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Abstract. Fractality has been found in many areas and has
been used to describe the internal features of time series.
But is it possible to use fractal theory to improve the per-
formance of hydrological models? This study aims at inves-
tigating the potential benefits of applying fractal theory in
model calibration. A new criterion named the ratio of frac-
tal dimensions (RD) is defined as the ratio of the fractal di-
mensions of simulated and observed streamflow series. To
combine the advantages of fractal theory with classical crite-
ria based on squared residuals, a multi-objective calibration
strategy is designed. The selected classical criterion is the
Nash–Sutcliffe efficiency (E). The E–RD strategy is tested
in three study cases with different climates and geographies.
The results reveal that, in most aspects, introducing RD into
model calibration makes the simulation of streamflow com-
ponents more reasonable. Also, pursuing a better RD during
calibration leads to only a small decrease in E. We there-
fore recommend choosing the parameter set with the best E
among the parameter sets with RD values of around 1.

1 Introduction

Ever since the first hydrological model was developed, ap-
propriate methods of evaluating the performance of such
models have been sought by the hydrological community,
and a large variety of efficiency criteria have been proposed
and used over the years. Most of these criteria are based
on squared residuals or absolute errors (Pushpalatha et al.,
2012). Krause et al. (2005) compared nine efficiency criteria,
including the correlation coefficient (r2), the Nash–Sutcliffe
efficiency (E), the index of agreement (d) and variants of
these criteria, but none of them were found to be consider-

ably better performance measures than the rest. The Kling–
Gupta efficiency was developed by Gupta et al. (2009) and
Kling et al. (2012) to provide a diagnostically interesting de-
composition of the Nash–Sutcliffe efficiency that facilitates
the analysis of the relative importance of the components of
this efficiency (correlation, bias and variability) in the con-
text of hydrological modelling. Apart from criteria that are
used to calculate model errors over the entire test period,
there are also many criteria that focus on a certain period of
interest. For example, the criteria mentioned above are cal-
culated over flood periods (Liu et al., 2017, 2019) or dry pe-
riods (Demirel et al., 2013). There have also been studies
that calibrated hydrological models via hydrological compo-
nents other than the streamflow, such as evapotranspiration
(Pan et al., 2017), soil moisture (Gao et al., 2015), the snow
water equivalent, and even glacier melt (Liu et al., 2019). An-
other approach that is applied to improve the performance of
models is the use of hydrological signatures (Shafii and Tol-
son, 2015). Nonetheless, uncertainties in hydrological signa-
ture simulations are often large (Westerberg and McMillan,
2015). Hao and Singh (2013) proposed a method for con-
structing the bivariate distribution of drought duration and
severity with different marginal distribution forms based on
entropy theory. Pechlivanidis et al. (2015) combined the con-
ditioned entropy difference metric and the Kling–Gupta ef-
ficiency for the multi-objective calibration of hydrological
models. Li et al. (2010) used a Bayesian method to assess
the uncertainty in hydrological model estimation.

Chiew and McMahon (1993) classified calibration crite-
ria into statistical parameters and dimensionless coefficients.
Statistical parameters include the mean value, standard de-
viation, coefficient of skewness, coefficient of variance and
quantile points. Most dimensionless coefficients (such as the
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Pearson correlation coefficient (r2), the Nash–Sutcliffe effi-
ciency coefficient (E) and the Kling–Gupta efficiency coeffi-
cient) are based on the squared residuals (Pushpalatha et al.,
2012). According to the formula for calculating coefficients
based on the squared residuals, closer simulated individual
data and observed data make the coefficients better.

Another deficiency of existing criteria is the preference for
particular parts of the hydrograph. For example, statistical
parameters are easily influenced by extreme individuals and
have large uncertainties (Westerberg and McMillan, 2015).
Coefficients provide a measure of the overall agreement be-
tween simulation and observation, but are still significantly
influenced by particular parts of the hydrograph. High flows
make a significant contribution to the values of E and the
Kling–Gupta efficiency coefficient (Pushpalatha et al., 2012).
Nevertheless, studies have reported that peak flow is under-
estimated when using E as an indicator alone (Jain and Sud-
heer, 2008). Overall, there is still a great need for calibration
criteria that consider individual data and the whole hydro-
graph.

First introduced by Hurst in 1951, the fractality of stream-
flow series has been studied for decades (Hurst, 1951). There
has been spectacular growth in various areas of fractal theory
and multifractal theory (Bai et al., 2019; Davis et al., 1994).
According to fractal theory, fractality can be described by the
Hurst exponent (rescaled range analysis) (Hurst, 1951), the
Hausdorff dimension (the box-counting dimension or local
dimension) (Karperien et al., 2008; Falconer, 2004) and the
correlation dimension (Grassberger and Procaccia, 1983), for
example. These dimensions differ in the schemes used to cal-
culate them, but they are numerically related to and theoreti-
cally dependent on each other. While the Hurst exponent cal-
culated with rescaled range analysis is more widely used, the
Hausdorff dimension can easily be extended to multifractal
analysis and has prospective applications in hydrology (Bai
et al., 2019; Zhou et al., 2014). The fractality of a time series
is generally considered to reflect its self-affinity, periodicity,
long-term memory and irregularity (Bai et al., 2019; Hurst,
1951; Mandelbrot, 2004). Self-affinity is a feature of a frac-
tal whose pieces are scaled by different amounts in the x and
y directions, and the fractal dimensions represent the self-
affinity of the time series. The self-affinity of a time series
is the similarity of finely resolved small parts and coarsely
resolved large parts of the data. The Hausdorff dimension is
defined and calculated based on the self-affinity of the data
series. The periodicity and long-term memory of a time series
are highly related. Long-term memory is the phenomenon
where the effect of an event in a series may persist for a
relatively long time. The long-term memory of a hydrologi-
cal time series is usually studied with rescaled range analy-
sis. The irregularity of a fractal series refers to unpredictable
changes within that series, which are a feature of a chaotic
system. Generally, the Hausdorff dimension of a streamflow
series represents the magnitude of the fluctuations in the se-
ries, i.e. the fluctuations in the river flow are large for a large

