Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3675-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3675-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new fractal-theory-based criterion for hydrological model calibration
Zhixu Bai
Institute of Hydrology and Water Resources, Civil Engineering, Zhejiang University, Hangzhou, 310058, China
Yao Wu
Institute of Hydrology and Water Resources, Civil Engineering, Zhejiang University, Hangzhou, 310058, China
Di Ma
Institute of Hydrology and Water Resources, Civil Engineering, Zhejiang University, Hangzhou, 310058, China
Institute of Hydrology and Water Resources, Civil Engineering, Zhejiang University, Hangzhou, 310058, China
Related authors
No articles found.
Lu Wang, Haiting Gu, Li Liu, Xiao Liang, Siwei Chen, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 29, 361–379, https://doi.org/10.5194/hess-29-361-2025, https://doi.org/10.5194/hess-29-361-2025, 2025
Short summary
Short summary
To understand how ecohydrological variables evolve jointly and why, this study develops a framework using correlation and causality to construct complex relationships between variables at the system level. Causality provides more detailed information that the compound causes of evolutions regarding any variable can be traced. Joint evolution is controlled by the combination of external drivers and direct causality. Overall, the study facilitates the comprehension of ecohydrological processes.
Xinting Yu, Yue-Ping Xu, Yuxue Guo, Siwei Chen, and Haiting Gu
Hydrol. Earth Syst. Sci., 29, 179–214, https://doi.org/10.5194/hess-29-179-2025, https://doi.org/10.5194/hess-29-179-2025, 2025
Short summary
Short summary
This study introduces a new method to simplify complex vine copula structures by reducing dimensionality while retaining essential data. Applied to Shifeng Creek, the vine copula built with this method captured critical spatial–temporal relationships, indicating high synchronization probabilities and flood risks. Notably, it was found that increasing structure complexity does not always improve accuracy. This method offers an efficient tool for analyzing and simulating multi-site flows.
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Hydrol. Earth Syst. Sci., 28, 4989–5009, https://doi.org/10.5194/hess-28-4989-2024, https://doi.org/10.5194/hess-28-4989-2024, 2024
Short summary
Short summary
Our research explores how increased CO2 levels affect water use efficiency in the Yellow River basin. Using updated climate models, we found that future climate change significantly impacts water use efficiency, leading to improved plant resilience against moderate droughts. These findings help predict how ecosystems might adapt to environmental changes, providing essential insights into ways of managing water resources under varying climate conditions.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022, https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Short summary
Monitoring extreme flood events has long been a hot topic for hydrologists and decision makers around the world. In this study, we propose a new index incorporating satellite observations combined with meteorological data to monitor extreme flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The conclusions drawn from this study provide important implications for flood hazard prevention and water resource management over this region.
Yuxue Guo, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie
Hydrol. Earth Syst. Sci., 25, 5951–5979, https://doi.org/10.5194/hess-25-5951-2021, https://doi.org/10.5194/hess-25-5951-2021, 2021
Short summary
Short summary
We developed an AI-based management methodology to assess forecast quality and forecast-informed reservoir operation performance together due to uncertain inflow forecasts. Results showed that higher forecast performance could lead to improved reservoir operation, while uncertain forecasts were more valuable than deterministic forecasts. Moreover, the relationship between the forecast horizon and reservoir operation was complex and depended on operating configurations and performance measures.
Cited articles
Bai, Z., Xu, Y.-P., Gu, H., and Pan, S.: Joint multifractal spectrum
analysis for characterizing the nonlinear relationship among hydrological
variables, J. Hydrol., 576, 12–27, https://doi.org/10.1016/j.jhydrol.2019.06.030, 2019.
Bergström, S.: The HBV model-its structure and applications, SMHI, Sweden, 1992.
Bergström, S.: Development and application of a conceptual runoff model
for Scandinavian catchments, University of Lund, Lund, 1976.
Chiew, F. H. S. and McMahon, T. A.: Assessing the adequacy of catchment
streamflow yield estimates, Soil Res., 31, 665–680, 1993.
