Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3675-2021
https://doi.org/10.5194/hess-25-3675-2021
Research article
 | 
30 Jun 2021
Research article |  | 30 Jun 2021

A new fractal-theory-based criterion for hydrological model calibration

Zhixu Bai, Yao Wu, Di Ma, and Yue-Ping Xu

Related authors

Potential application of hydrological ensemble prediction in forecasting floods and its components over the Yarlung Zangbo River basin, China
Li Liu, Yue Ping Xu, Su Li Pan, and Zhi Xu Bai
Hydrol. Earth Syst. Sci., 23, 3335–3352, https://doi.org/10.5194/hess-23-3335-2019,https://doi.org/10.5194/hess-23-3335-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Learning landscape features from streamflow with autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024,https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
On the use of streamflow transformations for hydrological model calibration
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024,https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Simulation-based inference for parameter estimation of complex watershed simulators
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024,https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024,https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024,https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary

Cited articles

Bai, Z., Xu, Y.-P., Gu, H., and Pan, S.: Joint multifractal spectrum analysis for characterizing the nonlinear relationship among hydrological variables, J. Hydrol., 576, 12–27, https://doi.org/10.1016/j.jhydrol.2019.06.030, 2019. 
Bergström, S.: The HBV model-its structure and applications, SMHI, Sweden, 1992. 
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, University of Lund, Lund, 1976. 
Chiew, F. H. S. and McMahon, T. A.: Assessing the adequacy of catchment streamflow yield estimates, Soil Res., 31, 665–680, 1993. 
Davis, A., Marshak, A., Wiscombe, W., and Cahalan, R.: Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved, or simulated, J. Geophys. Res., 99, 8055–8072, https://doi.org/10.1029/94JD00219, 1994. 
Download
Short summary
To test our hypothesis that the fractal dimensions of streamflow series can be used to improve the calibration of hydrological models, we designed the E–RD efficiency ratio of fractal dimensions strategy and examined its usability in the calibration of lumped models. The results reveal that, in most aspects, introducing RD into model calibration makes the simulation of streamflow components more reasonable. Also, pursuing a better RD during calibration leads to only a minor decrease in E.