river flow and small for a small river flow (Movahed and Her-
manis, 2008). This phenomenon is also called long-term cor-
relation, and can be described using the Hausdorff dimension
(Onyutha et al., 2019). However, applications of fractal the-
ory to simple streamflow analysis are limited and mostly only
use the Hurst index (Katsev and L’Heureux, 2003). Some
studies have mentioned other indices based on fractal the-
ory (Bai et al., 2019; Zhou et al., 2014; Zhang et al., 2010)
but, again, they only studied observed hydrological data. Re-
cent studies have made progress in hydrological modelling
based on fractal theory (Zhang et al., 2010), but the result-
ing model can only reconstruct flood/drought grade series.
As demonstrated by all these studies, the fractality of an ob-
served streamflow series (as well as other hydrometeorolog-
ical data) is unique to that series and depends on the par-
ticular case studied. However, few studies have tried to ex-
plore the applications of fractal theory to hydrological model
calibration. To our best knowledge, the only exception is
provided by Onyutha et al. (2019), who utilized the Hurst–
Kolmogorov framework to evaluate the performance of cli-
mate models (GCM and RCM) rather than to calibrate hydro-
logical models. In their study, the Hurst exponent was used
to represent the long-range dependence and evaluate the re-
producibility of variability (Onyutha et al., 2019). However,
the benefits of using fractal theory in model building and cal-
ibration have not been discussed in the literature.

Unlike a typical statistical evaluation of fluctuation (such
as the standard deviation and the distribution function), the
Hausdorff dimension takes the order of the data into ac-
count. Therefore, compared to classical criteria that are
used to compare observed and simulated water balances,
the Hausdorff dimension can offer useful insights into the
mechanisms that control extreme hydrological events (in-
cluding floods, droughts and low flows) (Radziejewski and
Kundzewicz, 1997). Another difference between fractal di-
mensions and classical criteria is the influence of an individ-
ual datum (or a small number of data). While closer simu-
lated individual data and observed data make the coefficients
better, it can shift the Hausdorff dimension of the simulated
data closer to or farther from that of the observed data. Thus,
to reproduce all the characteristics of the observed stream-
flow, the simulated and observed streamflows should have
similar Hausdorff dimensions and other traditional metrics.
Taking all of this into account, the Hausdorff dimension is
used for hydrological model calibration in the present study.

Since the fractal dimension describes the fractality of a
streamflow series and two different series may have the
same fractal dimension, the fractal dimension cannot be
used to calibrate a hydrological model independently. Multi-
objective optimization approaches are widely used by the hy-
drological community (Harlin, 1991; Yapo et al., 1998; Liu
et al., 2017, 2019; Pan et al., 2017; Shafii and Tolson, 2015).
This has resulted in the use of some noncomprehensive but
effective criteria as targets, such as the aforementioned hy-
drological signatures (Shafii and Tolson, 2015; Westerberg
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and McMillan, 2015), statistical targets and fractal criteria.
Nonetheless, the strategy of using the Hausdorff dimension
to calibrate hydrological models has not been studied.

In the present study, a new criterion – the ratio of fractal
dimensions (RD) – is introduced, as well as a new calibra-
tion strategy. The criterion and calibration strategy consider
the self-affinity, periodicity, long-term memory and irregular-
ity of the hydrograph during model calibration. Three catch-
ments with different climates and geographies are used as
case studies. The aim of this study is to examine the appli-
cability of RD as one of the targets of multi-objective cali-
bration and to explore the effects on hydrological model per-
formance when RD is considered. Section 2 describes differ-
ences between RD and classical criteria and how RD is used
in calibration (the E–RD strategy). Section 3 briefly sum-
marizes the study areas and methods used in this study to
investigate the advantages of RD. Section 4 presents the re-
sults of the study and Sect. 5 discusses them. Section 6 pro-
vides a summary of the study and a conclusion. In this study,
our goal was to answer the following questions: (1) is RD an
appropriate criterion for hydrological modelling, even if the
reaction of RD is not as direct as classical criteria? (2) Could
the application of the E–RD strategy explicitly improve hy-
drological model performance? (3) Why does the application
of RD improve calibration?

2 Study area and methodology

2.1 Ratio of fractal dimensions and the E–RD strategy

The box-counting method used to calculate the Hausdorff
dimension is based on the idea of separating data into
boxes and counting the resulting number of boxes (Mandel-
brot, 2004). When adopted to analyse time series, the box-
counting method sums adjacent data (places adjacent indi-
viduals into boxes) and investigates the effect of changing the
resolution (the size of a box) on the results. Figure 1 graph-
ically shows how the box-counting method works with time
series. Figure 1a shows how the number of boxes needed to
cover all the data (N ) changes when the box size changes
(resolution, δ). Figure 1b shows the log-linear relationship
between N and δ. The definition of the Hausdorff dimen-
sion D is

D =
log(N)

log(1/δ)
, (1)

where δ is the box size andN is the number of boxes (Evertsz
and Mandelbrot, 1992).

