Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4611-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4611-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Etienne Guilpart
CORRESPONDING AUTHOR
Département de génie civil et de génie des eaux, Université Laval, Québec, Canada
Vahid Espanmanesh
Département de génie civil et de génie des eaux, Université Laval, Québec, Canada
Amaury Tilmant
Département de génie civil et de génie des eaux, Université Laval, Québec, Canada
François Anctil
Département de génie civil et de génie des eaux, Université Laval, Québec, Canada
Related authors
No articles found.
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025, https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary
Short summary
Precipitation data from an automated observational network in eastern Canada showed a temperature interval where rain and snow could coexist. Random forest models were developed to classify the precipitation phase using meteorological data to evaluate operational applications. The models demonstrated significantly improved phase classification and reduced error compared to benchmark operational models. However, accurate prediction of mixed-phase precipitation remains challenging.
Kh Rahat Usman, Rodolfo Alvarado Montero, Tadros Ghobrial, François Anctil, and Arnejan van Loenen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-116, https://doi.org/10.5194/gmd-2024-116, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Rivers in cold climate regions such as Canada undergo freeze up during winters which makes the estimation forecasting of under-ice discharge very challenging and uncertain since there is no reliable method other than direct measurements. The current study explored the potential of deploying a coupled modelling framework for the estimation and forecasting of this parameter. The framework showed promising potential in addressing the challenge of estimating and forecasting the under-ice discharge.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024, https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Short summary
Observations and simulations from an exceptionally low-snow and warm winter, which may become the new norm in the boreal forest of eastern Canada, show an earlier and slower snowmelt, reduced soil temperature, stronger vertical temperature gradients in the snowpack, and a significantly lower spring streamflow. The magnitude of these effects is either amplified or reduced with regard to the complex structure of the canopy.
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023, https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Short summary
A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. The proposed approach supports the participation of end-users in interpreting the impact of climate change on water resources.
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022, https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Short summary
The performance of the non-dominated sorting genetic algorithm II (NSGA-II) is compared with a conventional post-processing method of affine kernel dressing. NSGA-II showed its superiority in improving the forecast skill and communicating trade-offs with end-users. It allows the enhancement of the forecast quality since it allows for setting multiple specific objectives from scratch. This flexibility should be considered as a reason to implement hydrologic ensemble prediction systems (H-EPSs).
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022, https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Short summary
We investigated how a precipitation post-processor interacts with other tools for uncertainty quantification in a hydrometeorological forecasting chain. Four systems were implemented to generate 7 d ensemble streamflow forecasts, which vary from partial to total uncertainty estimation. Overall analysis showed that post-processing and initial condition estimation ensure the most skill improvements, in some cases even better than a system that considers all sources of uncertainty.
Georg Lackner, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022, https://doi.org/10.5194/tc-16-127-2022, 2022
Short summary
Short summary
The surface energy budget is the sum of all incoming and outgoing energy fluxes at the Earth's surface and has a key role in the climate. We measured all these fluxes for an Arctic snowpack and found that most incoming energy from radiation is counterbalanced by thermal radiation and heat convection while sublimation was negligible. Overall, the snow model Crocus was able to simulate the observed energy fluxes well.
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci., 25, 6421–6435, https://doi.org/10.5194/hess-25-6421-2021, https://doi.org/10.5194/hess-25-6421-2021, 2021
Short summary
Short summary
Response surfaces are increasingly used to identify the hydroclimatic conditions leading to a water resources system's failure. Partitioning the surface usually requires performance thresholds that are not necessarily crisp. We propose a methodology that combines the inherent uncertainty of response surfaces with the ambiguity of performance thresholds. The proposed methodology is illustrated with a multireservoir system in Canada for which some performance thresholds are imprecise.
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021, https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Short summary
Cold content is the energy required to attain an isothermal (0 °C) state and resulting in the snow surface melt. This study focuses on determining the multi-layer cold content (30 min time steps) relying on field measurements, snow temperature profile, and empirical formulation in four distinct forest sites of Montmorency Forest, eastern Canada. We present novel research where the effect of forest structure, local topography, and meteorological conditions on cold content variability is explored.
