units Process Range

1 SCF Snow correction factor – Snow 0.9–1.5
2 DDF Degree-day factor mm ◦C d−1 Snow 0.0–5.0
3 Twb Wet bulb temperature ◦C Snow −3.0–3.0
4 Tm Threshold temperature above which melting starts ◦C Snow −2.0–2.0
5 LPrat Parameter related to the limit for potential evaporation – Evaporation 0.0–1.0
6 FC Field capacity mm Infiltration 0.0–600
7 Beta Non-linear parameter for runoff production – Infiltration 0.0–20
8 cperc Constant percolation rate mm d−1 Infiltration 0.0–8.0
9 k0 Storage coefficient for very fast response d Runoff 0.0–2.0
10 k1 Storage coefficient for fast response d Runoff 2.0–30
11 k2 Storage coefficient for slow response d Runoff 30–250
12 lsuz Threshold storage state mm Runoff 1.0–100
13 bmax Maximum base at low flows d Runoff 0.0–30
14 croute Free scaling parameter d2 mm−1 Runoff 0.0–50

in Beck et al. (2020a). The calibration period (2000–2014)
includes near-normal conditions and the beginning of the
Chilean megadrought. The first evaluation period (hereafter
Verification 1, 1990–1999) represents near-normal/wet hy-
droclimatic conditions, while the second evaluation period
(hereafter Verification 2, 2015–2018) spans the second half
of the Chilean megadrought and was used to test the ability
of the hydrological simulations to represent dry conditions.

To initialise model stores for the Verification 1 period, we
used an 8-year warm-up period due to P product availability.
We replicated Figs. 2 and 3 for these three periods to anal-
yse the differences between the selected P products (see the
Supplement, Figs. S2–S7).

We used the modified Kling–Gupta efficiency (KGE′,
Eq. 1; Kling et al., 2012) to calibrate the TUWmodel, which
typically provides better hydrograph simulations than other
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Figure 3. Median annual values of four Climdex indices over 1990–2018 (full period): (a) number of consecutive dry days (CDD), (b) number
of consecutive wet days (CWD), (c) maximum P over five consecutive days (Rx5day), and (d) annual P that is above the 95th percentile of
P for wet days (R95pTOT). The dark red horizontal lines represent the limits of each macroclimatic zone.

squared-error indices (Gupta et al., 2009; Kling et al., 2012;
Mizukami et al., 2019) and has been used in numerous
studies (e.g. Garcia et al., 2017; Beck et al., 2019; Baez-
Villanueva et al., 2020; Neri et al., 2020; Széles et al., 2020).
The KGE′ has three components: the Pearson correlation co-
efficient (r; Eq. 2), the bias ratio (β; Eq. 3), and the variabil-
ity ratio (γ ; Eq. 4). µ is the mean Q, CV is the coefficient of
variation, σ represents the standard deviation of Q, and the
subscripts “s” and “o” represent simulated and observed Q,
respectively. The KGE′ and its components have their opti-
mum value at 1, and its optimisation seeks to reproduce the
temporal dynamics (measured by r) while preserving the vol-
ume and variability of Q, measured by β and γ , respectively

(Kling et al., 2012).

KGE′ = 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2 (1)

r =

∑n
i=1(Oi − Ō)(Si − S̄)√∑n

i=1(Oi − Ō)
2
√∑n

i=1(Si − S̄)
2

(2)

β =
µs

µo
(3)

γ =
CVs

CVo
=
σs/µs

σo/µo
(4)

To calibrate the model parameters, we used the hydroPSO
global optimisation algorithm (Zambrano-Bigiarini and Ro-
jas, 2013), which implements a state-of-the-art version of
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the particle swarm optimisation technique (PSO; Eberhart
and Kennedy, 1995; Kennedy and Eberhart, 1995). We used
the standard PSO 2011 algorithm (Clerc, 2011a, b), de-
fined as spso2011 in the hydroPSO R package (Zambrano-
Bigiarini and Rojas, 2013). We set the number of particles in
the swarm (npart= 80), the maximum number of iterations
(maxit= 100), and the relative convergence tolerance (rel-
tol= 1× 10−10), while the default values were used for all
other parameters. Over the last decade, hydroPSO has been
successfully used to calibrate numerous hydrological and en-
vironmental models (e.g. Brauer et al., 2014; Silal et al.,
2015; Bisselink et al., 2016; Kundu et al., 2017; Kearney and
Maino, 2018; Abdelaziz et al., 2019; Ollivier et al., 2020;
Hann et al., 2021). For more details on the use of the hy-
droPSO package to calibrate the TUWmodel, readers are re-
ferred to Zambrano-Bigiarini and Baez-Villanueva (2020).

3.4 Regionalisation techniques

After obtaining catchment-specific model parameters
through independent catchment calibration (Sect. 3.3),
we compared three parameter regionalisation techniques:
(i) spatial proximity, (ii) feature similarity, and (iii) pa-
rameter regression. We assessed performance through a
leave-one-out cross-validation exercise, which consists
of leaving out each one of the 100 catchments, transfer-
ring model parameters, conducting Q simulations, and
computing performance evaluation metrics.

3.4.1 Spatial proximity

The spatial proximity method assumes that climatic and
physical characteristics are relatively homogeneous over a
region (Oudin et al., 2008). We quantified the spatial prox-
imity between the target pseudo-ungauged and the remaining
catchments using the Euclidean distance between catchment
centroids, computed with geographic coordinates (i.e. lati-
tude and longitude):

EDij =

√√√√ n∑
k=1
(xk,i − xk,j )2. (5)

For each pseudo-ungauged catchment, the donor was chosen
according to the minimum Euclidean distance, and the full
parameter set obtained during the independent calibration of
the donor catchment was transferred to the pseudo-ungauged
catchment.

3.4.2 Feature similarity

In the feature similarity method, we transferred the calibrated
parameter sets from 10 donor catchments to the pseudo-
ungauged catchment based on similarity between climatic
and geomorphological features, quantified using the catch-
ment characteristics presented in Table 4. To exclude re-

dundant information, we first performed correlation analy-
ses between catchment descriptors using the Pearson and
Spearman rank correlation coefficients (to account for linear
and monotonic correlation, respectively) and discarded three
descriptors with high correlations (mean elevation, mean
annual PE, and the Simple Precipitation Intensity Index
(SDII); see Appendix B). Also, we discarded snow cover
because it was found to be unreliable, leaving nine catch-
ment features for this method. To assign equal weight to each
catchment characteristic, they were normalised into the range
[0, 1] using Eq. (6):

Zf =
xf − xmin

xmax− xmin
, (6)

where xf is the value of the characteristic for catchment f ,
while xmax and xmin are the maximum and minimum values
of the characteristic x over all catchments. After normalising
all catchment characteristics, we calculated the dissimilarity
as follows:

Si,j =

n∑
m=1
| Zi,m−Zj,m |, (7)

where Si,j is the dissimilarity index between catchments i
and j ; Zi,m and Zj,m are the normalised values of the m
catchment characteristic for catchments i and j , respectively;
and n is the total number of characteristics.

