Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies
Mostafa Tarek
CORRESPONDING AUTHOR
Hydrology, Climate and Climate Change Laboratory, École de technologie supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
Department of Civil Engineering, Military Technical College, Cairo, Egypt
François Brissette
Hydrology, Climate and Climate Change Laboratory, École de technologie supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
Richard Arsenault
Hydrology, Climate and Climate Change Laboratory, École de technologie supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
Related authors
Mostafa Tarek, François P. Brissette, and Richard Arsenault
Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, https://doi.org/10.5194/hess-24-2527-2020, 2020
Short summary
Short summary
The ERA5 reanalysis dataset is characterized by its high spatial (0.25) and temporal (hourly) resolutions and has therefore a large potential to drive environmental models in regions where the network of stations is deficient. ERA5 performance is evaluated on 3138 North American catchments. Results indicate that for hydrological modelling, ERA5 precipitation and temperature are just as good as observation all over North America, with the exception of the eastern half of the US.
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134, https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Short summary
This study explores six methods to improve the ability of Long Short-Term Memory (LSTM) neural networks to predict peak streamflows, crucial for flood analysis. By enhancing data inputs and model techniques, the research shows LSTM models can match or surpass traditional hydrological models in simulating peak flows. Tested on 88 catchments in Quebec, Canada, these methods offer promising strategies for better flood prediction.
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2133, https://doi.org/10.5194/egusphere-2024-2133, 2024
Short summary
Short summary
This study compares Long Short-Term Memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrolgical models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
Mehrad Rahimpour Asenjan, Francois Brissette, Richard Arsenault, and Jean-Luc Martel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1183, https://doi.org/10.5194/egusphere-2024-1183, 2024
Preprint archived
Short summary
Short summary
Our study examines how combining climate models impacts future streamflow predictions, crucial for understanding climate change. Comparing six methods across 3,107 North American catchments, we found unequal weighting significantly improves rainfall and temperature projections. However, for streamflow, both equal and unequal weighting perform similarly with bias correction. Our findings underscore the need to carefully select weighting methods and correct biases for accurate climate projections.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Mostafa Tarek, François P. Brissette, and Richard Arsenault
Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, https://doi.org/10.5194/hess-24-2527-2020, 2020
Short summary
Short summary
The ERA5 reanalysis dataset is characterized by its high spatial (0.25) and temporal (hourly) resolutions and has therefore a large potential to drive environmental models in regions where the network of stations is deficient. ERA5 performance is evaluated on 3138 North American catchments. Results indicate that for hydrological modelling, ERA5 precipitation and temperature are just as good as observation all over North America, with the exception of the eastern half of the US.
Richard Arsenault and Pascal Côté
Hydrol. Earth Syst. Sci., 23, 2735–2750, https://doi.org/10.5194/hess-23-2735-2019, https://doi.org/10.5194/hess-23-2735-2019, 2019
Short summary
Short summary
Hydrological forecasting allows hydropower system operators to make the most efficient use of the available water as possible. Accordingly, hydrologists have been aiming at improving the quality of these forecasts. This work looks at the impacts of improving systematic errors in a forecasting scheme on the hydropower generation using a few decision-aiding tools that are used operationally by hydropower utilities. We find that the impacts differ according to the hydropower system characteristics.
Pierre Brigode, François Brissette, Antoine Nicault, Luc Perreault, Anna Kuentz, Thibault Mathevet, and Joël Gailhard
Clim. Past, 12, 1785–1804, https://doi.org/10.5194/cp-12-1785-2016, https://doi.org/10.5194/cp-12-1785-2016, 2016
Short summary
Short summary
In this paper, we apply a new hydro-climatic reconstruction method on the Caniapiscau Reservoir (Canada), compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment, and study the natural streamflow variability over the 1881–2011 period. This new reconstruction is based on a historical reanalysis of global geopotential height fields and aims to produce daily streamflow time series (using a rainfall–runoff model).