Simon Ricard, Philippe Lucas-Picher, and François Anctil
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-451, https://doi.org/10.5194/hess-2021-451, 2021
Revised manuscript not accepted
Short summary
Short summary
We propose a simplified hydroclimatic modelling workflow for producing hydrologic scenarios without resorting to meteorological observations. This innovative approach preserves trends and physical consistency between simulated climate variables, allows the implementation of modelling cascades despite observation scarcity, and supports the participation of end-users in producing and interpreting climate change impacts on water resources.
Cited articles
Akintug, B. and Rasmussen, P. F.: A Markov switching model for annual
hydrologic time series, Water Resour. Res., 41, 1–10,
https://doi.org/10.1029/2004WR003605, 2005. a, b
Ardoin-Bardin, S.: Variabilité hydroclimatique et impacts sur les
ressources en eau de grands bassins hydrographiques en zone
soudano-sahélienne, PhD thesis, Université Montpellier II,
https://doi.org/10.1038/ni.2208, 2004 (in French). a
Ardoin-Bardin, S., Dezetter, A., Servat, E., and Mahe, G.: Évaluation
des impacts du changement climatique sur les ressources en eau d'Afrique de
l'Ouest et Centrale, in: Regional Hydrological Impacts of Climatic Change
– Hydroclimatic Variability, IAHS, Foz de Iguaçu, Brazil, 194–202, 2005 (in French). a
Bader, J.-C., Cauchy, S., Duffar, L., and Saura, P.: Monographie hydrologique du fleuve Sénégal. De l'origine des mesures jusqu'en 2011, IRD, Marseille (France), IRD edition, available at:
https://www.documentation.ird.fr/hor/fdi:010065190 (last access: 1 July 2021), 2014 (in French). a, b, c, d, e, f, g
Bernier, J.: Etude de la stationnarité des séries
hydroméléorologiques, La houille blanche, 4, 313–219, 1977 (in French). a
Bilmes, J. A.: A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models, Tech.
Rep. 510, International Computer Science Institute, Berkeley,
https://doi.org/10.1080/0042098032000136147, 1998. a
Bodian, A.: Approche par modélisation pluie – débit de la
connaissance régionale de la ressource en eau : Application au haut
bassin du fleuve Sénégal, PhD thesis, Université Cheikh
Anta Diop de Dakar, available at: http://hydrologie.org/THE/BODIAN.pdf (last access: 1 July 2021),
2011 (in French). a
Bodian, A., Dezetter, A., and Dacosta, H.: Apport De La Modélisation
Pluie-Débit Pour La Connaissance De La Ressource En Eau: Application
Au, Climatologie, 9, 109–125, https://doi.org/10.4267/climatologie.223, 2012 (in French). a
Bodian, A., Dezetter, A., and Dacosta, H.: Rainfall-runoff modelling of water resources in the upper Senegal River basin, Int. J. Water Resour. D., 32, 89–101, https://doi.org/10.1080/07900627.2015.1026435,
2015. a, b
Bodian, A., Dezetter, A., Deme, A., and Diop, L.: Hydrological evaluation of
TRMM Rainfall over the Upper Senegal River basin, Hydrology, 3, 1–18,
https://doi.org/10.3390/hydrology3020015, 2016. a
Borgomeo, E., Hall, J. W., Fung, F., Watts, G., Colquhoun, K., and Lambert, C.: Risk-based water resources planning: Incorporating probabilistic
nonstationary climate uncertainties, Water Resour. Res., 50,
6850–6873, https://doi.org/10.1002/2014WR015558, 2014. a
Boyer, J. F., Dieulin, C., Rouche, N., Cres, A., Servat, E., Paturel, J. E.,
and Mahé, G.: SIEREM: An environmental information system for water
resources, in: FRIEND World Conference, November 2006, Havana, Cuba, IAHS, 308, 19–25, 2006. a
Bracken, C., Rajagopalan, B., and Zagona, E.: A hidden Markov model combined
with climate indices for multidecadal streamflow simulation, Water Resour.
