Cooper, E. S., Dance, S. L., García-Pintado, J., Nichols, N. K., and Smith, P. J.: Observation operators for assimilation of satellite observations in fluvial inundation forecasting, Hydrol. Earth Syst. Sci., 23, 2541–2559,
https://doi.org/10.5194/hess-23-2541-2019, 2019.
a
Creutin, J., Muste, M., Bradley, A., Kim, S., and Kruger, A.: River gauging
using PIV techniques: a proof of concept experiment on the Iowa River,
J. Hydrol., 277, 182–194,
https://doi.org/10.1016/S0022-1694(03)00081-7,
2003.
a
Di Mauro, C., Hostache, R., Matgen, P., Pelich, R., Chini, M., van Leeuwen, P. J., Nichols, N. K., and Blöschl, G.: Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept, Hydrol. Earth Syst. Sci., 25, 4081–4097,
https://doi.org/10.5194/hess-25-4081-2021, 2021.
a
Eltner, A., Elias, M., Sardemann, H., and Spieler, D.: Automatic image-based
water stage measurement for long-term observations in ungauged catchments,
Water Resour. Res., 54, 10–362,
https://doi.org/10.1029/2018WR023913, 2018.
a,
b,
c
Environment Agency: LIDAR Composite DSM 2017 – 1 m, available at:
https://data.gov.uk/dataset/80c522cc-e0bf-4466-8409-57a04c456197/lidar-composite-dsm-2017-1m (last access:
26 April 2021), 2017. a
Environment Agency: Real-time and Near-real-time river level data, available at:
https://data.gov.uk/dataset/0cbf2251-6eb2-4c4e-af7c-d318da9a58be/real-time-and-near-real-time-river-level-data,
last access: 29 September 2020. a
Environment Agency: Environment Agency Real Time Flood Monitoring API, Department for Environment Food & Rural Affairs [data set], available at:
https://environment.data.gov.uk/flood-monitoring/doc/reference, last access: 3 August 2021. a
Etter, S., Strobl, B., van Meerveld, I., and Seibert, J.: Quality and timing of
crowd-based water level class observations, Hydrol. Process., 34,
4365–4378,
https://doi.org/10.1002/hyp.13864, 2020.
a,
b
Filonenko, A., Wayhono, Hernández, D. C., Seo, D., and Jo, K.-H.: Real-time
flood detection for video surveillance, in: Proceedings of the IEEE
Industrial Electronics Society Conference (IECON), 004082–004085,
https://doi.org/10.1109/IECON.2015.7392736, 2015.
a,
b
Finlay, J.: Autumn and winter floods 2019–20, House of Commons Library, available at:
https://commonslibrary.parliament.uk/research-briefings/cbp-8803/ (last access: 3 August 2021),
2020. a
Flack, D. L., Skinner, C. J., Hawkness-Smith, L., O'Donnell, G., Thompson, R. J., Waller, J. A., Chen, A. S., Moloney, J., Largeron, C., Xia, X., Bienkinsop, S., Champion, A. J., Perks, M. T., Quinn, N., and Speight, L. J.: Recommendations for improving integration in national end-to-end
flood forecasting systems: An overview of the FFIR (Flooding From Intense
Rainfall) programme, Water, 11, 725,
https://doi.org/10.3390/w11040725, 2019.
a
García-Pintado, J., Neal, J. C., Mason, D. C., Dance, S. L., and Bates,
P. D.: Scheduling satellite-based SAR acquisition for sequential assimilation
of water level observations into flood modelling, J. Hydrol., 495,
252–266,
https://doi.org/10.1016/j.jhydrol.2013.03.050, 2013.
a
García-Pintado, J., Mason, D. C., Dance, S. L., Cloke, H. L., Neal, J. C.,
Freer, J., and Bates, P. D.: Satellite-supported flood forecasting in river
networks: A real case study, J. Hydrol., 523, 706–724,
https://doi.org/10.1016/j.jhydrol.2015.01.084, 2015.
a,
b
Gilmore, T. E., Birgand, F., and Chapman, K. W.: Source and magnitude of error
in an inexpensive image-based water level measurement system, J.