As stated before, the observed and simulated streamflow
series should have the same Hausdorff dimension. In this
study, a new criterion, the ratio of fractal dimensions (RD),
is defined as follows:

RD=
Ds

Do
, (2)

where Ds is the Hausdorff dimension of the simulated
streamflow series and Do is the Hausdorff dimension of the
observed streamflow series. RD ranges from 0 to+∞. When
RD= 1, the simulated streamflow series has the same Haus-
dorff dimension as the observed streamflow series, which
means that the model is the best in terms of fractals. The
relevant examination of model performance under the super-
vision of RD is yet to be studied.

Obviously, given that RD is a metric of the deviation of
the self-affinity of the simulated streamflow series from that
of the observed series, it cannot be used to evaluate the per-
formance of a hydrological model by itself. An immediate
thought is to combine RD with another statistical criterion
in model calibration. The statistical criterion to be combined
with RD should have three features. Firstly, the statistical cri-
terion should be able to evaluate model performance in terms
of the water balance to some extent. Secondly, the statistical
criterion should evaluate the response of the streamflow to
meteorological forcing. Thirdly, the criterion should calcu-
late model errors over the entire test period. These features
ensure that the basic requirements of the strategy are fulfilled.
An additional requirement for the statistical criterion used in
this study is that it is popular within the hydrological com-
munity. Therefore, in this study, E is used as the statistical
criterion. Another reason to use E is that hydrologists are
more familiar with the pros and cons of E than with those
of other metrics, and this original version is still commonly
used in hydrological model calibration even if some variants
of E have been raised. In this manner, we can obtain the ad-
vantages of RD as well as the benefits of multi-objective cal-
ibration based on RD.

The Nash–Sutcliffe efficiency coefficient (E), a criterion
that has been commonly used since it was initially proposed
(Nash and Sutcliffe, 1970), is calculated via

E = 1−
∑
(Qo−Qs)

2∑(
Qo−Qo

)2 , (3)

where Qs is the simulated flow, Qo is the observed flow and
Qo is the mean value of the observed flow.

In this work, a set of experiments are performed to illus-
trate the benefits of using the proposed E–RD strategy to
evaluate models. Descriptions of these experiments are in-
cluded in Sect. 3. Figure 2 presents the completeE–RD strat-
egy.

The value of the Hausdorff dimension of a particular time
series may vary with the resolution applied. This implies
that the self-affinity of the time series changes as the reso-
lution changes and, for hydrological processes, the dominant
driver of those processes changes. For example, the domi-
nant drivers of the daily and annual temperature cycles are
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Figure 1. Flow chart for the use of the box-counting method to calculate the Hausdorff dimension of a time series.

Figure 2. Flow chart of the E–RD strategy.

different. The Hausdorff dimension of a joint data series can
be used to verify the simulation of the freezing–thawing pro-
cess that reveals the complex relationship between the hy-
drological variables (Bai et al., 2019). According to this idea,
the Hausdorff dimension determines whether the streamflow
components are reasonably simulated. In the present study,
the largest temporal resolution is set to 365 d (1 year) in or-
der to eliminate interannual drivers. It is believed that the
resulting resolution range is large enough for the Hausdorff

dimension to accurately reflect the drivers of hydrological
processes.

2.2 Study area

A small catchment in Tibet named Dong, a medium-sized
catchment in southeastern China named Jinhua, and a large
catchment located in the middle reach of the Yangtze River
and named Xiang are examined in this study.
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Dong is a small tributary of the Yarlung Zangbo River,
with elevations ranging from 3512 to 5869 m. The area of
the Dong catchment is about 43.6 km2. The average annual
precipitation in this catchment during the study period was
413.5 mm. The average temperature was 10.6 ◦C. The high
elevation of the Dong catchment results in a cold climate.
A previous study found that snowpack and frozen soil sig-
nificantly affect hydrological processes in the Dong catch-
ment (Bai et al., 2019). The meteorological forcing data and
streamflow observations for the Dong catchment used in this
study date from 2011 to 2014.

Jinhua River is a 5536 km2 catchment in Zhejiang
Province, southeastern China. The study area is subject to
an Asian monsoon climate, and precipitation is strongly
summer dominant, occurring mostly from May to Septem-
ber. Based on 42 years of meteorological data (from 1965
to 2006), the mean annual precipitation in the Jinhua catch-
ment is 1847.4 mm and the average temperature is 17.6 ◦C.
Studies have shown that precipitation data and streamflow
data for the Jinhua catchment are well matched (Pan et al.,
2018). Meteorological forcing data and streamflow obser-
vations for the Jinhua catchment used in this study date
from 1965 to 2006.

Xiang River is one of the largest tributaries of the Yangtze
River, which flows into Dongting Lake, the second largest
freshwater lake in mid-China. The area of the Xiang catch-
ment is about 82 400 km2, and data from nine meteorological
stations are used in this study. Due to its subtropical mon-
soon climate, the mean annual rainfall of the basin ranges
from 1400 to 1700 mm and the average annual temperature
is around 17 ◦C. The basin experiences floods and droughts
frequently, and rainfall is distributed evenly throughout the
year, with most of it falling in April to June. According to
studies, precipitation is the main driver of the Xiang River
(Zhu et al., 2019). Meteorological forcing data and stream-
flow observations for the Xiang catchment used in this study
date from 1987 to 2013.

Figure 3 shows the topographies of all the study areas.