For each pseudo-ungauged catchment i, the 10 catchments
j with the lowest dissimilarity indices (Si,j ) were selected
as donors (Oudin et al., 2008; Zhang and Chiew, 2009;
Zhang et al., 2015; Beck et al., 2016). The full parameter
sets obtained during the independent calibrations of each
donor catchment were used to run TUWmodel in the pseudo-
ungauged catchment, thus producing an ensemble of 10 Q
simulations, as in previous studies (McIntyre et al., 2005;
Zelelew and Alfredsen, 2014; Beck et al., 2016). The 10 Q
time series were then averaged to produce a single Q time
series.

3.4.3 Parameter regression

The parameter regression technique aims to detect statisti-
cal relationships between parameter values and catchment
characteristics and uses these relationships to estimate model
parameters for ungauged catchments (Parajka et al., 2005;
Oudin et al., 2008; Swain and Patra, 2017). To account
for non-linear relationships between model parameters and
catchment characteristics, we implemented the random for-
est machine learning algorithm (RF; Breiman, 2001; Prasad
et al., 2006; Biau and Scornet, 2016) provided in the Ran-
domForest R package (Liaw and Wiener, 2002). RF uses an
ensemble of decision trees between predictand and predictor
values (also known as covariates) for regression and super-
vised classification and has the capability to deal with high-
dimensional feature spaces and small sample sizes (Biau and
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Table 4. Selected climatic and physiographic characteristics to quantify feature similarity between catchments. All variables related to P
were computed using the corresponding P product used as an input to the TUWmodel for 1990–2018.

No. Variable Data source Importance

1 Mean elevation CAMELS-CL Composite indicator that influences a range of processes such as long-term
P and T and hence soil moisture availability. In some environments, it is
also related to aridity and snow processes.

2 Median elevation SRTMv4.1 Same as mean elevation but provides a more robust representation of eleva-
tion over mountainous catchments.

3 Catchment area CAMELS-CL Related to the degree of aggregation of catchment processes related to scale
effects. Additionally, it is an indicator of total catchment storage capacity.

4 Slope CAMELS-CL Related to the response of the catchment, routing, and infiltration processes.
5 Forest cover CAMELS-CL Forested catchments are associated with a trade-off between high water con-

sumption rates and enhanced soil.
6 Snow cover CAMELS-CL Related to the influence of snow processes within the catchment.
7 Mean annual precipitation P product Related to the generation of runoff and P related to orographic gradients

(e.g. coastal areas).
8 Mean annual air temperature CR2MET Indicator of snow processes in cold environments. It is also related to aridity

and consequently to the evaporative demand.
9 Mean annual potential evap-

oration
Computed from
CR2MET

A measure of the atmospheric water demand (especially at the annual tem-
poral scale).

10 Aridity index CR2MET and
P product

Represents the competition between energy and water availability.

11 Daily temperature range CR2MET Monthly mean difference between daily maximum and minimum T . Re-
lated to variations in the diurnal cycle and evaporative demands.

12 Simple precipitation inten-
sity index

P product Relation of annual P to the number of wet days (P > 1 mm). Serves as a
proxy for seasonality and intensity of P events.

13 Maximum consecutive 5 d
precipitation

P product Related to extreme P events.

Scornet, 2016). Previous studies have shown that RF can deal
with several covariates as well as non-informative predictors
because it does not lead to overfitting or biased estimates
(Díaz-Uriarte and Alvarez de Andrés, 2006; Biau and Scor-
net, 2016; Hengl et al., 2018), which is why it has been used
for numerous hydrological applications (Saadi et al., 2019;
Baez-Villanueva et al., 2020; Beck et al., 2020b; Zhang et al.,
2021). For a more detailed description of RF, we refer the
reader to Prasad et al. (2006), Biau and Scornet (2016), and
Addor et al. (2018).

For this study, we developed one RF model for each TUW-
model parameter, using all 13 independent catchment char-
acteristics listed in Table 4 as covariates. Our experimental
setup used an ensemble of 2000 regression trees, a mini-
mum of five terminal nodes for each model, and p/3 vari-
ables randomly sampled as candidates at each split, where p
represents the number of predictors. The trained RF models
were then used to predict parameter values in the pseudo-
ungauged catchments.

3.5 Influence of nested catchments

To evaluate the influence of nested catchments on the per-
formance of the three regionalisation methods, we repeated
the three regionalisation methods for each target catchment,

with catchments considered to be nested (in relation to the
pseudo-ungauged catchment) excluded from the set of po-
tential donor catchments. Following Neri et al. (2020), we
used a cut-off point of 10 % of drainage area, meaning that
only catchments that cover more than 10 % of the area of the
parent catchment were considered to be nested.

3.6 Influence of donor catchments for feature
similarity

To evaluate the influence of the number of donors used
in feature similarity, we repeated the process followed in
Sect. 3.4.2 to assess the performance of this regionalisation
method when 1, 2, 4, 6, 8, and 10 donor catchments are se-
lected. This analysis evaluates the impact of averaging vary-
ing numbers of simulations compared to the results that are
based on only the most similar catchment.