Hydrol., 496, 178–186,
https://doi.org/10.1016/j.jhydrol.2013.05.011, 2013.
a
Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato, G., Schlaffer,
S., and Matgen, P.: Probabilistic flood mapping using synthetic aperture
radar data, IEEE T. Geosci. Remote, 54,
6958–6969,
https://doi.org/10.1109/TGRS.2016.2592951, 2016.
a
Global Runoff Data Center: Global Runoff Data Base, temporal distribution of
available discharge data, available at:
https://www.bafg.de/SharedDocs/Bilder/Bilder_GRDC/grdcStations_tornadoChart.jpg (last access:
3 August 2021), 2016. a
Grimaldi, S., Li, Y., Pauwels, V. R., and Walker, J. P.: Remote sensing-derived
water extent and level to constrain hydraulic flood forecasting models:
Opportunities and challenges, Surv. Geophys., 37, 977–1034,
https://doi.org/10.1007/s10712-016-9378-y, 2016.
a,
b
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., and Chen, T.: Recent advances in convolutional neural
networks, Pattern Recognition, 77, 354–377,
https://doi.org/10.1016/j.patcog.2017.10.013, 2018.
a
Guo, Y., Liu, Y., Georgiou, T., and Lew, M. S.: A review of semantic
segmentation using deep neural networks, International Journal of Multimedia
Information Retrieval, 7, 87–93,
https://doi.org/10.1007/s13735-017-0141-z, 2018.
a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image
recognition, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 770–778,
https://doi.org/10.1109/CVPR.2016.90, 2016.
a
Hintz, K. S., O'Boyle, K., Dance, S. L., Al-Ali, S., Ansper, I., Blaauboer, D., Clark, M., Cress, A., Dahoui, M., Darcy, R., Hyrkannen, J., Isaksen, L., Kaas, E., Korsholm, U. S., Lavannant, M., Le Bloa, G., Mallet, E., McNicholas, C., Onvlee-Hooimeijer, J., Sass, B., Siirand, V., Vedel, H., Waller, J. A., and Yang, X.: Collecting and utilising
crowdsourced data for numerical weather prediction: Propositions from the
meeting held in Copenhagen, 4–5 December 2018, Atmos. Sci. Lett.,
20, e921,
https://doi.org/10.1002/asl.921, 2019.
a
Lanfranchi, V., Wrigley, S. N., Ireson, N., Wehn, U., and Ciravegna, F.:
Citizens' observatories for situation awareness in flooding, in: ISCRAM 2014
Conference Proceedings-11th International Conference on Information Systems
for Crisis Response and Management, Sheffield, 145–154, 2014. a
Le Boursicaud, R., Pénard, L., Hauet, A., Thollet, F., and Le Coz, J.:
Gauging extreme floods on YouTube: application of LSPIV to home movies for
the post-event determination of stream discharges, Hydrol. Process.,
30, 90–105,
https://doi.org/10.1002/hyp.10532, 2016.
a
Lo, S.-W., Wu, J.-H., Lin, F.-P., and Hsu, C.-H.: Visual sensing for urban
flood monitoring, Sensors, 15, 20006–20029,
https://doi.org/10.3390/s150820006,
2015.
a
Lopez-Fuentes, L., Rossi, C., and Skinnemoen, H.: River segmentation for flood
monitoring, in: Proceedings of the IEEE International Conference on Big Data
(Big Data), IEEE, 3746–3749,
https://doi.org/10.1109/BigData.2017.8258373, 2017.
a,
b,
c,
d
Lowry, C. S., Fienen, M. N., Hall, D. M., and Stepenuck, K. F.: Growing Pains
of Crowdsourced Stream Stage Monitoring Using Mobile Phones: The Development
of CrowdHydrology, Front. Earth Sci., 7, 128,
https://doi.org/10.3389/feart.2019.00128, 2019.
a
Mason, D., Schumann, G.-P., Neal, J., Garcia-Pintado, J., and Bates, P.:
Automatic near real-time selection of flood water levels from high resolution
Synthetic Aperture Radar images for assimilation into hydraulic models: A
case study, Remote Sens. Environ., 124, 705–716,
https://doi.org/10.1016/j.rse.2012.06.017, 2012.
a
Mason, D. C., Dance, S. L., Vetra-Carvalho, S., and Cloke, H. L.: Robust
algorithm for detecting floodwater in urban areas using synthetic aperture
radar images, J. Appl. Remote Sens., 12, 045011,
https://doi.org/10.1117/1.JRS.12.045011, 2018.
a
Mettes, P., Tan, R. T., and Veltkamp, R.: On the segmentation and
classification of water in videos, in: 2014 International Conference on
Computer Vision Theory and Applications (VISAPP), IEEE, vol. 1, 283–292,
https://doi.org/10.13140/2.1.2141.2809, 2014.
a
Moy de Vitry, M., Kramer, S., Wegner, J. D., and Leitão, J. P.: Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network, Hydrol. Earth Syst. Sci., 23, 4621–4634,
https://doi.org/10.5194/hess-23-4621-2019, 2019.