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Daytime-only mean data enhance understanding of land–atmosphere coupling
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products
Uncertainties and their interaction in flood hazard assessment with climate change
Bias-correcting input variables enhances forecasting of reference crop evapotranspiration
At which timescale does the complementary principle perform best in evaporation estimation?
Uncertainty in nonstationary frequency analysis of South Korea's daily rainfall peak over threshold excesses associated with covariates
Assessment of extreme flows and uncertainty under climate change: disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability
The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden
A new uncertainty estimation approach with multiple datasets and implementation for various precipitation products
A crash-testing framework for predictive uncertainty assessment when forecasting high flows in an extrapolation context
Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality
Response of global evaporation to major climate modes in historical and future Coupled Model Intercomparison Project Phase 5 simulations
Cross-validating precipitation datasets in the Indus River basin
Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics
Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network
Influence of three phases of El Niño–Southern Oscillation on daily precipitation regimes in China
Dual-polarized quantitative precipitation estimation as a function of range
Reconstruction of droughts in India using multiple land-surface models (1951–2015)
Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system
Exploratory studies into seasonal flow forecasting potential for large lakes
Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China
Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate
Providing a non-deterministic representation of spatial variability of precipitation in the Everest region
Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
Characteristics of rainfall events in regional climate model simulations for the Czech Republic
The rainfall erosivity factor in the Czech Republic and its uncertainty
Hierarchy of climate and hydrological uncertainties in transient low-flow projections
Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game
Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India
Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands
Uncertainties in calculating precipitation climatology in East Asia
Measurement and interpolation uncertainties in rainfall maps from cellular communication networks
Characterization of precipitation product errors across the United States using multiplicative triple collocation
Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework
Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties
Multi-objective parameter optimization of common land model using adaptive surrogate modeling
Testing gridded land precipitation data and precipitation and runoff reanalyses (1982–2010) between 45° S and 45° N with normalised difference vegetation index data
Evaluation of high-resolution precipitation analyses using a dense station network
Prediction of extreme floods based on CMIP5 climate models: a case study in the Beijiang River basin, South China
Estimating the water needed to end the drought or reduce the drought severity in the Carpathian region
Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison
Comparison of drought indicators derived from multiple data sets over Africa
The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023, https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Short summary
The present study refers to the region of Bologna, where the availability of a 209-year-long daily rainfall series allows us to make a unique assessment of global climate models' reliability and their predicted changes in rainfall and multiyear droughts. Our results suggest carefully considering the impact of uncertainty when designing climate change adaptation policies for droughts. Rigorous use and comprehensive interpretation of the available information are needed to avoid mismanagement.
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023, https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Short summary
Land–atmosphere (L–A) interactions typically focus on daytime processes connecting the land state with the overlying atmospheric boundary layer. However, much prior L–A work used monthly or daily means due to the lack of daytime-only data products. Here we show that monthly smoothing can significantly obscure the L–A coupling signal, and including nighttime information can mute or mask the daytime processes of interest. We propose diagnosing L–A coupling within models or archiving subdaily data.
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022, https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Short summary
Precipitation forecasting has potential uncertainty due to data and model uncertainties. Here, an integrated predictive uncertainty modeling framework is proposed by jointly considering data and model uncertainties through an uncertainty propagation theorem. The results indicate an effective predictive uncertainty estimation for precipitation forecasting, indicating the great potential for uncertainty quantification of numerous predictive applications.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022, https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Short summary
The performance of the non-dominated sorting genetic algorithm II (NSGA-II) is compared with a conventional post-processing method of affine kernel dressing. NSGA-II showed its superiority in improving the forecast skill and communicating trade-offs with end-users. It allows the enhancement of the forecast quality since it allows for setting multiple specific objectives from scratch. This flexibility should be considered as a reason to implement hydrologic ensemble prediction systems (H-EPSs).