2.3 HBV model

The HBV model is a conceptual rainfall-runoff model origi-
nally developed by the Swedish Meteorological and Hydro-
logical Institute (SMHI) (Bergström, 1976; Bergström, 1992;
Lindström et al., 1997). This model has been successfully
used in many studies (Seibert and Vis, 2012; Tian et al.,
2015, 2016). The HBV model is composed of precipitation
and snow accumulation routines, a soil moisture routine, a
quick runoff routine, a baseflow routine and a transform func-
tion. The HBV model takes into account the effect of snow
melting and accumulation, which is significant in the Dong
catchment. The actual evapotranspiration is calculated with a
linear function. Two conceptual runoff reservoirs – the upper
reservoir and the lower reservoir – are included in the HBV
model.

2.4 Multi-objective genetic algorithm

A controlled and elitist genetic algorithm (a variant of
NSGA-II) (Deb, 2001) is applied in model calibration. A
controlled and elitist GA favours individuals with high fit-
ness values (ranks) as well as individuals that can help in-
crease the diversity of the population, even if they have low
fitness values. An important feature of this genetic algorithm
is that the individual with the best performance according to
any criterion is retained with the lowest rank. This ensures
that when using a multi-objective genetic algorithm, the pa-
rameter set with the best possible E is found and the sub-
sequent comparison between RD–E and E is reasonable. In
this study, |1−RD| is used as one of the criteria.

Since HBV has 14 parameters to calibrate, the number of
generations is 2800. Each generation has a population of 600.
The crossover fraction is set to 0.8 (average). The Pareto frac-
tion is set to 0.2 (average). The population migrates every
20 generations, and the migration fraction is set to 0.5. These
settings ensure that the population is not trapped in a local
optimum, which is important because RD has a wider range
than traditional criteria. Most of these settings are the default
settings applicable to most problems. Only the population of
each generation (600) is larger than the default (200) to better
represent the Pareto front of the optimization. The meanings
of the settings can be found in Deb (2001).

All 600 Pareto-optimized solutions for the last generation
are used in the following analysis. In GA optimization with
the E–RD calibration strategy (described in Sect. 2.1), pop-
ulations with a perfect RD (= 1) but an unsatisfactory E
are retained. Several representative selected parameter sets
and corresponding simulated streamflow series are studied in
depth.

2.5 Approach used for model evaluation

Several tools are utilized to investigate the effects of using
RD in hydrological model evaluation.

Pearson’s correlation coefficient (r2), the percentage bias
(bias), the autocorrelation of the observed data, the autocor-
relation of the simulated data, the relative variance, the max-
imum monthly flow and the minimum monthly flow are used
to comprehensively compare models based on RD and the
hydrological criterion E. The model with the best RD and
the model with the best E (typical models) are selected from
the last generation obtained in GA calibration for detailed
analysis.

To elucidate how the model is altered when RD is used as
one of the objectives, the relationships between the parame-
ters and RD are analysed. The distance correlation r2

d is used
to determine whether variations in the model parameters and
RD are related. The distance correlation, a multivariate mea-
sure of dependence, is calculated by determining the correla-
tions of distances between points with means. The distance
correlation is believed to provide better performance when
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Figure 3. Digital elevation models of the study areas.

solving problems involving nonlinear data or extreme values
(Székely et al., 2007). The relationships between the param-
eters and RD may not be linear, which makes it necessary to
use a nonlinear analysis approach rather than Pearson’s lin-
ear correlation coefficient. Distance correlation is also more
robust than rank correlation to data outliers.

To study the influences of specific parts of the hydrograph
on the simulation when using RD, the fast flow and baseflow
are analysed separately. The HBV model is slightly modi-
fied to output the simulated fast flow and baseflow at ev-
ery time step. Observed streamflow series are divided into
the fast flow and the baseflow using the Water Engineering
Time Series PROcessing tool (WETSPRO tool) introduced
by Willems (2009). WETSPRO separates the fast flow from
the slow flow using filter theory with several filter param-
eters, including the recession constant and the the average
ratio of the fast flow volume to the total flow volume. The
E and r2 of the simulated fast flow/baseflow with respect to
the observed fast flow/baseflow are calculated. Hydrographs
for the first 3 years after warming up are shown to visually
illustrate the influence of RD on fast flow and baseflow sim-
ulation.

3 Results and discussion

3.1 Overall evaluation of models on the Pareto front

Figure 4 shows the RD–E relationship of the last population
from multi-objective calibration for each of the three catch-
ments. The RD range of the final generation differs for the
three cases, as does the range of E/bias. The range of E is
0.60–0.69 for the Dong catchment, 0.95–0.953 for the Jin-
hua catchment and 0.818–0.822 for the Xiang catchment. In
all three cases, the nonsignificant variation ofE indicates that
for all selected parameter sets, the E criterion could not fully
distinguish the selected parameter sets. The ranges of RD are
about 0.72–1 (Dong), 0.86–1.04 (Jinhua) and 0.85–1.01 (Xi-
ang). According to relevant studies, the biggest difference
in Hausdorff dimension for data of the same type is smaller
than 0.25 (Hurst, 1951; Rubalcaba, 1997; Meseguer-Ruiz et
al., 2019), which indicates that the aforementioned ranges
of RD represent significant differences in simulated stream-
flow from the fractal perspective. In this study, RD is often
lower than 1 and sometimes slightly higher than 1, which
agrees with the smooth hydrograph and the simple structure
of the HBV model. Because a model with RD= 1 is best
from the fractal perspective (see Sect. 2.2), we should also
discuss models with RDs that are larger than 1. Since the
largest RD is very close to the best RD (= 1), the largest-RD
model should be similar to the best-RD model. The GA al-
gorithm discards most of the models with RD> 1 because

Hydrol. Earth Syst. Sci., 25, 3675–3690, 2021 https://doi.org/10.5194/hess-25-3675-2021



Z. Bai et al.: A new fractal-theory-based criterion for hydrological model calibration 3681

Table 1. Comparison of the best E values obtained with single-
objective calibration and multi-objective calibration (E–RD strat-
egy).