We performed all analyses using the R Project of Statis-
tical Computing (R Core Team, 2020). In addition to the R
packages described in the methodology, we used the hydro-
GOF (Zambrano-Bigiarini, 2020a), hydroTSM (Zambrano-
Bigiarini, 2020b), lfstat (Koffler et al., 2016), raster (Hij-
mans, 2020), rasterVis (Perpiñán and Hijmans, 2020), rgdal
(Bivand et al., 2020), and rgeos (Bivand and Rundel, 2020)
packages.
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4 Results

4.1 Performance of P products

4.1.1 Calibration and verification

Figure 4 shows the performance of the TUWmodel dur-
ing calibration (2000–2014) and the two verification pe-
riods (1990–1999 and 2015–2018), prior to any region-
alisation procedure. CR2MET provided the best perfor-
mance for all evaluated periods, with median KGE′s of
0.84, 0.76, and 0.66, for calibration, Verification 1 (1990–
1999, near-normal/wet), and Verification 2 (2015–2018, dry),
respectively, followed closely by RF-MEP. Surprisingly,
MSWEPv2.8 provided the poorest performance for calibra-
tion and Verification 1. For all P products, the lowest per-
formances were obtained during the (dry) Verification 2 pe-
riod, emphasising the challenges of estimatingQ in dry con-
ditions, as discussed by Maggioni et al. (2013) and Beck
et al. (2016). Despite the substantial variations between P
products (see Sect. 3.1.1), the TUWmodel performed well
for all P products in the calibration, Verification 1, and Ver-
ification 2 periods, with median KGE′ values greater than
0.77, 0.71, and 0.62, respectively. The calibrated model pa-
rameters lay well within the selected parameter ranges in the
large majority of the cases (see Fig. S8 of the Supplement). In
other words, the selected parameter ranges were wide enough
so that calibrated parameter values were not concentrated at
their lower or upper limits.

Figure 5 shows the performance of the TUWmodel dur-
ing calibration, Verification 1, and Verification 2 per hy-
drological regime (see Fig. 1d). The TUWmodel performed
better over the pluvio-nival catchments, with median KGE′

values above 0.77, 0.76, and 0.69 for calibration, Verifica-
tion 1, and Verification 2, respectively. During the calibra-
tion period, there was no clear second best regime. For in-
stance, the snow-dominated catchments presented slightly
higher median KGE′ values but a more pronounced disper-
sion, while the pluvio-nival and rain-dominated catchments
presented lower dispersion but reduced median values. The
snow-dominated catchments presented a more pronounced
decrease from calibration (median KGE′ > 0.85) to both ver-
ification periods (> 0.55 and 0.23 for Verification 1 and Veri-
fication 2, respectively). During both verification periods, the
rain-dominated catchments presented the highest dispersion
increases in both verification periods compared to calibra-
tion.

Over the snow-dominated catchments, ERA5 performed
the worst as it presented the highest dispersion and the low-
est median KGE′ values during Verification 1 (0.55) and Ver-
ification 2 (0.25), despite having the highest median KGE′

during calibration (0.87). RF-MEP performed the best dur-
ing Verification 1 (0.68), while MSWEPv2.8 performed the
best during the dry Verification 2 period (median KGE′ of
0.60). CR2MET performed the best over the nivo-pluvial

catchments, with median KGE′ values above 0.64, while RF-
MEP performed relatively worse for both verification peri-
ods, with median KGE′ values above 0.48 and a larger dis-
persion than the other products, despite having a similar me-
dian KGE′ (0.62) in Verification 1 to ERA5 and MSWEPv2.8
(0.61, and 0.60, respectively). Over the pluvio-nival catch-
ments, all products showed a relatively good performance,
with CR2MET being the best P product in calibration and
Verification 1 (median KGE′s of 0.87 and 0.84, respectively),
while ERA5 performed the best during Verification 2 (me-
dian KGE′ of 0.78). RF-MEP performed the best over the
rain-dominated catchments in calibration and Verification 1,
with median KGE′ values of 0.84 and 0.77, respectively,
while ERA5 performed the worst (median KGE′ values of
0.69 and 0.70). Finally, CR2MET performed the best in Ver-
ification 2 (median KGE′ of 0.72), followed by MSWEPv2.8
(median KGE′ of 0.69).

4.1.2 Performance during regionalisation

Figure 6 summarises the leave-one-out cross-validation re-
sults obtained from the application of three regionalisation
methods, for each P product. The results are displayed for
the calibration (2000–2014; panel a), Verification 1 (1990–
1999; panel b), and Verification 2 (2015–2018; panel c) peri-
ods. Overall, the median performance of all P products was
the best for feature similarity, with median KGE′ values be-
tween 0.44–0.62 for all periods, followed by spatial prox-
imity (0.39–0.55) and parameter regression (−0.12–0.51).
In addition to exhibiting a considerably lower overall per-
formance, parameter regression returned a larger spread in
KGE′s for all periods.

The overall performances obtained for feature similarity
and spatial proximity are relatively close for different P
products over each period (Fig. 6). For feature similarity,
all P products generate acceptable KGE′ results (median
KGE′ > 0.54) during the calibration and Verification 1 pe-
riods, while the median KGE′ values during the dry Verifi-
cation 2 period lowered to a median KGE′ of > 0.44. The
best model performance for feature similarity was obtained
by CR2MET, with median KGE′ values of 0.62 for calibra-
tion and Verification 1 and 0.53 for Verification 2, followed
closely by RF-MEP for calibration (0.59), ERA5 for Verifi-
cation 1 (0.59), and MSWEPv2.8 for Verification 2 (0.52).
In the case of spatial proximity, MSWEPv2.8 yielded the
best performance in the calibration period (0.55), followed
closely by RF-MEP (0.56 but with a higher dispersion), and
CR2MET (0.53). For Verification 1, RF-MEP provided the
best performance (0.54), while MSWEPv2.8 produced the
best results over Verification 2 (0.48). For spatial proximity,
ERA5 performed the worst over the three evaluated periods.
Finally, parameter regression yielded the lowest results, with
CR2MET and ERA5 showing the highest median KGE′ val-
ues (> 0.42 for calibration and Verification 1 and > 0.22 for
Verification 2).
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Figure 4. Performance of the TUWmodel during the calibration (2000–2014), Verification 1 (1990–1999), and Verification 2 (2015–2018),
prior to any regionalisation, using the modified Kling–Gupta efficiency (KGE′). The solid line represents the median value, the edges of the
boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the
interquartile range from the box. The blue line indicates the optimal value for the KGE′.

Figure 5. Performance of TUWmodel during calibration (2000–2014), Verification 1 (1990–1999), and Verification 2 (2015–2018), prior
to any regionalisation, over catchments with different hydrological regimes: (a) snow-dominated, (b) nivo-pluvial, (c) pluvio-nival, and
(d) rain-dominated.

For each regionalisation technique, Fig. 7 summarises the
spatial distribution of the performance of each P product
for the calibration, Verification 1, and Verification 2 periods.
The spatial patterns obtained for all regionalisation meth-
ods were similar, independent of the P product or the eval-

uated period, except for parameter regression, which yielded
poor results over high-elevation catchments and under dry
conditions (Verification 2). These results indicate that spatial
proximity and feature similarity present very similar spatial
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Figure 6. Leave-one-out cross-validation results for the three regionalisation methods applied with different P products during the (a) cali-
bration (2000–2014), (b) Verification 1 (1990–1999), and (c) Verification 2 (2015–2018) periods.

performance patterns, with feature similarity yielding higher
KGE′ values over the three evaluated periods.