Res., 50, 7836–7846, https://doi.org/10.1002/2014WR015567, 2014. a
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter
instability: A source of additional uncertainty in estimating the
hydrological impacts of climate change?, J. Hydrol., 476,
410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013. a, b
Brown, C. and Wilby, R. L.: An alternate approach to assessing climate risks, Eos, 93, 401–402, https://doi.org/10.1029/2012EO410001, 2012. a
Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréassian, V.:
The suite of lumped GR hydrological models in an R package, Environ.
Model. Softw., 94, 166–171, https://doi.org/10.1016/j.envsoft.2017.05.002,
2017. a
Coron, L., Delaigue, O., Thirel, G., Dorchies, D., Perrin, C., Michel, C., Andréassian, V., Bourgin, F., Brigode, P., Le Moine, N., Mathevet, T., Mouelhi, S., Oudin, L., Pushpalatha, R., and Valéry, A.: airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling, available at: https://cran.r-project.org/web/packages/airGR/index.html,
last access: 1 July 2021. a
Dacosta, H., Kandia, K. Y., and Malou, R.: La variabilité
spatio-temporelle des précipitations au Sénégal depuis un
siècle, Regional Hydrology: Bridging Ihe Gap between Research and
Practice (Proceedings), 274, 499–506, 2002 (in French). a
Dakhlaoui, H., Ruelland, D., and Tramblay, Y.: A bootstrap-based differential split-sample test to assess the transferability of conceptual rainfall-runoff
models under past and future climate variability, J. Hydrol., 575,
470–486, https://doi.org/10.1016/j.jhydrol.2019.05.056, 2019. a
Descroix, L., Faty, B., Manga, S. P., Diedhiou, A. B., Lambert, L. A.,
Soumaré, S., Andrieu, J., Ogilvie, A., Fall, A., Mahé, G.,
Diallo, F. B. S., Diallo, A., Diallo, K., Albergel, J., Tanimoun, B. A.,
Amadou, I., Bader, J. C., Barry, A., Bodian, A., Boulvert, Y., Braquet, N.,
Couture, J. L., Dacosta, H., Dejacquelot, G., Diakité, M., Diallo, K.,
Gallese, E., Ferry, L., Konaté, L., Nnomo, B. N., Olivry, J. C.,
Orange, D., Sakho, Y., Sambou, S., and Vandervaere, J. P.: Are the fouta
djallon highlands still the water tower of west africa?, Water, 12, 2968,
https://doi.org/10.3390/w12112968, 2020. a, b
Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G.: Biological Sequence
Analysis, Biological Sequence Analysis, Cambridge University press, Cambridge, UK, 1–366, https://doi.org/10.1017/cbo9780511790492,
1998. a
Espanmanesh, V.: Vahidesp/HMM_Classification: HMM Classifications (Version_Final), Zenodo [code], https://doi.org/10.5281/zenodo.5172027, 2021. a
Falkenmark, M., Wang-Erlandsson, L., and Rockström, J.: Understanding of water resilience in the Anthropocene, J. Hydrol., 2, 100009,
https://doi.org/10.1016/j.hydroa.2018.100009, 2019. a
Faye, C., Diop, E. H. S., and Mbaye, I.: Impacts des changements de climat et des aménagements sur les ressources en eau du fleuve
sénégal: Caractérisation et évolution des
régimes hydrologiques de sous-bassins versants naturels et
aménagés, Belgeo – Revue belge de géographie, 4, 1–25,
https://doi.org/10.4000/belgeo.17626, 2015 (in French). a, b, c, d
Fortin, L. G., Turcotte, R., Pugin, S., Cyr, J. F., and Picard, F.: Impact des changements climatiques sur les plans de gestion des lacs Saint-François et Aylmer au sud du Québec, Can. J. Civil Eng., 34, 934–945, https://doi.org/10.1139/L07-030, 2007 (in French). a
Garcia, F., Folton, N., and Oudin, L.: Which objective function to calibrate
rainfall–runoff models for low-flow index simulations?, Hydrolog.