Single-objective Multi-objective
(E) (E)

Dong 0.696 0.690
Jinhua 0.951 0.953
Xiang 0.820 0.822

they are not on the Pareto front. The bias does not change
much when RD changes. A tiny difference (within 3 %) oc-
curs for the last generations from GA calibration for Dong,
Jinhua and Xiang. More importantly, the change in bias as a
function of RD is different for the three cases. For the Dong
catchment, the bias first worsens but then improves as RD ap-
proaches 1. On the other hand, the bias worsens for Jinhua
and improves for Xiang as RD approaches 1. Based on these
cases, the bias seems to vary randomly as a function of RD.
In addition, there is a break in the data for the Xiang catch-
ment in Fig. 4. The values of E are similar but the values of
RD are significantly different on both sides of the break.

A single-objective calibration was performed to support
an assumption made in Sect. 3.3: that, in this work, the
NSGA II algorithm can find the best E. A comparison be-
tween the results of single-objective calibration and the re-
sults of multi-objective calibration (E–RD strategy) is pro-
vided in Table 1. Also, to get rid of any possible influence
of the length of the time series, the results of multi-objective
calibration for different time-series lengths were compared.
The results showed that, at least in the cases examined in this
study, the E–RD strategy does not change its behaviour with
time-series length.

The models in the Pareto front with the best RD, best E
and largest RD values were selected as typical examples. Fig-
ure 5 shows the simulated streamflows of those three exam-
ples, as well as the observed streamflow, for each catchment.
For each case, the discharge within a 3 year period is shown.
The examples with the largest RD values were used to ver-
ify that the model with RD = 1 is the best. The simulated
hydrographs of the typical models in each case appear to be
similar, which agrees with the E and RD results shown in
Fig. 4.

A precondition for adopting the RD–E strategy is that the
correlation between the two criteria is irrelevant or weak.
This precondition can be verified by simply looking at their
calculation schemes or by examining the results of the multi-
objective calibration. In this study, the two metrics (RD
and E) are calculated in totally different ways, and the re-
sults of multi-objective calibration also show that signifi-
cantly changing RD leads to only a minor change in E (see
Fig. 4). The bestE is close to the worstE according to the re-
sults of multi-objective calibration. Figures 4 and 5 also im-

ply that pursuing a better RD leads to only a minor decrease
in E. This study demonstrates the equifinality of using only
E.

Table 2 lists hydrological signatures of typical models se-
lected by theE–RD calibration strategy. Table 2 confirms the
assumption that, in this study, directly analysing the models
calibrated using the E–RD calibration strategy is reasonable
and efficient. Hydrological signatures including the relative
variance, lag-1 autocorrelation, percentage bias and maxi-
mum/minimum monthly flow are used to show the effect of
RD.

Table 2 shows the hydrological signatures of the observed
and simulated flow series in the three cases. Most of the
hydrological signatures, including the lag-1 autocorrelation,
relative variation and maximum monthly flow, of the simu-
lated series are close. The lag-1 autocorrelations of the sim-
ulated series are similar to the autocorrelations of the ob-
served flow series. The lag-1 autocorrelations for the Dong
and Xiang flow series are more than 0.9 while those for the
Jinhua series are between 0.75 and 0.77. The relative vari-
ances of the flow series for the Dong and Xiang catchments
are smaller than 1, while those for the Jinhua flow series are
more than 1.8. These results show that catchments of differ-
ent types are well simulated by the HBV model. The maxi-
mum and minimum monthly flows of the simulated and ob-
served series are significantly different. In all three cases, the
maximum monthly flows of the simulated series are similar
to each other and slightly smaller than the maximum monthly
flows of the observed flow series. The minimum monthly
flow is the only hydrological signature used in this study that
identifies the models with the best RD and the best E. In
all three cases, the minimum monthly flow of the simulated
series with the best E is significantly smaller than the mini-
mum monthly flow of the observed series. On the other hand,
the minimum monthly flow of the simulated series with the
best RD is close to the minimum monthly flow of the ob-
served series for Jinhua and Xiang. The minimum monthly
flow of the simulated series with the largest RD is worse than
that of the simulated series with the best RD. The high-flow
percentiles (Q5) and the low-flow percentiles (Q75) are rea-
sonable for all the typical models in all three cases. How-
ever, the high-flow percentiles and low-flow percentiles of
the best-RD models are still closest to those of the observed
series. In summary, the hydrological signatures illustrate that
RD has the greatest effect on the simulation of low flow
by the models. Therefore, in subsequent sections, low-flow-
related analysis is emphasized.

3.2 Effect of RD on model parameters

The parameter set in the Pareto front varies depending on
the case considered. The distance correlations (r2

d ) of the pa-
rameters with RD are used to determine whether a change of
parameters is stable. In addition, a high value of r2

d indicates
a significant relationship between the Hausdorff dimension
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Figure 4. E–RD plots for the last generation from GA calibration.

Figure 5. Typical examples of models: those with the best RD, the best E and the largest RD (representative 3 year hydrographs are shown).

and the parameter considered. In this study, the relation be-
tween GA-selected parameter sets and E is not shown be-
cause E and RD are strongly related in the Pareto front and
the variance of E is small (see Fig. 4).