All P products performed better in the Central Chile and
South regions than in the Far North, Near North, and Far
South regions. The low performance of regionalisation in
the arid north is very likely due to the convective nature of
storms occurring in the highlands of the Chilean Altiplano
(elevations above 4000 m a.s.l.) and the low density ofQ sta-
tions over this area. Despite this general low performance,
RF-MEP was the best-performing P product over the Far
North region for both spatial proximity (median KGE′ of
0.28) and feature similarity (median KGE′ of 0.46) in the
calibration period, suggesting that merging P products and
ground-based observations helps to improve, to some extent,
the performance of hydrological modelling across arid re-
gions. Conversely, all products outperformed RF-MEP over
the Far South. Figure 7 also highlights that spatial proximity
provides the best performance over the Far South, with me-
dian KGE′ values higher than 0.46, 0.27, 0.30, and 0.35 for
CR2MET, RF-MEP, ERA5, and MSWEPv2.8, respectively.
The systematic lower performance of feature similarity com-
pared to spatial proximity over the Far South (except for the
case of ERA5) could be attributed to (i) the lack of catchment
characteristics that represent the hydrological behaviour of
this complex area dominated by polar and temperate climates
and (ii) the low number of potential donor catchments (11
for latitudes > 49◦ S), combined with their varied hydrolog-
ical regimes. For the most southern catchments, the high-
est P intensities occur during March–May, while the lowest

P occurs between June–August, which differs from catch-
ments throughout the rest of the country (Alvarez-Garreton
et al., 2018, their Fig. 9). This may affect the hydrological
simulations when model parameters from catchments located
< 49◦ S are transferred to these far southern catchments.

4.2 Evaluation of regionalisation techniques

4.2.1 Overall performance

For each P product, Fig. 8 compares the performances of the
three regionalisation techniques with those obtained in the
independent calibration and verification periods. The inde-
pendent calibration of each catchment represents the highest
model performance that can be obtained for a specific combi-
nation of hydrological model, objective function, and catch-
ment (i.e. an absolute benchmark), whereas the two verifica-
tion periods were used to evaluate the performance of the re-
gionalisation techniques over independent time periods (i.e.
as verification benchmarks). There are marked differences in
performance according to the P product used to force the
TUWmodel, regardless of the regionalisation method and
the evaluated period. For example, ERA5 has more disper-
sion in the KGE′ values compared to other products for the
cases of feature similarity and spatial proximity, while for
parameter regression, it tends to perform the best. For all
P products and evaluation periods, feature similarity per-
formed the best, followed by spatial proximity and param-
eter regression, which is consistent with results from multi-
ple studies (e.g. Parajka et al., 2005; Oudin et al., 2008; Bao
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Figure 7. Spatial performance of the leave-one-out cross-validation results for the three regionalisation methods according to P products
used to force TUWmodel. Results are presented for the (a) calibration (2000–2014), (b) Verification 1 (1990–1999), and (c) Verification 2
(2015–2018) periods. The panels beneath the map plots refer to the ECDFs of the corresponding regionalisation technique for the entire
period of analysis (1990–2018) and P products (black) against the performances during the independent calibration (green), Verification 1
(blue), and Verification 2 (red) periods.

et al., 2012; Garambois et al., 2015; Neri et al., 2020). Param-
eter regression had both the lowest median KGE′s as well as
the largest spread. Comparing the two verification periods,
results obtained during the (near-normal/wet) Verification 1
period were close to those obtained during calibration, while
those obtained during the (dry) Verification 2 period were

substantially lower, especially for spatial proximity and pa-
rameter regression.

These results are in agreement with the lower panels lo-
cated below each map in Fig. 7, which show the empiri-
cal cumulative distribution functions (ECDFs) of the perfor-
mance of each regionalisation technique during the complete
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period of analysis (1990–2018). These ECDFs compare the
relative performance of each regionalisation method against
those obtained from the independent calibration and verifica-
tion of each catchment (used as benchmarks). As expected,
all regionalisation methods presented a lower performance
than the independent calibration and verification, with this
reduction more pronounced for parameter regression.

4.2.2 Impact of hydrological regimes

Figure 9 shows the performance of the regionalisation tech-
niques according to hydrological regime for all P products
during the calibration period (and Figs. S9 and S10 of the
Supplement show the same for the two verification periods).
Feature similarity provided the best median performance for
all hydrological regimes and P products except for snow-
dominated catchments, where spatial proximity performed
the best for MSWEPv2.8 for calibration and Verification 2.
These results demonstrate that there was no single P prod-
uct that outperformed the others for all regionalisation tech-
niques and hydrological regimes. In other words, the best-
performing P product depends on the hydrological regime
and chosen regionalisation method for our case study. For
feature similarity in snow-dominated catchments, RF-MEP
performed the best for calibration and Verification 1, while
CR2MET performed the best during Verification 2. For nivo-
pluvial catchments, CR2MET provided the best performance
during calibration and Verification 1, while MSWEPv2.8
performed the best during Verification 2. CR2MET and
ERA5 performed the best in pluvio-nival catchments for the
case of feature similarity, while all products performed simi-
larly for spatial proximity. Finally, ERA5 performed the best
for feature similarity in all periods across the rain-dominated
catchments.

4.3 Impact of nested catchments

We evaluated the influence of the nested catchments on the
regionalisation results. Figure 10 shows the performance of
the three regionalisation methods for the subset of 56 nested
catchments that share a common area with at least one other
catchment (i.e. the 42 nested catchments as well as all cor-
responding parent catchments). Here, we compare the re-
gionalisation performance using all potential donors (dark
colours) with the performance when excluding nested catch-
ments as potential donors (light colours). The order of per-
formance of the regionalisation methods and P products did
not vary when the nested catchments were excluded, as fea-
ture similarity and CR2MET remained the best-performing
method and product, respectively. As expected, the region-
alisation technique with the largest reduction in perfor-
mance when excluding nested catchments was spatial prox-
imity, followed closely by feature similarity. All P products
showed a slight performance reduction and increased disper-
sion for spatial proximity, except for MSWEPv2.8, which

showed a slight increase in the KGE′ median value. Feature
similarity showed a slight reduction in performance when the
nested catchments were excluded; however, the median val-
ues remained almost the same. The change in performance
of parameter regression was negligible after the exclusion of
nested catchments because, in the particular case of Chile,
excluding only a few catchments had a negligible effect on
the non-linear relationships between model parameters and
the selected climatic and physiographic characteristics (see
Table 4).