Davis, A., Marshak, A., Wiscombe, W., and Cahalan, R.: Multifractal
characterizations of nonstationarity and intermittency in geophysical
fields: observed, retrieved, or simulated, J. Geophys. Res., 99, 8055–8072,
https://doi.org/10.1029/94JD00219, 1994.
Deb, K.: Multi-objective optimization using evolutionary algorithms, John
Wiley & Sons, India, 2001.
Demirel, M. C., Booij, M. J., and Hoekstra, A. Y.: Effect of different
uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models, Water Resour. Res., 49, 4035–4053,
https://doi.org/10.1002/wrcr.20294, 2013.
Evertsz, C. J. G. and Mandelbrot, B. B.: Self-similarity of harmonic measure
on DLA, Phys. A Stat. Mech. Appl., 185, 77–86, 1992.
Falconer, K.: Fractal geometry: mathematical foundations and applications,
John Wiley & Sons, England, 2004.
Gao, Y., Leung, L. R., Zhang, Y., and Cuo, L.: Changes in moisture flux over
the Tibetan Plateau during 1979–2011: insights from a high-resolution simulation, J. Climate, 28, 4185–4197, 2015.
Grassberger, P. and Procaccia, I.: Measuring the strangeness of strange attractors, Physica D, 9, 189–208, 1983.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hao, Z. and Singh, V. P.: Entropy-Based Method for Bivariate Drought Analysis, J. Hydrol. Eng., 18, 780–786, 2013.
Harlin, J.: Development of a process oriented calibration scheme for the HBV
hydrological model, Hydrol. Res., 22, 15–36, 1991.
Hurst, H. E.: Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng., 116, 770–799, 1951.
Jain, S. K. and Sudheer, K. P.: Fitting of hydrologic models: a close look
at the Nash–Sutcliffe index, J. Hydrol. Eng., 13, 981–986, 2008.
Karperien, A., Jelinek, H. F., Leandro, J. J., Soares, J. V., Cesar Jr., R. M., and Luckie, A: Automated detection of proliferative retinopathy in clinical practice, Clin. Ophthalmol., 2, 109–122, https://doi.org/10.2147/opth.s1579, 2008.
Katsev, S. and L'Heureux, I.: Are Hurst exponents estimated from short or
irregular time series meaningful?, Comput. Geosci., 29, 1085–1089,
https://doi.org/10.1016/S0098-3004(03)00105-5, 2003.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425,
264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5,
89–97, 2005.
Li, P., Zhang, Z., and Liu, J.: Dominant climate factors influencing the Arctic runoff and association between the Arctic runoff and sea ice, Acta
Oceanol. Sin., 29, 10–20, 2010.
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96
hydrological model, J. Hydrol., 201, 272–288, 1997.
Liu, L., Gao, C., Xuan, W., and Xu, Y.-P.: Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China, J. Hydrol., 554, 233–250, 2017.
Liu, L., Xu, Y. P., Pan, S. L., and Bai, Z. X.: Potential application of hydrological ensemble prediction in forecasting floods and its components over the Yarlung Zangbo River basin, China, Hydrol. Earth Syst. Sci., 23, 3335–3352, https://doi.org/10.5194/hess-23-3335-2019, 2019.
Mandelbrot, B. B.: A fractal set is one for which the fractal (Hausdorff–Besicovitch) dimension strictly exceeds the topological
dimension, Fractals and Chaos, 2004.
Meseguer-Ruiz, O., Osborn, T. J., Sarricolea, P., Jones, P. D., Cantos, J. O., Serrano-Notivoli, R., and Martin-Vide, J.: Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications, Clim. Dynam., 52, 439–456, 2019.
Movahed, M. S. and Hermanis, E.: Fractal Analysis of River Flow Fluctuations
(with Erratum), Physica A, 387, 915–932, 2008.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Onyutha, C., Rutkowska, A., Nyeko-Ogiramoi, P., and Willems, P.: How well do
climate models reproduce variability in observed rainfall? A case study of
the Lake Victoria basin considering CMIP3, CMIP5 and CORDEX simulations, Stoch. Environ. Res. Risk A., 33, 687–707, https://doi.org/10.1007/s00477-018-1611-4, 2019.