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022, https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Short summary
We investigated how a precipitation post-processor interacts with other tools for uncertainty quantification in a hydrometeorological forecasting chain. Four systems were implemented to generate 7 d ensemble streamflow forecasts, which vary from partial to total uncertainty estimation. Overall analysis showed that post-processing and initial condition estimation ensure the most skill improvements, in some cases even better than a system that considers all sources of uncertainty.
Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani
Hydrol. Earth Syst. Sci., 26, 167–181, https://doi.org/10.5194/hess-26-167-2022, https://doi.org/10.5194/hess-26-167-2022, 2022
Short summary
Short summary
The development of high-resolution global precipitation forecasts and the lack of reliable precipitation forecasts over Africa motivates this work to evaluate the precipitation forecasts from the Global Forecast System (GFS) over the Niger river basin in Africa. The GFS forecasts, at a 15 d accumulation timescale, have an acceptable performance; however, the forecasts are highly biased. It is recommended to apply bias correction to GFS forecasts before their application.
Hadush Meresa, Conor Murphy, Rowan Fealy, and Saeed Golian
Hydrol. Earth Syst. Sci., 25, 5237–5257, https://doi.org/10.5194/hess-25-5237-2021, https://doi.org/10.5194/hess-25-5237-2021, 2021
Short summary
Short summary
The assessment of future impacts of climate change is associated with a cascade of uncertainty linked to the modelling chain employed in assessing local-scale changes. Understanding and quantifying this cascade is essential for developing effective adaptation actions. We find that not only do the contributions of different sources of uncertainty vary by catchment, but that the dominant sources of uncertainty can be very different on a catchment-by-catchment basis.
Qichun Yang, Quan J. Wang, Kirsti Hakala, and Yating Tang
Hydrol. Earth Syst. Sci., 25, 4773–4788, https://doi.org/10.5194/hess-25-4773-2021, https://doi.org/10.5194/hess-25-4773-2021, 2021
Short summary
Short summary
Forecasts of water losses from land surface to the air are highly valuable for water resource management and planning. In this study, we aim to fill a critical knowledge gap in the forecasting of evaporative water loss. Model experiments across Australia clearly suggest the necessity of correcting errors in input variables for more reliable water loss forecasting. We anticipate that the strategy developed in our work will benefit future water loss forecasting and lead to more skillful forecasts.
Liming Wang, Songjun Han, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 25, 375–386, https://doi.org/10.5194/hess-25-375-2021, https://doi.org/10.5194/hess-25-375-2021, 2021
Short summary
Short summary
It remains unclear at which timescale the complementary principle performs best in estimating evaporation. In this study, evaporation estimation was assessed over 88 eddy covariance monitoring sites at multiple timescales. The results indicate that the generalized complementary functions perform best in estimating evaporation at the monthly scale. This study provides a reference for choosing a suitable time step for evaporation estimations in relevant studies.
Okjeong Lee, Jeonghyeon Choi, Jeongeun Won, and Sangdan Kim
Hydrol. Earth Syst. Sci., 24, 5077–5093, https://doi.org/10.5194/hess-24-5077-2020, https://doi.org/10.5194/hess-24-5077-2020, 2020
Short summary
Short summary
The uncertainty of the model interpreting rainfall extremes with temperature is analyzed. The performance of the model focuses on the reliability of the output. It has been found that the selection of temperatures suitable for extreme levels plays an important role in improving model reliability. Based on this, a methodology is proposed to quantify the degree of uncertainty inherent in the change in rainfall extremes due to global warming.
Chao Gao, Martijn J. Booij, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 24, 3251–3269, https://doi.org/10.5194/hess-24-3251-2020, https://doi.org/10.5194/hess-24-3251-2020, 2020
Short summary
Short summary
This paper studies the impact of climate change on high and low flows and quantifies the contribution of uncertainty sources from representative concentration pathways (RCPs), global climate models (GCMs) and internal climate variability in extreme flows. Internal climate variability was reflected in a stochastic rainfall model. The results show the importance of internal climate variability and GCM uncertainty in high flows and GCM and RCP uncertainty in low flows especially for the far future.