Table 3 lists the determinative parameters for the three
cases. The distance correlation (r2

d ) is used to illustrate the
nonlinear relationship between E and RD in the Pareto
fronts. The effective precipitation exponent (β) and the
degree-day factor are also listed in Table 3. The effective pre-
cipitation exponent is listed in Table 3 for two reasons. First,
the r2

d of β is 0.709 for Jinhua and 0.739 for Xiang, which are
better than the r2

d values of all the unlisted parameters. Sec-
ond, β is a runoff-generation-related parameter, as are the de-
terminative parameters α, KF and KS. The degree-day factor
is listed in Table 3 for two reasons. First, the distance corre-
lation between the degree-day factor and RD is close to 0.8

for Xiang. Second, for Dong, distance correlation analysis
does not reflect the significance of snow ablation to the hy-
drograph. Capillary transport is not a determinative param-
eter of RD for Dong and Jinhua, so they are not discussed
further here. The r2

d of β (0.512) in the Dong catchment is
smaller than those for the other two cases. Figure 6 shows
the relationship between β and RD.

The explicit relationship between the parameters and the
criteria confirms that the effect of RD is not random. Six pa-
rameters (β, α, fast flow factor, baseflow factor, percolation
and degree-day factor) were selected for further discussion
based on the distance correlation analysis.

Figure 7 shows the relationship between α and RD. The
fast flow factor (KF) is related to RD in all cases. Figure 8
shows the relationship between KF and RD. The trends in α
and KF are the same in all three cases. The fast flow expo-
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Table 2. Hydrological signatures of the typical models in all three cases.

Observation Best RD Best E Largest RD

Auto- Dong 0.97 0.99 1.00 1.00
correlation Jinhua 0.76 0.76 0.76 0.75

Xiang 0.94 0.95 0.94 0.94

Relative Dong 0.53 0.56 0.58 0.57
variance Jinhua 1.87 1.87 1.87 1.89

Xiang 0.99 0.82 0.92 0.92

Maximum Dong 1.54 1.40 1.42 1.39
monthly flow Jinhua 531.19 497.40 503.68 496.77
(m3 s−1) Xiang 4210.01 3956.24 4027.68 4042.94

Minimum Dong 0.44 0.30 0.27 0.26
monthly flow Jinhua 60.64 58.85 50.45 60.19
(m3 s−1) Xiang 961.00 975.07 812.02 840.02

High-flow Dong 1.93 1.44 1.49 1.38
percentiles Jinhua 752.00 745.02 734.12 740.28
(Q5) (m3 s−1) Xiang 6048.50 5817.06 5586.92 5817.08

Low-flow Dong 0.50 0.39 0.40 0.38
percentiles Jinhua 37.77 38.55 37.80 37.31
(Q75) (m3 s−1) Xiang 803.75 790.95 845.76 744.52

Table 3. Ranges of the determinative parameters and distance correlations (r2
d ) between those parameters and RD. ∗ r2

d ≥ 0.8.

r2
d (range of parameter)

Dong Jinhua Xiang

Effective precipitation exponent (β) (mm mm−1) 0.363 (0.010–0.012) 0.709 (0.791–0.911) 0.739 (0.435-0.499)
Fast flow exponent (α) 0.383 (0.100–0.124) 0.808∗ (0.473–0.579) 0.734 (0.677–0.819)
Fast flow factor (KF) 0.853∗ (0.002–0.005) 0.812∗ (0.031–0.056) 0.823∗ (0.003–0.006)
Baseflow factor (KS) 0.932∗ (0.016–0.153) 0.922∗ (0.005–0.063) 0.950∗ (0.010–0.048)
Percolation (mm d−1) 0.879∗ (1.37–7.00) 0.841∗ (1.10–2.34) 0.959∗ (1.62–3.16)
Capillary transport (mm d−1) 0.122 (0–0.035) 0.084 (3.84–4.00) 0.914∗ (1.91–2.70)
Degree-day factor (mm d−1 ◦C−1) 0.117 (0.01–12.2) 0.171 (14.5–15.6) 0.791∗ (2.80–4.20)

nent α increases as RD approaches 1 and KF decreases as
RD approaches 1.

Figure 9 shows how the fast flow changes with the surface
water storage with different KF and α values in the typical
models with the best RD and best E. In all cases, E selects
higher KF and lower α values. For Dong, the relative differ-
ence in fast flow generation between the best-RD model and
the best-E model is always around 36 %. The difference in
fast flow between these two models is significant for Dong
across the whole simulated period. For Jinhua, the relative
difference between the best-RD model and the best-E model
decreases from more than 20 % to less than 5 %. For Xiang,
the relative difference between the best-RD model and the
best-E model decreases from about 16 % to 8 %. The dif-
ference between the best-RD model and the best-E model
is substantial during the dry period but reduces as the wa-

ter stored in the upper reservoir increases (the wet period).
The relative difference is greater for Jinhua than for Xiang
during low-flow periods but smaller for Jinhua during high-
flow periods. That difference between the best-E model and
the best-RD model ultimately leads to more variation in fast
flow during low-flow periods than during high-flow periods.
There are break points in the case of Xiang (Figs. 6–8), but
there are no evident effects in Figs. 5 and 9.