a,
b,
c,
d,
e
Muste, M., Fujita, I., and Hauet, A.: Large-scale particle image velocimetry
for measurements in riverine environments, Water Resour. Res., 44, W00D19,
https://doi.org/10.1029/2008WR006950, 2008.
a
Nair, V. and Hinton, G. E.: Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning (ICML'10), Omnipress, 807–814, 2010. a
Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., and Pappenberger,
F.: A data assimilation approach to discharge estimation from space,
Hydrol. Process., 23, 3641–3649,
https://doi.org/10.1002/hyp.7518, 2009.
a
Pan, J., Yin, Y., Xiong, J., Luo, W., Gui, G., and Sari, H.: Deep
learning-based unmanned surveillance systems for observing water levels, IEEE
Access, 6, 73561–73571,
https://doi.org/10.1109/ACCESS.2018.2883702, 2018.
a
Perks, M. T., Russell, A. J., and Large, A. R. G.: Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs), Hydrol. Earth Syst. Sci., 20, 4005–4015,
https://doi.org/10.5194/hess-20-4005-2016, 2016.
a
Perks, M. T., Dal Sasso, S. F., Hauet, A., Jamieson, E., Le Coz, J., Pearce, S., Peña-Haro, S., Pizarro, A., Strelnikova, D., Tauro, F., Bomhof, J., Grimaldi, S., Goulet, A., Hortobágyi, B., Jodeau, M., Käfer, S., Ljubičić, R., Maddock, I., Mayr, P., Paulus, G., Pénard, L., Sinclair, L., and Manfreda, S.: Towards harmonisation of image velocimetry techniques for river surface velocity observations, Earth Syst. Sci. Data, 12, 1545–1559,
https://doi.org/10.5194/essd-12-1545-2020, 2020.
a,
b
Reyes, A. K., Caicedo, J. C., and Camargo, J. E.: Fine-tuning Deep
Convolutional Networks for Plant Recognition, CLEF (Working Notes), 1391,
467–475, 2015.
a,
b
Ricci, S., Piacentini, A., Thual, O., Le Pape, E., and Jonville, G.: Correction of upstream flow and hydraulic state with data assimilation in the context of flood forecasting, Hydrol. Earth Syst. Sci., 15, 3555–3575,
https://doi.org/10.5194/hess-15-3555-2011, 2011.
a
Royem, A., Mui, C., Fuka, D., and Walter, M.: Proposing a low-tech, affordable,
accurate stream stage monitoring system, T. ASABE, 55,
2237–2242,
https://doi.org/10.13031/2013.42512, 2012.
a,
b
Sabatelli, M., Kestemont, M., Daelemans, W., and Geurts, P.: Deep transfer
learning for art classification problems, in: Proceedings of the European
Conference on Computer Vision (ECCV),
https://doi.org/10.1007/978-3-030-11012-3_48,
2018.
a,
b
Salehi, S. S. M., Erdogmus, D., and Gholipour, A.: Tversky loss function for
image segmentation using 3D fully convolutional deep networks, in:
International Workshop on Machine Learning in Medical Imaging,
Springer, 379–387,
https://doi.org/10.1007/978-3-319-67389-9_44, 2017.
a
Seibert, J. and Vis, M. J.: How informative are stream level observations in
different geographic regions?, Hydrol. Process., 30, 2498–2508, 2016. a
Speight, L., Cole, S. J., Moore, R. J., Pierce, C., Wright, B., Golding, B.,
Cranston, M., Tavendale, A., Dhondia, J., and Ghimire, S.: Developing surface
water flood forecasting capabilities in Scotland: An operational pilot for
the 2014 Commonwealth Games in Glasgow, J. Flood Risk Manag., 11,
S884–S901,
https://doi.org/10.1111/jfr3.12281, 2018.
a
Steccanella, L., Bloisi, D., Blum, J., and Farinelli, A.: Deep Learning
Waterline Detection for Low-Cost Autonomous Boats, in: International
Conference on Intelligent Autonomous Systems (ICIAS), Springer, 613–625,
https://doi.org/10.1007/978-3-030-01370-7_48, 2018.
a
Stephens, E., Schumann, G., and Bates, P.: Problems with binary pattern
measures for flood model evaluation, Hydrol. Process., 28, 4928–4937,
https://doi.org/10.1002/hyp.9979, 2014.
a
Strang, G.: Linear algebra and learning from data, Wellesley-Cambridge Press, Cambridge,
2019. a
Szeliski, R.: Computer vision: algorithms and applications, Springer Science & Business Media, London, 2010. a
Tanguy, M., Chokmani, K., Bernier, M., Poulin, J., and Raymond, S.: River flood
mapping in urban areas combining Radarsat-2 data and flood return period
data, Remote Sens. Environ., 198, 442–459,
https://doi.org/10.1016/j.rse.2017.06.042, 2017.
a
Tauro, F., Selker, J., Van De Giesen, N., Abrate, T., Uijlenhoet, R., Porfiri,
M., Manfreda, S., Caylor, K., Moramarco, T., Benveniste, J., et al.:
Measurements and Observations in the XXI century (MOXXI): innovation and
multi-disciplinarity to sense the hydrological cycle, Hydrolog. Sci.