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Short summary
A multinational assessment of radar's ability to capture heavy rain events is conducted. In total, six different radar products in Denmark, the Netherlands, Finland and Sweden were considered. Results show a fair agreement, with radar underestimating by 17 %-44 % on average compared with gauges. Despite being adjusted for bias, five of six radar products still exhibited strong conditional biases with intensities of 1–2% per mm/h. Median peak intensity bias was significantly higher, reaching 44 %–67%.
Xudong Zhou, Jan Polcher, Tao Yang, and Ching-Sheng Huang
Hydrol. Earth Syst. Sci., 24, 2061–2081, https://doi.org/10.5194/hess-24-2061-2020, https://doi.org/10.5194/hess-24-2061-2020, 2020
Short summary
Short summary
This article proposes a new estimation approach for assessing the uncertainty with multiple datasets by fully considering all variations in temporal and spatial dimensions. Comparisons demonstrate that classical metrics may underestimate the uncertainties among datasets due to an averaging process in their algorithms. This new approach is particularly suitable for overall assessment of multiple climatic products, but can be easily applied to other spatiotemporal products in related fields.
Lionel Berthet, François Bourgin, Charles Perrin, Julie Viatgé, Renaud Marty, and Olivier Piotte
Hydrol. Earth Syst. Sci., 24, 2017–2041, https://doi.org/10.5194/hess-24-2017-2020, https://doi.org/10.5194/hess-24-2017-2020, 2020
Short summary
Short summary
An increasing number of flood forecasting services assess and communicate the uncertainty associated with their forecasts. We present a crash-testing framework that evaluates the quality of hydrological forecasts in an extrapolation context. Overall, the results highlight the challenge of uncertainty quantification when forecasting high flows. They show a significant drop in reliability when forecasting high flows and considerable variability among catchments and across lead times.
Shaoning Lv, Bernd Schalge, Pablo Saavedra Garfias, and Clemens Simmer
Hydrol. Earth Syst. Sci., 24, 1957–1973, https://doi.org/10.5194/hess-24-1957-2020, https://doi.org/10.5194/hess-24-1957-2020, 2020
Short summary
Short summary
Passive remote sensing of soil moisture has good potential to improve weather forecasting via data assimilation in theory. We use the virtual reality data set (VR01) to infer the impact of sampling density on soil moisture ground cal/val activity. It shows how the sampling error is growing with an increasing sampling distance for a SMOS–SMAP scale footprint in about 40 km, 9 km, and 3 km. The conclusion will help in understanding the passive remote sensing soil moisture products.
Thanh Le and Deg-Hyo Bae
Hydrol. Earth Syst. Sci., 24, 1131–1143, https://doi.org/10.5194/hess-24-1131-2020, https://doi.org/10.5194/hess-24-1131-2020, 2020
Short summary
Short summary
Here we investigate the response of global evaporation to main climate modes, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). Our results indicate that ENSO is an important driver of evaporation for many regions, while the impacts of NAO and IOD are substantial. This study allows us to obtain insight about the predictability of evaporation and, hence, may help to improve the early-warning systems of climate extremes.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Hydrol. Earth Syst. Sci., 24, 427–450, https://doi.org/10.5194/hess-24-427-2020, https://doi.org/10.5194/hess-24-427-2020, 2020
Short summary
Short summary
The amount of precipitation falling in the Indus River basin remains uncertain while its variability impacts 100 million inhabitants. A comparison of datasets from diverse sources (ground remote observations, model outputs) reduces this uncertainty significantly. Grounded observations offer the most reliable long-term variability but with important underestimation in winter over the mountains. By contrast, recent model outputs offer better estimations of total amount and short-term variability.
Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung
Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, https://doi.org/10.5194/hess-23-4803-2019, 2019
Short summary
Short summary
This study evaluated the performance of 36 CMIP5 GCMs in simulating seasonal precipitation and maximum and minimum temperature over Pakistan using spatial metrics (SPAtial EFficiency, fractions skill score, Goodman–Kruskal's lambda, Cramer's V, Mapcurves, and Kling–Gupta efficiency) for the period 1961–2005. NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 were identified as the most suitable GCMs for simulating all three climate variables over Pakistan.
Sungmin O and Ulrich Foelsche
Hydrol. Earth Syst. Sci., 23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, https://doi.org/10.5194/hess-23-2863-2019, 2019
Short summary
Short summary
We analyze heavy local rainfall to address questions regarding the spatial uncertainty due to the approximation of areal rainfall using point measurements. Ten years of rainfall data from a dense network of 150 rain gauges in southeastern Austria are employed, which permits robust examination of small-scale rainfall at various horizontal resolutions. Quantitative uncertainty information from the study can guide both data users and producers to estimate uncertainty in their own rainfall dataset.
Aifeng Lv, Bo Qu, Shaofeng Jia, and Wenbin Zhu
Hydrol. Earth Syst. Sci., 23, 883–896, https://doi.org/10.5194/hess-23-883-2019, https://doi.org/10.5194/hess-23-883-2019, 2019
Short summary
Short summary
ENSO-related changes in daily precipitation regimes are currently ignored by the scientific community. We analyzed the anomalies of daily precipitation and hydrological extremes caused by different phases of ENSO events, as well as the possible driving mechanisms, to reveal the influence of ENSO on China's daily precipitation regimes. Our results provide a valuable tool for daily precipitation prediction and enable the prioritization of adaptation efforts ahead of extreme events in China.
Micheal J. Simpson and Neil I. Fox
Hydrol. Earth Syst. Sci., 22, 3375–3389, https://doi.org/10.5194/hess-22-3375-2018, https://doi.org/10.5194/hess-22-3375-2018, 2018
Short summary
Short summary
Many researchers have expressed that one of the main difficulties in modeling watershed hydrology is that of obtaining continuous, widespread weather input data, especially precipitation. The overarching objective of this study was to provide a comprehensive study of three weather radars as a function of range. We found that radar-estimated precipitation was best at ranges between 100 and 150 km from the radar, with different radar parameters being superior at varying distances from the radar.
Vimal Mishra, Reepal Shah, Syed Azhar, Harsh Shah, Parth Modi, and Rohini Kumar
Hydrol. Earth Syst. Sci., 22, 2269–2284, https://doi.org/10.5194/hess-22-2269-2018, https://doi.org/10.5194/hess-22-2269-2018, 2018
Sanjib Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, and Alfonso Mejia
Hydrol. Earth Syst. Sci., 22, 1831–1849, https://doi.org/10.5194/hess-22-1831-2018, https://doi.org/10.5194/hess-22-1831-2018, 2018
Short summary
Short summary
We investigate the relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1–7). For this purpose, we develop and implement a regional hydrologic ensemble prediction system (RHEPS). Overall analysis shows that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.
Kevin Sene, Wlodek Tych, and Keith Beven
Hydrol. Earth Syst. Sci., 22, 127–141, https://doi.org/10.5194/hess-22-127-2018, https://doi.org/10.5194/hess-22-127-2018, 2018
Short summary
Short summary
The theme of the paper is exploration of the potential for seasonal flow forecasting for large lakes using a range of stochastic transfer function techniques with additional insights gained from simple analytical approximations. The methods were evaluated using records for two of the largest lakes in the world. The paper concludes with a discussion of the relevance of the results to operational flow forecasting systems for other large lakes.