The baseflow (slow flow) factor (KS) is related to RD
in all cases. Figure 10 shows the relationship between KS
and RD. The trend in KS is the same in all three cases. How-
ever, the range of variation in KS is different for the three
cases. The largest value of KS in Dong (0.153) is much larger
than that in Jinhua (0.063) and Xiang (0.048). The smallest
value of KS in Dong (0.016) is also larger than that in Jin-
hua (0.005) and in Xiang (0.010). The KS of the best E in-
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Figure 6. Relationship between β and RD in the three cases.

Figure 7. Relationship between α and RD in the three cases.

creases with increasing catchment areas. This agrees with the
regular pattern that the generation time of slow flow is highly
related to the area of the catchment.

The percolation is significantly related to RD in all cases.
The range of percolation in Dong is larger than in the other
cases. Figure 11 shows the relationship between percolation
and RD in each of the three cases. Percolation increases in
Dong and decreases in the other two cases with increasing
RD. The KS and percolation determine the way that HBV
models the baseflow. The percolation in Dong is larger than
in the other cases, which is a reflection of the arid climate of
the Dong catchment. The percolation is larger in Jinhua than
in Xiang because the slope in the Jinhua catchment is larger.

The degree-day factor is significantly related to RD in Xi-
ang. However, the relationship between the degree-day fac-
tor and RD is weak in Dong and Jinhua. Figure 12 shows the
relationship between the degree-day factor and RD in each
catchment. The degree-day factor is smaller than 0.05 for
most of the models selected for Dong, indicating that these
models barely have any snowmelt runoff. When RD> 0.9,
several models have degree-day factors larger than 7. When
RD is around 1, the range of the degree-day factor is 8.18–
11.76, indicating that RD somehow detects the snowmelt
runoff in the hydrograph and causes the HBV model to simu-
late the snowmelt runoff more reasonably. Note that the RD-
selected degree-day factor for Dong is too large according
to the HBV guide (the user manual for HBV light version 2

suggests that the factor should be 1.5–4 mm d−1 in Sweden).
This may be due to the lumped model structure of HBV,
which is unsuitable for a rugged mountainous catchment.

The degree-day factors in all the models selected for Jin-
hua are large, but the temperature in Jinhua is too high for
snow to accumulate. The distance correlation between the
degree-day factor and RD is weak for Dong and Jinhua. The
range of the degree-day factor for most of the models for Xi-
ang is 2.8–3.4. This range is small, meaning that the differ-
ence in snowmelt runoff between the selected models is too.
Upon checking the temperature series for the Xiang catch-
ment, we found that there were 61 d when the average tem-
perature was below 0 ◦C in 27 years. However, because the
Xiang catchment is large, there are snow events somewhere
in the catchment almost every year. Those low temperatures
may be obscured by averaging, but the E–RD strategy cap-
tured them and reflected them in the notable value of the
degree-day factor.

As illustrated in Figs. 7, 8, and 10, the three runoff-
generation-routine parameters, namely the baseflow fac-
tor (KS), the fast flow factor (KF) and the fast flow expo-
nent (α), have the same trends in all three cases, suggesting
a consistent advantage of using RD. Figure 9 visualizes the
difference in fast flow caused by introducing RD. However,
other parameters show different trends with RD because the
catchments have different features (Figs. 6 and 12). For ex-
ample, the soil parameter β redistributes the precipitation and
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Figure 8. Relationship between KF and RD in the three cases.

Figure 9. Response of fast flow to surface water storage. For each case, the fast flow responses of the typical models with the best RD and E
are presented.

Table 4. Parameters of WETSPRO.

Parameter Dong Jinhua Xiang

Recession constant (days) 90 80 90
w-Parameter filter 0.14 0.43 0.38

divides it into effective precipitation and infiltration. β in-
creases in Dong and Xiang but decreases in Jinhua as RD im-
proves.

3.3 Analysis of the separated streamflows

Separating both the simulated and the observed streamflow
series further reveals how RD influences the model calibra-
tion results. The simulated total flow was separated with the
WETSPRO tool to ensure that the same separation princi-

ple was used for the simulations and observations. Table 4
lists the parameters of WETSPRO for the three cases. The
recession constants for the three cases are similar to each
other. However, the w-parameter filter, which represents the
case-specific average fraction of the quick flow volume with
respect to the total flow volume, differs depending on the
case considered. The w-parameter filter of the Dong catch-
ment is 0.14, which is smaller than those for the other catch-
ments, meaning that the baseflow contributes less of the total
flow in Dong, reflecting the small area and high slope of this
catchment. Figure 13 shows the variation in the correlation
coefficient between the simulated and observed fast flow or
baseflow (r2

f and r2
b , respectively) with RD and the variation

in the Nash–Sutcliffe efficiency coefficient for fast flow or
baseflow (Ef and Eb, respectively) with RD for the complete
population of the last generation in each case. The observed
fast flow and baseflow were separated from the observed total
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Figure 10. Relationship between KS and RD in the three cases.

Figure 11. Relationship between percolation and RD in the three cases.

Figure 12. Relationship between degree-day factor and RD in the three cases.

flow using WETSPRO (Willems, 2009) (see Sect. 3.4). For
Dong, both r2

b and r2
f decrease slightly as RD approaches 1.