Pan, S., Fu, G., Chiang, Y.-M., Ran, Q., and Xu, Y.-P.: A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East
China, Hydrolog. Sci. J., 62, 2511–2530, 2017.
Pan, S., Liu, L., Bai, Z., and Xu, Y.-P.: Integration of remote sensing
evapotranspiration into multi-objective calibration of distributed hydrology-soil-vegetation model (DHSVM) in a humid region of China, Water, 10, 1841, https://doi.org/10.3390/w10121841, 2018.
Pechlivanidis, I. G., Jackson, B., Mcmillan, H., and Gupta, H.: Use of an
entropy-based metric in multiobjective calibration to improve model performance, Water Resour. Res., 50, 8066–8083, 2015.
Pushpalatha, R., Perrin, C., Moine, N. Le, and Andréassian, V.: A review
of efficiency criteria suitable for evaluating low-flow simulations, J. Hydrol., 420–421, 171–182, https://doi.org/10.1016/j.jhydrol.2011.11.055, 2012.
Radziejewski, M. and Kundzewicz, Z. W.: Fractal analysis of flow of the river
Warta, J. Hydrol., 200, 280–294, 1997.
Rubalcaba, J. O.: Fractal analysis of climatic data: annual precipitation records in Spain, Theor. Appl. Climatol., 56, 83–87, 1997.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Shafii, M. and Tolson, B. A.: Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives, Water Resour. Res., 51, 3796–3814, 2015.
Székely, G. J., Rizzo, M. L., and Bakirov, N. K.: Measuring and testing
dependence by correlation of distances, Ann. Stat., 35, 2769–2794, 2007.
Tian, Y., Xu, Y. P., Booij, M. J., and Wang, G.: Uncertainty in future high
flows in qiantang river basin, China, J. Hydrometeorol., 16, 363–380,
https://doi.org/10.1175/JHM-D-13-0136.1, 2015.
Tian, Y., Xu, Y. P., Booij, M. J., and Cao, L.: Impact assessment of multiple uncertainty sources on high flows under climate change, Hydrol. Res., 47, 61–74, 2016.
Westerberg, I. K. and McMillan, H. K.: Uncertainty in hydrological signatures, Hydrol. Earth Syst. Sci., 19, 3951–3968,
https://doi.org/10.5194/hess-19-3951-2015, 2015.
Willems, P.: A time series tool to support the multi-criteria performance
evaluation of rainfall-runoff models, Environ. Model. Softw., 24, 311–321,
2009.
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective global
optimization for hydrologic models, J. Hydrol., 204, 83–97, 1998.
Zhang, Q., Yu, Z. G., Xu, C. Y., and Anh, V.: Multifractal analysis of measure representation of flood/drought grade series in the Yangtze Delta,
China, during the past millennium and their fractal model simulation, Int.
J. Climatol., 30, 450–457, https://doi.org/10.1002/joc.1924, 2010.
Zhou, Y., Zhang, Q., and Singh, V. P.: Fractal-based evaluation of the effect of water reservoirs on hydrological processes: The dams in the Yangtze River as a case study, Stoch. Environ. Res. Risk A., 28, 263–279, https://doi.org/10.1007/s00477-013-0747-5, 2014.
Zhu, Q., Gao, X., Xu, Y. P., and Tian, Y.: Merging multi-source precipitation products or merging their simulated hydrological flows to improve streamflow simulation, Hydrolog. Sci. J., 64, 910–920, https://doi.org/10.1080/02626667.2019.1612522, 2019.
Short summary
To test our hypothesis that the fractal dimensions of streamflow series can be used to improve the calibration of hydrological models, we designed the E–RD efficiency ratio of fractal dimensions strategy and examined its usability in the calibration of lumped models. The results reveal that, in most aspects, introducing RD into model calibration makes the simulation of streamflow components more reasonable. Also, pursuing a better RD during calibration leads to only a minor decrease in E.
To test our hypothesis that the fractal dimensions of streamflow series can be used to improve...