Fan Yang, Hui Lu, Kun Yang, Jie He, Wei Wang, Jonathon S. Wright, Chengwei Li, Menglei Han, and Yishan Li
Hydrol. Earth Syst. Sci., 21, 5805–5821, https://doi.org/10.5194/hess-21-5805-2017, https://doi.org/10.5194/hess-21-5805-2017, 2017
Short summary
Short summary
In this paper, we show that CLDAS has the highest spatial and temporal resolution, and it performs best in terms of precipitation, while it overestimates the shortwave radiation. CMFD also has high resolution and its shortwave radiation data match well with the station data; its annual-mean precipitation is reliable but its monthly precipitation needs improvements. Both GLDAS and CN05.1 over mainland China need to be improved. The results can benefit researchers for forcing data selection.
Rachel Bazile, Marie-Amélie Boucher, Luc Perreault, and Robert Leconte
Hydrol. Earth Syst. Sci., 21, 5747–5762, https://doi.org/10.5194/hess-21-5747-2017, https://doi.org/10.5194/hess-21-5747-2017, 2017
Short summary
Short summary
Meteorological forecasting agencies constantly work on pushing the limit of predictability farther in time. However, some end users need proof that climate model outputs are ready to be implemented operationally. We show that bias correction is crucial for the use of ECMWF System4 forecasts for the studied area and there is a potential for the use of 1-month-ahead forecasts. Beyond this, forecast performance is equivalent to using past climatology series as inputs to the hydrological model.
Judith Eeckman, Pierre Chevallier, Aaron Boone, Luc Neppel, Anneke De Rouw, Francois Delclaux, and Devesh Koirala
Hydrol. Earth Syst. Sci., 21, 4879–4893, https://doi.org/10.5194/hess-21-4879-2017, https://doi.org/10.5194/hess-21-4879-2017, 2017
Short summary
Short summary
The central part of the Himalayan Range presents tremendous heterogeneity in terms of topography and climatology, but the representation of hydro-climatic processes for Himalayan catchments is limited due to a lack of knowledge in such poorly instrumented environments. The proposed approach is to characterize the effect of altitude on precipitation by considering ensembles of acceptable altitudinal factors. Ensembles of acceptable values for the components of the water cycle are then provided.
Jefferson S. Wong, Saman Razavi, Barrie R. Bonsal, Howard S. Wheater, and Zilefac E. Asong
Hydrol. Earth Syst. Sci., 21, 2163–2185, https://doi.org/10.5194/hess-21-2163-2017, https://doi.org/10.5194/hess-21-2163-2017, 2017
Short summary
Short summary
This study was conducted to quantify the spatial and temporal variability of the errors associated with various gridded precipitation products in Canada. Overall, WFDEI [GPCC] and CaPA performed best with respect to different performance measures, followed by ANUSPLIN and WEDEI [CRU]. Princeton and NARR demonstrated the lowest quality. Comparing the climate model-simulated products, PCIC ensembles generally performed better than NA-CORDEX ensembles in terms of reliability in four seasons.
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary
Short summary
This study assessed the impact of baseline climate conditions on the sensitivity of potential evapotranspiration (PET) to a large range of plausible changes in temperature, relative humidity, solar radiation and wind speed at 30 Australian locations. Around 2-fold greater PET changes were observed at cool and humid locations compared to others, indicating potential for elevated water loss in the future. These impacts can be useful to inform the selection of PET models under a changing climate.
Vojtěch Svoboda, Martin Hanel, Petr Máca, and Jan Kyselý
Hydrol. Earth Syst. Sci., 21, 963–980, https://doi.org/10.5194/hess-21-963-2017, https://doi.org/10.5194/hess-21-963-2017, 2017
Short summary
Short summary
The study presents validation of precipitation events as simulated by an ensemble of regional climate models for the Czech Republic. While the number of events per season, seasonal total precipitation due to heavy events and the distribution of rainfall depths are simulated relatively well, event maximum precipitation and event intensity are strongly underestimated. This underestimation cannot be explained by scale mismatch between point observations and area average (climate model simulations).