4.4 Impact of the number of donors in feature
similarity

Figure 11 shows the performance of feature similarity dur-
ing the calibration and both verification periods when vary-
ing the number of donors used to transfer model parame-
ters to ungauged catchments (see Sect. 3.6). In general, the
highest median performance is obtained when using four or
more donor catchments. However, the application of a t test
demonstrated that the improvement in the KGE′ values ob-
tained when increasing to more than one donor was not sta-
tistically significant. The results show that the performance
varies according to the P product and selected period of anal-
ysis. For the calibration period, feature similarity produced
similar median values to those obtained with spatial prox-
imity when one donor was used, while the performance im-
proved as more donors were included. For both verification
periods, feature similarity (median KGE′ values from 0.44
to 0.64) outperformed spatial proximity (median KGE′ val-
ues ranging from 0.39 to 0.54). For all three periods, feature
similarity provided better performance considering the dis-
tribution of the KGE′ values.

5 Discussion

5.1 Performance of P products

During the independent catchment calibration (2000–2014)
and two verification periods (1990–1999 and 2015–2018),
good performances were obtained with all P products (see
Fig. 4). When decomposing the results of the KGE′ objec-
tive function into its three components (see Appendix C),
r exhibited the lowest performance, while β and γ values
were generally closer to their optimal values, particularly
for calibration and Verification 1. The results obtained with
ERA5, which is a reanalysis product, were as good or even
better than those obtained with the gauge-corrected prod-
ucts CR2MET, RF-MEP, and MSWEPv2.8 (e.g. see results
for the pluvio-nival catchments in Fig. 5). This is in agree-
ment with Tarek et al. (2020), who concluded that ERA5
should be considered a high-potential dataset for hydrolog-
ical modelling in data-scarce regions. The good performance
of ERA5 suggests that, for the particular case of Chile, merg-
ing P products with ground-based measurements does not
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Figure 8. Performance of the regionalisation methods during the (a) calibration (2000–2014), (b) Verification 1 (1990–1999), and (c) Veri-
fication 2 (2015–2018) periods.

necessarily translate into improved hydrological model per-
formance, which may be attributed to (i) the lack of P rain
gauges in the Andes Mountains; (ii) the ability of the rainfall-
runoff model to compensate for the P forcing (visible in the
performances of the β and γ components, Appendix C), and
(iii) the fact that P products still have errors in the detection
of P events that could impact the representation of the mod-
elled Q dynamics (as suggested by the relative lower perfor-
mance of the r component of the KGE′).

Furthermore, the similar performances obtained with un-
corrected (ERA5) and gauge-corrected (CR2MET, RF-MEP,
and MSWEPv2.8) P products, both in wet and dry periods,
highlight that there was no single P dataset outperforming
the others in all periods. These results demonstrate that the
calibration of hydrological model parameters smooths out,
to some extent, the spatio-temporal differences between P
products (see Figs. 2, 3, 6 and 9), which is in agreement
with previous studies that have demonstrated that model cal-
ibration with each P product improves the performance of
Q simulations (e.g. Artan et al., 2007; Stisen and Sandholt,
2010; Bitew et al., 2012; Thiemig et al., 2013). The decom-
position of the KGE′ into its components also demonstrated
the ability of the TUWmodel to compensate for the total vol-
ume of P , as the β component was close to the optimum
value, particularly for calibration and Verification 1 (see Ap-
pendix C), which can be attributed to the improved detec-
tion of P events of the merged products (regarding RF-MEP,

see Baez-Villanueva et al., 2020). This can also be observed
for MSWEPv2.8, as it produced the best performance over
snow-dominated catchments under dry conditions (Verifica-
tion 2).

Regarding the suitability of P products for parameter re-
gionalisation, RF-MEP provided slightly better results in the
Far North for the calibration period using both spatial prox-
imity and feature similarity, suggesting that P products that
are merged with ground-based information over arid cli-
mates can improve regionalisation performance. The lower
performance obtained in regionalisation with ERA5 in the
Far North compared to the other P products (median val-
ues < 0.18 for feature similarity in all periods) can be at-
tributed to its high P values, which are likely due to the
lack of ground-based P stations over Chile in the develop-
ment of the product. The incorporation of ground-based sta-
tions has the potential to (i) compensate for overestimations
caused by the evaporation of hydrometeors before they reach
the ground (Maggioni and Massari, 2018) and (ii) improve
event-based detection skills (Baez-Villanueva et al., 2020;
Zhang et al., 2021). The latter is evident in CR2MET and
MSWEPv2.8, which are both based on ERA5 but included
several rain gauges in the Far North and have a higher per-
formance than ERA5 (see Figs. 2, 3, and S1).

Despite the low performance of all P products in the Far
North and Near North (median KGE′ values < 0.58; see
Fig. 7), the TUWmodel appears to be flexible enough to com-
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Figure 9. Performance of regionalisation methods for calibration (2000–2014) according to the hydrological regime: (a) snow-dominated,
(b) nivo-pluvial, (c) pluvio-nival, and (d) rain-dominated. N denotes the number of catchments per hydrological regime.

Figure 10. Comparison of regionalisation performance using all catchments as potential donors (dark colours) against the performance when
nested catchments are excluded as potential donors (light colours).

pensate, to some extent, for differences between P products.
A similar conclusion was obtained by Elsner et al. (2014),
who examined differences between four meteorological forc-
ing datasets and their implications in hydrological model cal-
ibration in the western United States using the variable infil-
tration capacity model (VIC; Liang et al., 1994). Our results

are also in agreement with Bisselink et al. (2016), who con-
cluded that parameter sets obtained during calibration par-
tially compensated for the bias of seven P products used to
force the fully distributed LISFLOOD model in four catch-
ments in southern Africa.
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Figure 11. Influence of the number of donors used for feature simi-
larity for calibration (2000–2014), Verification 1 (1990–1999), and
Verification 2 (2015–2018). The results from spatial proximity are
included on the right of each panel for comparison purposes. The
dark yellow box denotes the upper and lower bounds of the median
performance (of the four P products) obtained with spatial proxim-
ity, the lighter yellow box represents the upper and lower bounds
of the interquartile range for spatial proximity, and the blue lines
represent the optimum KGE′ value.