Sci. J., 62, 1149–1166, https://doi.org/10.1080/02626667.2017.1308511, 2017. a
Gleeson, T., Wang‐Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F.,
Gerten, D., Fetzer, I., Cornell, S. E., Piemontese, L., Gordon, L. J.,
Rockström, J., Oki, T., Sivapalan, M., Wada, Y., Brauman, K. A.,
Flörke, M., Bierkens, M. F. P., Lehner, B., Keys, P., Kummu, M.,
Wagener, T., Dadson, S., Troy, T. J., Steffen, W., Falkenmark, M., and
Famiglietti, J. S.: Illuminating water cycle modifications and Earth system
resilience in the Anthropocene, Water Resour. Res., 56, 1–24, https://doi.org/10.1029/2019WR024957, 2020. a
Gupta, H. V., Kling', H., Yilmaz, K. K., and Martinez-Baquero, G. F.:
Decomposition of the Mean Squared Error & NSE Performance Criteria:
Implications for Improving Hydrological Modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a, b
Gutierrez-Jurado, K. Y., Partington, D., and Shanafield, M.: Taking theory to the field: streamflow generation mechanisms in an intermittent, Mediterranean catchment, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-659, in review, 2021. a
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci.
Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020 (data available at: https://crudata.uea.ac.uk/cru/data/hrg/, last access: 1 July 2021). a, b
Huang, S., Shah, H., Naz, B. S., Shrestha, N., Mishra, V., Daggupati, P.,
Ghimire, U., and Vetter, T.: Impacts of hydrological model calibration on
projected hydrological changes under climate change – a multi-model
assessment in three large river basins, Climatic Change, 163, 1143–1164,
https://doi.org/10.1007/s10584-020-02872-6, 2020. a
Huard, D. and Mailhot, A.: A Bayesian perspective on input uncertainly in
model calibration: Application to hydrological model “abc”, Water Resour. Res., 42, 1–14, https://doi.org/10.1029/2005WR004661, 2006. a
Huard, D. and Mailhot, A.: Calibration of hydrological model GR2M using
Bayesian uncertainty analysis, Water Resour. Res., 44, 1–19,
https://doi.org/10.1029/2007WR005949, 2008. a
IRD (Institut pour la Recherche et le Développement) – HSM (Hydroscience Montpellier): Grilles de pluies mensuelles IRD-HSM, available at: http://www.hydrosciences.fr/sierem/produits/Grilles/GrillesIRD.asp, last access: 1 July 2021. a
Juston, J., Seibert, J., and Johansson, P.: Temporal sampling strategies and
uncertainty in calibrating a conceptual hydrological model for a small boreal
catchment, Hydrol. Process., 23, 3093–3109, https://doi.org/10.1002/hyp.7421, 2009. a
Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis of input
uncertainty in hydrological modeling: 2. Application, Water Resour.
Res., 42, 1–10, https://doi.org/10.1029/2005WR004376, 2006. a
Kendall, M.: Rank correlation methods, Charles Griffin & Co. Ltd., London, UK, 1948. a
Klemes, V.: Operational testing of hydrological simulation models,
Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986. a, b, c
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005. a
Lahtela, V.: Managing the Senegal River: National and local development
dilemma, Int. J. Water Resour. D., 19, 279–293,
https://doi.org/10.1080/0790062032000089365, 2003. a
Lempert, R. J., Groves, D. G., Popper, S. W., and Bankes, S. C.: A general,
analytic method for generating robust strategies and narrative scenarios,
Manage. Sci., 52, 514–528, https://doi.org/10.1287/mnsc.1050.0472, 2006. a, b
Liu, Q., Wan, S., and Gu, B.: A Review of the Detection Methods for Climate
Regime Shifts, Discrete Dyn. Nat. Soc., 2016, 1–10,
https://doi.org/10.1155/2016/3536183, 2016. a
Ludwig, R., May, I., Turcotte, R., Vescovi, L., Braun, M., Cyr, J.-F., Fortin, L.-G., Chaumont, D., Biner, S., Chartier, I., Caya, D., and Mauser, W.: The role of hydrological model complexity and uncertainty in climate change impact assessment, Adv. Geosci., 21, 63–71, https://doi.org/10.5194/adgeo-21-63-2009, 2009. a
Madsen, H.: Parameter estimation in distributed hydrological catchment
modelling using automatic calibration with multiple objectives, Adv.