Martin Hanel, Petr Máca, Petr Bašta, Radek Vlnas, and Pavel Pech
Hydrol. Earth Syst. Sci., 20, 4307–4322, https://doi.org/10.5194/hess-20-4307-2016, https://doi.org/10.5194/hess-20-4307-2016, 2016
Short summary
Short summary
The paper is focused on assessment of the contribution of various sources of uncertainty to the estimated rainfall erosivity factor. It is shown that the rainfall erosivity factor can be estimated with reasonable precision even from records shorter than recommended, provided good spatial coverage and reasonable explanatory variables are available. The research was done as an update of the R factor estimates for the Czech Republic, which were later used for climate change assessment.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary
Short summary
Forecasts are produced as probabilities of occurrence of specific events, which is both an added value and a challenge for users. This paper presents a game on flood protection, "How much are you prepared to pay for a forecast?", which investigated how users perceive the value of forecasts and are willing to pay for them when making decisions. It shows that users are mainly influenced by the perceived quality of the forecasts, their need for the information and their degree of risk tolerance.
K. Sunilkumar, T. Narayana Rao, and S. Satheeshkumar
Hydrol. Earth Syst. Sci., 20, 1719–1735, https://doi.org/10.5194/hess-20-1719-2016, https://doi.org/10.5194/hess-20-1719-2016, 2016
Vincent Roth and Tatenda Lemann
Hydrol. Earth Syst. Sci., 20, 921–934, https://doi.org/10.5194/hess-20-921-2016, https://doi.org/10.5194/hess-20-921-2016, 2016
Short summary
Short summary
The Soil and Water Assessment Tool (SWAT) suggests using the CFSR global rainfall data for modelling discharge and soil erosion in data-scarce parts of the world. These data are freely available and ready to use for SWAT modelling. However, simulations with the CFSR data in the Ethiopian Highlands were unable to represent the specific regional climates and showed high discrepancies. This article compares SWAT simulations with conventional rainfall data and with CFSR rainfall data.
J. Kim and S. K. Park
Hydrol. Earth Syst. Sci., 20, 651–658, https://doi.org/10.5194/hess-20-651-2016, https://doi.org/10.5194/hess-20-651-2016, 2016
Short summary
Short summary
This study examined the uncertainty in climatological precipitation in East Asia, calculated from five gridded analysis data sets based on in situ rain gauge observations from 1980 to 2007. It is found that the regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or very high elevations. Thus, care must be taken in using long-term trends calculated from gridded precipitation analysis data for climate studies over such regions in East Asia.
M. F. Rios Gaona, A. Overeem, H. Leijnse, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 19, 3571–3584, https://doi.org/10.5194/hess-19-3571-2015, https://doi.org/10.5194/hess-19-3571-2015, 2015
Short summary
Short summary
Commercial cellular networks are built for telecommunication purposes. These kinds of networks have lately been used to obtain rainfall maps at country-wide scales. From previous studies, we now quantify the uncertainties associated with such maps. To do so, we divided the sources or error into two categories: from microwave link measurements and from mapping. It was found that the former is the source that contributes the most to the overall error in rainfall maps from microwave link network.
S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen
Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, https://doi.org/10.5194/hess-19-3489-2015, 2015
Short summary
Short summary
This paper introduces a new variant of the triple collocation technique with multiplicative error model. The method is applied, for the first time, to precipitation products across the central part of continental USA. Results show distinctive patterns of error variance in each product that are estimated without a priori assumption of any of the error distributions. The correlation coefficients between each product and the truth are also estimated, which provides another performance perspective.