However, r2
f ranges from 0.02 to 0.15 and r2

b ranges from
about 0.3 to 0.6 for Dong, which means that there is no cor-
relation between the simulated and observed fast flow or be-
tween the simulated and observed baseflow. Also for Dong,
Ef andEb improve to 0.06 and 0.24, respectively. All models
of the last generation of GA for Jinhua and Xiang simulate
the fast flow well. r2

f and Ef are above 0.95 and 0.94, re-
spectively, for Jinhua. For Xiang, r2

f and Ef are above 0.78
and 0.70, respectively. Surprisingly, the application of RD
causes an evident improvement in fast flow simulation. There
is also a major improvement in baseflow simulation perfor-
mance. The values of the criteria for baseflow simulation (r2

b
andEb) are improved from poor to satisfactory. In the case of

Jinhua, r2
b improves from less than 0.1 to more than 0.45 and

Eb improves from−10 to about 0.38. For Xiang, r2
b improves

from about 0.4 to 0.75 and Eb improves from −6 to 0.51.
Figures 14 and 15 show the separated streamflows of typ-

ical models and the separated observed streamflow, allowing
a visual comparison of models based on E and models based
on RD. Figure 14 shows the fast flow and Fig. 15 shows the
baseflow.

The fast flow response of the best-RD model in Dong
matches well with the observed fast flow. The recession of
the fast flow in the best-RD model for Dong is too fast and
the stable value is nearly zero, which contrasts with observa-
tions. The fast flow response of the best-E model for Dong
is late, the recession of the fast flow is too slow, and there is
too much fast flow during recession periods. The fast flow re-
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Figure 13. Correlation coefficients and Nash–Sutcliffe efficiency coefficients for fast flow and baseflow, respectively, in last-generation
models for the three cases.

Figure 14. Fast flow in typical models and observations (representative 3 year hydrographs are shown).

sponse of the largest-RD model for Dong is also late, but the
fast flow recession is more reasonable. For Jinhua and Xiang,
the simulated fast flows of all typical models closely match
the corresponding observations. In all cases, the fast flow of
the best-RD model is smaller than that of best-E model and
the difference is greatest during low-flow periods, which is
consistent with Fig. 9.

In all three cases, the best-RD models simulate the base-
flow well. RD-selected models accurately simulate the sea-
sonal flow variations in the three catchments. The ampli-

tude of the baseflow fluctuation is close to that seen in the
observed baseflow separated by WETSPRO. The discharge
also fits with the observed baseflow well. However, in all
three cases, the best-E models do not simulate the baseflow
well enough. The largest-RD model varies in performance
depending on the case considered. The largest-RD model for
Dong (with r2

b = 0.82 and Eb = 0.25) is not satisfactory. In
contrast, the r2

b andEb of the best-E model for Dong are 0.87
and 0.79, respectively. The best-E models for Jinhua and Xi-
ang are, however, similar to the best-RD models for those
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Figure 15. Baseflow in typical models and observations (representative 3 year hydrographs are shown).

catchments. According to Figs. 10 and 11, the small KS and
percolation values in the best-RD models for Jinhua and Xi-
ang lead to small recharge and outflow (baseflow) values for
the lower reservoir and smaller fluctuations in the baseflow.
In Dong, high percolation increases the recharge and total
baseflow, and the small KS lengthens the baseflow recession
period, making the simulated baseflow more consistent with
observations (Fig. 15).

There are two reasons for the unsatisfactory simulation of
the fast flow in Dong. The first is that the HBV model is not
capable of accurately simulating a mountainous catchment
with snowpack, and gauge data for the Dong catchment are
scarce. The second is that WETSPRO may have failed to cor-
rectly separate the short streamflow series of the Dong catch-
ment. This needs to be further verified.

Further visual demonstrations of the advantage of us-
ing RD are provided by Figs. 14 and 15. Fast-flow generation
based on RD is more immediate, whereas baseflow genera-
tion based on RD is smoother. Both of these are clearly better
than the flows generated when RD is not taken into account.

The above results reveal the benefits of using RD and
a slight decrease in E. The following selection principle
based on multi-objective calibration is therefore suggested:
(1) sieve out all parameter sets for which the RD is around 1
(in this case, considering the data precision of MATLAB,
RD= 1) and (2) choose the remaining parameter set with
the best E. Applying the E–RD strategy using this selection
principle is found to improve the reliability of streamflow
component simulation. That is, RD selects the responsive fast
flow (as confirmed by Fig. 14) and the smooth baseflow (as
confirmed by Fig. 15) in all cases.

4 Conclusion

This study aimed to examine the possibility of using fractal
theory to improve the performance of hydrological models.
The ratio of fractal dimensions (RD) was defined and pro-
posed as a fractal criterion (rather than traditional statistical
criteria). A scheme that used a combination of RD and the
Nash–Sutcliffe efficiency coefficient (E) to calibrate hydro-
logical models was developed and examined. Three study
cases relating to the Dong, Jinhua and Xiang catchments
were included in the examination. This is the first time (to
the best of our knowledge) that fractal theory has been ap-
plied to calibrate hydrological models.

The main conclusions of this study are as follows:

1. The trends in the runoff generation routine parameters
(namely the fast flow factor, fast flow exponent and
baseflow factor) were similar in all three cases studied.

2. Several parameters were found to be related to RD.
For instance, the E–RD strategy selected relatively high
degree-day factors for Dong, which did not occur when
only E was considered.

3. The E–RD calibration strategy is an innovative ap-
proach to hydrological modelling; it potentially pro-
vides a way to take the fractality of an observed stream-
flow series into consideration in model calibration.
Since fractals (also termed self-affinity) widely exist in
nature, the introduction of RD as a criterion could be a
good addition to hydrological model calibration.

More case studies are needed to further corroborate the ap-
plicability of the E–RD strategy introduced in this study.
The combination of other traditional statistical criteria with
RD should also be examined. More studies are also needed
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to identify other benefits of applying fractal theory in hydro-
logical modelling.
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