Water Resour., 26, 205–216, https://doi.org/10.1016/S0309-1708(02)00092-1, 2003. a
Mann, H.: Non parametric tests against trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945. a
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz,
Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is Dead:
Whither Water Management?, Science, 319, 573–574,
https://doi.org/10.1126/science.1151915, 2008. a
Motavita, D. F., Chow, R., Guthke, A., and Nowak, W.: The comprehensive
differential split-sample test: A stress-test for hydrological model
robustness under climate variability, J. Hydrol., 573, 501–515,
https://doi.org/10.1016/j.jhydrol.2019.03.054, 2019. a
Mouelhi, S.: Vers une chaîne cohérente de modèles
pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel,
mensuel et journalier, PhD thesis, Université Paris VI, Ecole des
Mines de Paris, available at: https://pastel.archives-ouvertes.fr/tel-00005696/document (last access: 30 July 2021), 2003 (in French). a
Naghettini, M.: Fundamentals of Statistical Hydrology, Springer, Cham, Switzerland,
https://doi.org/10.1007/978-3-319-43561-9, 2017. a
Nalley, D., Adamowski, J., Biswas, A., Gharabaghi, B., and Hu, W.: A
multiscale and multivariate analysis of precipitation and streamflow
variability in relation to ENSO, NAO and PDO, J. Hydrol., 574,
288–307, https://doi.org/10.1016/j.jhydrol.2019.04.024, 2019. a
Nash, J. and Sutcliffe, J.: Nash and Sutcliffe – 1970 – River flow forecasting though conceptual models Part 1 – A discussion of principles, J. Hydrology, 10, 282–290, 1970. a
OMVS: SDAGE – Schéma directeur, Tech. rep., OMVS, Organisme de Mise en Valeur du fleuve Sénégal, Dakar, Senegal, 2011. a
Paturel, J. E., Servat, E., and Vassiliadis, A.: Sensitivity of conceptual
rainfall-runoff algorithms to errors in input data – case of the GR2M model, J. Hydrol., 168, 111–125, https://doi.org/10.1016/0022-1694(94)02654-T,
1995. a
Paturel, J.-E., Ibrehim, B., and L'Aour, A.: Evolution de la
pluviométrie annuelle en Afrique de l'Ouest et centrale au XXeme
siècle, Sud Sciences et technologies, 13, 40–46, 2004 (in French). a
Payrastre, O.: Utilité de l'information historique pour l'étude du risque de crues, in: 14èmes Journées Scientifiques de l'Environnement: l'Eau, la Ville, la Vie, edited by: Thévenot, D. R.,
Créteil, France, available at: https://hal.archives-ouvertes.fr/hal-00203088 (last access: 1 July 2021), 2003 (in French). a
Peel, M. C. and Blöschl, G.: Hydrological modelling in a changing
world, Prog. Phys. Geogr., 35, 249–261,
https://doi.org/10.1177/0309133311402550, 2011. a
Pettitt, A.: A non-parametric approach to the change-point problem, Appl.
