Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4611-2021
https://doi.org/10.5194/hess-25-4611-2021
Research article
 | 
30 Aug 2021
Research article |  | 30 Aug 2021

Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models

Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil

Related authors

Development of an under-ice river discharge forecasting system in Delft-Flood Early Warning System (Delft-FEWS) for the Chaudière River based on a coupled hydrological-hydrodynamic modelling approach
Kh Rahat Usman, Rodolfo Alvarado Montero, Tadros Ghobrial, François Anctil, and Arnejan van Loenen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-116,https://doi.org/10.5194/gmd-2024-116, 2024
Preprint under review for GMD
Short summary
How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? Insights from observations and modeling in eastern Canada
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024,https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Leveraging a Disdrometer Network to Develop a Probabilistic Precipitation Phase Model in Eastern Canada
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-78,https://doi.org/10.5194/hess-2024-78, 2024
Revised manuscript under review for HESS
Short summary
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023,https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022,https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Karst aquifer discharge response to rainfall interpreted as anomalous transport
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024,https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024,https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Large-sample hydrology – a few camels or a whole caravan?
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024,https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024,https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024,https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary

Cited articles

Akintug, B. and Rasmussen, P. F.: A Markov switching model for annual hydrologic time series, Water Resour. Res., 41, 1–10, https://doi.org/10.1029/2004WR003605, 2005. a, b
Ardoin-Bardin, S.: Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone soudano-sahélienne, PhD thesis, Université Montpellier II, https://doi.org/10.1038/ni.2208, 2004 (in French). a
Ardoin-Bardin, S., Dezetter, A., Servat, E., and Mahe, G.: Évaluation des impacts du changement climatique sur les ressources en eau d'Afrique de l'Ouest et Centrale, in: Regional Hydrological Impacts of Climatic Change – Hydroclimatic Variability, IAHS, Foz de Iguaçu, Brazil, 194–202, 2005 (in French). a
Bader, J.-C., Cauchy, S., Duffar, L., and Saura, P.: Monographie hydrologique du fleuve Sénégal. De l'origine des mesures jusqu'en 2011, IRD, Marseille (France), IRD edition, available at: https://www.documentation.ird.fr/hor/fdi:010065190 (last access: 1 July 2021), 2014 (in French). a, b, c, d, e, f, g
Bernier, J.: Etude de la stationnarité des séries hydroméléorologiques, La houille blanche, 4, 313–219, 1977 (in French). a
Download
Short summary
The stationary assumption in hydrology has become obsolete because of climate changes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a hidden Markov model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic model. We illustrate the method on the Senegal River.