An unexpected result from this study is that the spatial res-
olution of the P products did not play a major role in model
performance during calibration, verification and regionalisa-
tion; although CR2MET and RF-MEP have a higher spa-
tial resolution (0.05◦;∼ 25 km2) than MSWEPv2.8 (∼ 0.10◦;
∼ 100 km2) and ERA5 (∼ 0.28◦; ∼ 625 km2), all four prod-
ucts performed well during the independent calibration of
the hydrological model and the two verification periods.
The performance of ERA5 over the 25 smallest catchments
during regionalisation (area < 353.1 km2) was similar to
that obtained with products with a higher spatial resolution
(Fig. S11 of the Supplement). This can be attributed to the
fact that Chile is dominated by large-scale frontal systems
(Zhang and Wang, 2021); and therefore, coarse-resolution
products may perform well over small catchments. Our re-
sults also align with the findings of Maggioni et al. (2013),

who concluded that the loss of spatial information associated
with coarser resolution (e.g. ERA5) can be compensated for
through model calibration.

5.2 How does the calibration of the TUWmodel
compensate for differences in P ?

The calibration of TUWmodel was able to compensate, to
some extent, for differences in annual and intra-annual P
amounts, intermittency, and extremes (see Figs. 2 and 3)
among the four products. Using the example of the nivo-
pluvial catchments, Fig. 12 illustrates how TUWmodel pa-
rameters compensate for differences between the P forc-
ings used in calibration, while Fig. 13 shows the correspond-
ing variations in the mean monthly water balance compo-
nents. Similar figures for snow-dominated, pluvio-nival, and
rain-dominated catchments can be found in the Supplement
(Figs. S12–S17).

In general, the calibrated parameters behave as expected
for each hydrological regime. A notable exception is ERA5,
which shows low values for the snow correction factor (SCF)
in nivo-pluvial and snow-dominated catchments (Figs. 12
and S12). These catchments are primarily located in the arid
Near North region (see Fig. 2 and Figure S15), where the
estimated winter P is substantially lower for CR2MET, RF-
MEP, and MSWEPv2.8, and a high SCF corrects this appar-
ent underestimation. The lower P amounts presented in these
products may reflect the incorporation of information from
rain gauges located in drier, low-lying areas to correct their
P estimates (see Fig. S1).

ERA5 presented relatively low SCF values over nivo-
pluvial catchments compared to the other P products
(Fig. 13), which is expected because it exhibits the highest
P values. Conversely, because RF-MEP has the lowest mean
monthly P over the nivo-pluvial catchments, the model ad-
justs the evaporation, snow water equivalent, and soil mois-
ture components (Fig. 13), thus increasing the simulated Q
(to match the observed Q). Substantial differences were ob-
tained for LPrat and field capacity (FC), which directly af-
fect evaporation and soil moisture. For example, over the
nivo-pluvial catchments, the LPrat and FC values for RF-
MEP are similar to those of ERA5, despite RF-MEP hav-
ing substantially lower P amounts, which in turn is reflected
in the reduced soil moisture and evaporation amounts. The
differences between LPrat and FC according to P product
are even more pronounced for snow-dominated catchments
(Fig. S12).

Finally, higher values of the nonlinear parameter for runoff
production Beta reduce the amount of water that leaves the
catchment as runoff (Széles et al., 2020, their Eq. 7). For all
hydrological regimes except pluvio-nival, the median Beta
parameter is substantially higher for ERA5 than for the other
P products. The larger Beta values obtained with ERA5
are expected to attenuate the runoff generation from ex-
treme P events (see Fig. 3c and d). Interestingly, the Beta
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parameter is zero in some pluvio-nival catchments, which
means that all liquid P and snowmelt was used to gener-
ate runoff (Fig. S16). This behaviour was more pronounced
with RF-MEP and MSWEPv2.8, which exhibited the lowest
P amounts and longer dry spells (Fig. 3a) over these catch-
ments. In general, the storage components obtained from
each P product (computed as the sum of the two deepest
reservoirs of the model; see Széles et al., 2020, their Fig. 3)
are similar for all four P products.

5.3 Evaluation of regionalisation techniques

The compensation due to the flexibility of the TUWmodel
observed during the independent calibration and verifica-
tion (see Sect. 5.2) also influences the regionalisation per-
formance. Feature similarity provided the best performance
when the TUWmodel was forced with all P products (Fig. 8),
while spatial proximity provided similar performance to fea-
ture similarity over the Central Chile and South regions,
where there is a high density of Q stations. These results are
in agreement with Parajka et al. (2005), Oudin et al. (2008),
and Neri et al. (2020), who demonstrated that spatial prox-
imity performs well over densely gauged regions.

The inclusion of donor catchments with low model per-
formance introduces a diversity that has the potential to ben-
efit Q prediction in ungauged catchments, as discussed by
Oudin et al. (2008). We decided to incorporate these catch-
ments in the regionalisation process because of the diversity
of climates and physiographic characteristics across conti-
nental Chile (see Fig. 1), with the potential downside that this
may lead to errors in the transferred model parameters. Ad-
ditionally, the similarity between the performance of spatial
proximity and feature similarity can be partially attributed
to the fact that six of the nine selected catchment charac-
teristics are directly or indirectly related to climate, which
in Chile is highly related to the geographical locations of
the catchments. Parameter regression was the regionalisation
method that provided the worst results (Figs. 6 and 8); how-
ever, Fig. 7 shows that this method generated good results
over low-elevated areas of the Central Chile and South re-
gions, where there are many potential donor catchments lo-
cated nearby.

The compensation for P differences obtained through
model calibration also affected the relative performance of
regionalisation techniques, producing unrealistic parameter
sets in some donor catchments. In particular, such com-
pensation may have impacted the spatial transferability of
model parameters with the parameter regression method. The
main reason for this is that, unlike techniques that trans-
fer the entire parameter sets, the regression process dena-
tures the already uncertain model parameters by applying in-
dependent regression procedures using climate and physio-
graphic characteristics (Arsenault and Brissette, 2014). This
challenge can be overcome by simultaneously optimising
both the model parameters and the regression equations (e.g.

Samaniego et al., 2010; Rakovec et al., 2016; Beck et al.,
2020a), but such an exercise is outside of the scope of this
study.

For both spatial proximity and feature similarity, the best
and worst results were obtained for pluvio-nival catchments
and rain-dominated catchments, respectively. Figure 9 shows
the performances of the three regionalisation techniques ac-
cording to hydrological regimes (see Fig. 1d) for the calibra-
tion period. Comparing Figs. 5 and 9, it is evident that the
snow-dominated catchments performed substantially worse
than in the independent performance during the same period
(Fig. 5). On the other hand, the pluvio-nival catchments per-
formed systematically better in the independent calibration
and verification as well as in regionalisation. This could be
attributed to (i) the ability of the model to reproduce Q in
this regime and (ii) the increased likelihood of transferring
model parameters from a catchment with the same hydro-
logical regime, as they are grouped closed together and form
40 % of the total number of catchments.