Statist., 28, 126–135, https://doi.org/10.2307/2346729, 1979. a, b, c
Poff, N. L., Brown, C. M., Grantham, T. E., Matthews, J. H., Palmer, M. A.,
Spence, C. M., Wilby, R. L., Haasnoot, M., Mendoza, G. F., Dominique, K. C.,
and Baeza, A.: Sustainable water management under future uncertainty with
eco-engineering decision scaling, Nat. Clim. Change, 6, 25–34,
https://doi.org/10.1038/nclimate2765, 2016. a
Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., and Reynard, N. S.:
Scenario-neutral approach to climate change impact studies: Application to
flood risk, J. Hydrol., 390, 198–209,
https://doi.org/10.1016/j.jhydrol.2010.06.043, 2010. a
Rabiner, L. R.: A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition, P. IEEE, 77, 257–286,
https://doi.org/10.1109/5.18626, 1989. a, b
Razavi, T. and Coulibaly, P.: Streamflow prediction in ungauged basins: Review of regionalization methods, J. Hydrol. Eng., 18, 958–975,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690, 2013. a
Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.:
Understanding predictive uncertainty in hydrologic modeling : The challenge
of identifying input and structural errors, Water Resour. Res., 46,
1–22, https://doi.org/10.1029/2009WR008328, 2010. a
Roche, P.-A., Miquel, J., and Gaume, E.: Hydrologie quantitative:
Processus, modèles et aide à la décision, Springer, ISBN 978-2-8178-0105-6, available at: https://bibliotheques.mnhn.fr/medias/doc/exploitation/HORIZON/479761/hydrologie-quantitative-processus-modeles-et-aide-a-la-decision (last access: 27 August 2021), 2012 (in French). a
Singh, S. K. and Bárdossy, A.: Calibration of hydrological models on
hydrologically unusual events, Adv. Water Resour., 38, 81–91,
https://doi.org/10.1016/j.advwatres.2011.12.006, 2012. a
Stephens, C. M., Marshall, L. A., and Johnson, F. M.: Investigating strategies to improve hydrologic model performance in a changing climate, J.
Hydrol., 579, 124219, https://doi.org/10.1016/j.jhydrol.2019.124219, 2019. a
Thirel, G., Andréassian, V., and Perrin, C.: De la nécessité de tester les modèles hydrologiques sous des conditions changeantes, Hydrolog. Sci. J., 60, 1165–1173,
https://doi.org/10.1080/02626667.2015.1050027, 2015a (in French). a
Thirel, G., Andréassian, V., Perrin, C., Audouy, J. N., Berthet, L.,
Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström,
G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., and Vaze,
J.: Hydrologie sous changement: un protocole d'évaluation pour
examiner comment les modèles hydrologiques s'accommodent des bassins
changeants, Hydrolog. Sci. J., 60, 1184–1199,
https://doi.org/10.1080/02626667.2014.967248, 2015b (in French). a
Tilmant, A., Pina, J., Salman, M., Casarotto, C., Ledbi, F., and Pek, E.:
Probabilistic trade-off assessment between competing and vulnerable water
users – The case of the Senegal River basin, J. Hydrol., 587,
124915, https://doi.org/10.1016/j.jhydrol.2020.124915, 2020. a
Turner, S. and Galelli, S.: Regime-shifting streamflow processes: Implications for water supply reservoir operations, Water Resour. Res., 52,
3984–4002, https://doi.org/10.1002/2015WR017913, 2016. a
Viterbi, A. J.: Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm, IEEE T. Inform. Theory, 13,
260–269, https://doi.org/10.1109/TIT.1967.1054010, 1967. a
Weaver, C. P., Lempert, R. J., Brown, C., Hall, J. A., Revell, D., and
Sarewitz, D.: Improving the contribution of climate model information to
decision making: The value and demands of robust decision frameworks, Wiley
Interdisciplinary Reviews: Climate Change, 4, 39–60, https://doi.org/10.1002/wcc.202,
2013.
a
Whiting, J., Lambert, M., Metcalfe, A., and Kuczera, G.: Development of
non-homogeneous and hierarchical Hidden Markov models for modelling monthly
rainfall and streamflow time series, Proceedings of the 2004 World Water and
Environmetal Resources Congress: Critical Transitions in Water and
Environmetal Resources Management, Salt Lake City, Utah, USA, 27 June–1 July 2004, 1588–1597, https://doi.org/10.1061/40737(2004)212, 2004. a, b
Zucchini, W., MacDonald, I. L., and Langrock, R.: Hidden Markov Models for
Time Series: An Introduction Using R, J. Stat. Softw., 80, 1–4, https://doi.org/10.18637/jss.v080.b01, 2017. a, b, c
Short summary
The stationary assumption in hydrology has become obsolete because of climate changes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a hidden Markov model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic model. We illustrate the method on the Senegal River.
The stationary assumption in hydrology has become obsolete because of climate changes. In that...