J., 63, 169–196,
https://doi.org/10.1080/02626667.2017.1420191, 2018.
a
The Ad Hoc Group, Vörösmarty, C., Askew, A., Grabs, W., Barry, R. G., Birkett, C., Döll, P., Goodison, B., Hall, A., Jenne, R., Kitaev, L., Landwehr, J., Keeler, M., Leavesley, G., Schaake, J., Strzepek, K., Sundarvel, S. S, Takeuchi, K., and Webster, F.: Global water data: A newly
endangered species, EOS T. Am. Geophys. Un., 82, 54–58,
https://doi.org/10.1029/01EO00031, 2001.
a
van Meerveld, H. J. I., Vis, M. J. P., and Seibert, J.: Information content of stream level class data for hydrological model calibration, Hydrol. Earth Syst. Sci., 21, 4895–4905,
https://doi.org/10.5194/hess-21-4895-2017, 2017.
a
Vandaele, R., Aceto, J., Muller, M., Péronnet F., Debat, V., Wang, C.-W., Huang, C.-T., Jodogne, S., Martinive, P., Geurts, P., and Marée, M.: Landmark
detection in 2D bioimages for geometric morphometrics: a multi-resolution
tree-based approach, Sci. Rep.-UK, 8, 1–13,
https://doi.org/10.1038/s41598-017-18993-5, 2018.
a
Vandaele, R., Dance, S. L., and Ojha, V.: Deep learning for the estimation of
water-levels using river cameras: networks and datasets, University of Reading [data set],
https://doi.org/10.17864/1947.282, 2020.
a
Vandaele, R., Dance, S. L., and Ojha, V.: Automated water segmentation and river level detection on camera images using transfer learning,
in: Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen, Germany, Proceedings 42, Springer, 232–245,
https://doi.org/10.1007/978-3-030-71278-5_17, 2021.
a,
b,
c,
d,
e,
f,
g
Vetra-Carvalho, S., Dance, S. L., Mason, D., Waller, J., Smith, P., Tabeart,
J., and Cooper, E.: River water level height measurements obtained from river
cameras near Tewkesbury, Mendeley Data [data set],
https://doi.org/10.17632/769cyvdznp.1,
2020a.
a
Vetra-Carvalho, S., Dance, S. L., Mason, D. C., Waller, J. A., Cooper, E. S.,
Smith, P. J., and Tabeart, J. M.: Collection and extraction of water level
information from a digital river camera image dataset, Data in Brief, 33,
106338,
https://doi.org/10.1016/j.dib.2020.106338, 2020b.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n
Walker, D., Haile, A. T., Gowing, J., Legesse, Y., Gebrehawariat, G., Hundie, H., Berhanu, D., and Parkin, G.: Guideline: Community-based hydroclimate monitoring, REACH Working Paper 5, University of Oxford, Oxford, UK, 2019. a
Werner, M., Blazkova, S., and Petr, J.: Spatially distributed observations in
constraining inundation modelling uncertainties, Hydrol. Process., 19, 3081–3096,
https://doi.org/10.1002/hyp.5833, 2005.
a
Yan, K., Di Baldassarre, G., Solomatine, D. P., and Schumann, G. J.-P.: A
review of low-cost space-borne data for flood modelling: topography, flood
extent and water level, Hydrol. Process., 29, 3368–3387,
https://doi.org/10.1002/hyp.10449, 2015.
a
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and Torralba, A.: Scene
parsing through ADE20k dataset, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 633–641,
https://doi.org/10.1109/CVPR.2017.544, 2017.
a,
b
Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., and Torralba,
A.: Semantic understanding of scenes through the ADE20k dataset,
International Journal on Computer Vision,
https://doi.org/10.1007/s11263-018-1140-0,
2018.
a,
b
Zhou, S., Kan, P., Silbernagel, J., and Jin, J.: Application of image
segmentation in surface water extraction of freshwater lakes using radar
data, ISPRS Int. J. Geo-Inf., 9, 424,
https://doi.org/10.3390/ijgi9070424, 2020.
a