5.4 Impact of nested catchments

Nested catchments play an important role in the performance
of regionalisation methods as they are more likely to have
a strong climatological and physiological similarity to each
other. As observed in Fig. 10, the regionalisation method that
was most impacted by the exclusion of nested catchments
was spatial proximity, followed by feature similarity. These
results are in agreement with previous studies, where the
exclusion of nested catchments reduced the performance of
regionalisation techniques (Merz and Blöschl, 2004; Oudin
et al., 2008; Neri et al., 2020). Feature similarity only pre-
sented a slight decrease when the nested catchments were ne-
glected, which can be attributed to the low degree of nested-
ness (i.e. the number of catchments that are nested in a larger
one). As expected, the exclusion of nested catchments had a
negligible effect on parameter regression, as the removal of
relatively few catchments had a negligible impact on the non-
linear relationships between the climatic and physiographic
characteristics and the model parameters that were deter-
mined using all potential donor catchments. The reduction
of regionalisation performance when the nested catchments
were removed was lower than the reduction reported in a case
study over Austria (Neri et al., 2020, their Figure 9a), which
could be attributed to (i) the degree of nestedness, as the
unique geography of Chile limits, to some extent, the number
of nested catchments within any larger catchment (only 10 of
the 100 selected catchments contained more than three nested
catchments); and (ii) the percentage of catchments that are
nested (42 % in this study, compared to 65 % in the Austrian
case study).
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Figure 12. Model parameters obtained through calibration in nivo-pluvial catchments. The vertical blue lines indicate the upper and lower
limits of the parameter ranges.

5.5 Impact of number of donor catchments

Increasing the number of donor catchments in feature sim-
ilarity improved the regionalisation performance. This is in
agreement with several studies that have demonstrated that
using an ensemble of multiple donor catchments improves
regionalisation results (McIntyre et al., 2005; Zelelew and
Alfredsen, 2014; Garambois et al., 2015; Beck et al., 2016;
Neri et al., 2020). Figure 11 shows that there is a slight in-
crease in performance when four donors or more are used,
independent of the P product and evaluated period. These
results are similar to those of Neri et al. (2020), who deter-
mined that three donors were optimal for the TUWmodel
over Austrian catchments. Feature similarity still outper-
formed spatial proximity when only one catchment was used
to transfer the model parameters to the ungauged catchments,
which is in agreement with multiple studies that have shown
the ability of this method to produce good regionalisation
results (Parajka et al., 2005; Oudin et al., 2008; Bao et al.,
2012; Garambois et al., 2015; Neri et al., 2020).

6 Conclusion

Accurate streamflow predictions in ungauged catchments are
critical for water resources management, and their gener-
ation is challenged by uncertainties arising from P prod-
ucts. In this paper, we assessed the relative performance of

three common regionalisation techniques (spatial proxim-
ity, feature similarity, and parameter regression) over 100
near-natural catchments located in the topographically and
climatologically diverse Chilean territory. Four P products
(CR2MET, RF-MEP, ERA5, and MSWEPv2.8) were used to
force the semi-distributed TUWmodel at the daily timescale,
using the KGE′ as the calibration objective function and met-
ric to assess (i) the impact of selecting different P forcings
on the relative performance of regionalisation techniques
and (ii) possible connections between regionalisation perfor-
mance and hydrological regimes. Our key findings are as fol-
lows:

1. For the selected P products, the one that provided the
best (worst) performance during independent calibra-
tion and verification did not necessarily yield the best
(worst) results during regionalisation.

2. The P products corrected with daily ground-based mea-
surements did not necessarily yield the best hydrolog-
ical model performance. However, we expect that P
products with lower performances than the ones used
in this study might benefit from such a correction.

3. The spatial resolution of the P products did not notice-
ably affect model performance during the calibration
and verification periods.
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Figure 13. Mean monthly water balance components over nivo-pluvial catchments, obtained by forcing the TUW model with different P
products for the (a) calibration (2000–2014), (b) Verification 1 (1990–1999), and (c) Verification 2 (2015–2018) periods. Mean monthly P
was added for comparison purposes.
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4. The TUWmodel was able to compensate, to some ex-
tent, the differences between P products through model
calibration by adjusting the model parameters and,
therefore, adjusting the water balance components (e.g.
snow water equivalent, evaporation, and soil moisture).

5. Feature similarity was the best-performing regionalisa-
tion technique, regardless of the choice of gridded P
product or hydrological regime.

6. Spatial proximity was the second best-performing re-
gionalisation method because, in our study area, spa-
tial proximity is a good proxy for climatic similarity for
most neighbouring catchments.

7. Parameter regression provided the worst regionalisation
performance, reinforcing the importance of transferring
complete parameter sets to ungauged catchments.

8. The performance of regionalisation techniques can de-
pend on the hydrological regime. We obtained the best
results in pluvio-nival catchments with spatial proxim-
ity and feature similarity, while the same techniques
provided the worst performance in rain-dominated
catchments.

9. The exclusion of (relatively few) nested catchments
had a minimal impact on the non-linear relationships
between the climatic and physiographic characteristics
(i.e. predictors) and model parameters (i.e. predictands),
having a negligible effect on parameter regression re-
sults.

10. The performance of feature similarity increased when
four or more catchments were used as donors; however,
the differences in performance were not statistically sig-
nificant when compared to the results of using only one
donor.

The results presented here are valid only for near-natural
catchments across continental Chile. Nevertheless, they pro-
vide guidance for ongoing and future studies involving the
application of gridded P products for regionalising hydro-
logical model parameters in ungauged basins. The feature
similarity procedure described here could be used to refine
the parameter regionalisation approach adopted for national-
scale hydrological characterisations in Chile (e.g. Bambach
et al., 2018; Lagos et al., 2019). Additionally, further analy-
ses could address (i) the effects that objective functions may
have on the simulation of streamflow-derived hydrological
signatures (e.g. Pool et al., 2017); (ii) other states and fluxes
derived from remote sensing data (e.g. Dembélé et al., 2020);
(iii) the influence of parameter equifinality (mainly for pa-
rameter regression), which can be accounted for by simulta-
neously optimising the model parameters and the regression
equations, as described in Beck et al. (2020a); (iv) the use
of additional model structures, implemented through flexible

modelling platforms (e.g. Clark et al., 2008; Knoben et al.,
2019); and (v) the sensitivity of regionalisation results with
respect to modified climate scenarios.
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Appendix A: Conceptual figure of hydrological regimes

Figure A1. Conceptual illustration of the hydrological regimes used to classify the 100 near-natural catchments used in this study.

Appendix B: Selection of catchment characteristics for
feature similarity

To avoid including redundant information when quantify-
ing catchment similarity, we examined the correlations be-
tween the catchment characteristics described in Table 4. Fig-
ure B1 shows correlation matrices between catchment char-
acteristics using the Pearson correlation (a) and the Spear-
man rank (b) correlation coefficients. We only present cor-
relations obtained with CR2MET, since very similar results
were obtained with the remaining P products. Because the
mean and median elevation are highly correlated (values of
1.0 and 0.99 for the Pearson and Spearman correlation co-
efficients, respectively), we decided to keep the median ele-
vation under the assumption that it is more representative of
topographic conditions, given the pronounced elevation gra-
dients in continental Chile. Similarly, mean annual PE was
excluded because of its high correlation with mean annual T
(0.87 and 0.86 for the Pearson and Spearman correlation co-
efficients, respectively), notwithstanding that T was used to
calculate PE. SDII was also excluded due to its high corre-
lation to the Rx5day (0.97 for both coefficients). Finally, we
excluded the snow cover from CAMELS-CL, as we found
it to be unreliable over the snow-dominated catchments se-
lected in our analysis.
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Figure B1. Correlation matrices of the catchment characteristics described in Table 4 using CR2MET as the P product for (a) the Pearson
correlation, to evaluate linear correlation, and (b) the Spearman correlation, to evaluate the monotonic correlation.

Appendix C: Performance of the components of the
KGE′

Table C1. Quantiles 0.25 and 0.75 of the correlation coefficient (r) of the KGE′ over the selected catchments.

Pearson correlation (r) CR2MET RF-MEP ERA5 MSWEPv2.8

Calibration (cal.) 0.78–0.90 0.77–0.88 0.71–0.86 0.77–0.88
Verification 1 (Ver. 1) 0.74–0.88 0.72–0.87 0.67–0.87 0.69–0.86
Verification 2 (Ver. 2) 0.68–0.86 0.59–0.85 0.59–0.86 0.67–0.85

Spatial proximity (cal.) 0.70–0.87 0.68–0.84 0.57–0.82 0.66–0.84
Spatial proximity (Ver. 1) 0.66–0.86 0.63–0.84 0.61–0.84 0.62–0.84
Spatial proximity (Ver. 2) 0.61–0.83 0.51–0.82 0.56–0.83 0.59–0.82

Feature similarity (cal.) 0.74–0.89 0.71–0.88 0.69–0.85 0.72–0.88
Feature similarity (Ver. 1) 0.69–0.88 0.70–0.88 0.67–0.88 0.69–0.86
Feature similarity (Ver. 2) 0.64–0.87 0.59–0.85 0.64–0.87 0.65–0.84

Parameter regression (cal.) 0.54–0.80 0.54–0.69 0.60–0.82 0.42–0.63
Parameter regression (Ver. 1) 0.58–0.80 0.50–0.68 0.64–0.86 0.43–0.62
Parameter regression (Ver. 2) 0.50–0.79 0.43–0.65 0.59–0.84 0.37–0.57
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Table C2. Quantiles 0.25 and 0.75 of the bias ratio (β) of the KGE′ over the selected catchments.

Bias ratio (β) CR2MET RF-MEP ERA5 MSWEPv2.8

Calibration (cal.) 0.95–0.99 0.93–1.01 0.97–1.02 0.90–1.02
Verification 1 (Ver. 1) 0.89–1.03 0.84–1.02 0.90–1.12 0.77–1.04
Verification 2 (Ver. 2) 0.96–1.19 0.86–1.11 1.00–1.25 0.74–1.06

Spatial proximity (cal.) 0.73–1.09 0.70–1.15 0.74–1.22 0.70–1.13
Spatial proximity (Ver. 1) 0.72–1.12 0.70–1.12 0.72–1.22 0.69–1.08
Spatial proximity (Ver. 2) 0.73–1.30 0.73–1.23 0.77–1.46 0.68–1.14

Feature similarity (cal.) 0.81–1.19 0.78–1.29 0.81–1.35 0.68–1.3
Feature similarity (Ver. 1) 0.80–1.17 0.74–1.24 0.80–1.36 0.69–1.29
Feature similarity (Ver. 2) 0.86–1.40 0.77–1.40 0.86–1.57 0.69–1.27

Parameter regression (cal.) 0.99–2.04 0.89–1.72 0.76–1.78 0.82–3.07
Parameter regression (Ver. 1) 0.99–1.73 0.87–1.65 0.76–1.62 0.83–2.64
Parameter regression (Ver. 2) 1.10–2.05 0.90–1.83 0.88–1.94 0.83–2.54

Table C3. Quantiles 0.25 and 0.75 of the variability ratio (γ ) of the KGE′ over the selected catchments.

Variability ratio (γ ) CR2MET RF-MEP ERA5 MSWEPv2.8

Calibration (cal.) 0.97–1.00 0.95–1.00 0.95–1.01 0.96–1.01
Verification 1 (Ver. 1) 0.93–1.07 0.92–1.06 0.93–1.07 0.93–1.11
Verification 2 (Ver. 2) 0.92–1.13 0.91–1.17 0.91–1.12 0.79–1.05

Spatial proximity (cal.) 0.84–1.20 0.84–1.23 0.88–1.24 0.88–1.22
Spatial proximity (Ver. 1) 0.89–1.24 0.84–1.30 0.85–1.32 0.86–1.27
Spatial proximity (Ver. 2) 0.88–1.34 0.85–1.37 0.85–1.38 0.75–1.19

Feature similarity (cal.) 0.74–1.06 0.75–1.06 0.75–1.10 0.78–1.07
Feature similarity (Ver. 1) 0.79–1.04 0.76–1.06 0.77–1.07 0.81–1.03
Feature similarity (Ver. 2) 0.79–1.13 0.75–1.12 0.79–1.15 0.66–0.97

Parameter regression (cal.) 0.80–1.18 1.02–1.50 0.84–1.23 1.26–1.89
Parameter regression (Ver. 1) 0.82–1.20 1.02–1.35 0.87–1.25 1.27–1.69
Parameter regression (Ver. 2) 0.86–1.38 1.15–1.83 0.86–1.46 1.22–1.82
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