M. S. Raleigh, J. D. Lundquist, and M. P. Clark
Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, https://doi.org/10.5194/hess-19-3153-2015, 2015
Short summary
Short summary
A sensitivity analysis is used to examine how error characteristics (type, distributions, and magnitudes) in meteorological forcing data impact outputs from a physics-based snow model in four climates. Bias and error magnitudes were key factors in model sensitivity and precipitation bias often dominated. However, the relative importance of forcings depended somewhat on the selected model output. Forcing uncertainty was comparable to model structural uncertainty as found in other studies.
S. Garrigues, A. Olioso, J. C. Calvet, E. Martin, S. Lafont, S. Moulin, A. Chanzy, O. Marloie, S. Buis, V. Desfonds, N. Bertrand, and D. Renard
Hydrol. Earth Syst. Sci., 19, 3109–3131, https://doi.org/10.5194/hess-19-3109-2015, https://doi.org/10.5194/hess-19-3109-2015, 2015
Short summary
Short summary
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean crop succession. Evapotranspiration mainly results from soil evaporation when it is simulated over a Mediterranean crop succession. This leads to a high sensitivity to the soil parameters. Errors on soil hydraulic properties can lead to a large bias in cumulative evapotranspiration over a long period of time. Accounting for uncertainties in soil properties is essential for land surface modelling.
W. Gong, Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, and C. Miao
Hydrol. Earth Syst. Sci., 19, 2409–2425, https://doi.org/10.5194/hess-19-2409-2015, https://doi.org/10.5194/hess-19-2409-2015, 2015
S. O. Los
Hydrol. Earth Syst. Sci., 19, 1713–1725, https://doi.org/10.5194/hess-19-1713-2015, https://doi.org/10.5194/hess-19-1713-2015, 2015
Short summary
Short summary
The study evaluates annual precipitation (largely rainfall) amounts for the tropics and subtropics; precipitation was obtained from ground observations, satellite observations and numerical weather forecasting models.
- Annual precipitation amounts from ground and satellite observations were the most realistic.
- Newer weather forecasting models better predicted annual precipitation than older models.
- Weather forecasting models predicted inaccurate precipitation amounts for Africa.
A. Kann, I. Meirold-Mautner, F. Schmid, G. Kirchengast, J. Fuchsberger, V. Meyer, L. Tüchler, and B. Bica
Hydrol. Earth Syst. Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, https://doi.org/10.5194/hess-19-1547-2015, 2015
Short summary
Short summary
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1 km resolution with high frequency updates of 5 minutes. The ability of such a system to adequately assess the convective precipitation distribution is evaluated by means of an independant, high resolution station network. This dense station network allows for a thorough evaluation of the analyses under different convective situations and of the representativeness error of raingaue measurements.
C. H. Wu, G. R. Huang, and H. J. Yu
Hydrol. Earth Syst. Sci., 19, 1385–1399, https://doi.org/10.5194/hess-19-1385-2015, https://doi.org/10.5194/hess-19-1385-2015, 2015
T. Antofie, G. Naumann, J. Spinoni, and J. Vogt
Hydrol. Earth Syst. Sci., 19, 177–193, https://doi.org/10.5194/hess-19-177-2015, https://doi.org/10.5194/hess-19-177-2015, 2015
P. López López, J. S. Verkade, A. H. Weerts, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 18, 3411–3428, https://doi.org/10.5194/hess-18-3411-2014, https://doi.org/10.5194/hess-18-3411-2014, 2014
G. Naumann, E. Dutra, P. Barbosa, F. Pappenberger, F. Wetterhall, and J. V. Vogt
Hydrol. Earth Syst. Sci., 18, 1625–1640, https://doi.org/10.5194/hess-18-1625-2014, https://doi.org/10.5194/hess-18-1625-2014, 2014
K. Liechti, L. Panziera, U. Germann, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 3853–3869, https://doi.org/10.5194/hess-17-3853-2013, https://doi.org/10.5194/hess-17-3853-2013, 2013
Cited articles
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and
Seibert, J.: Robust changes and sources of uncertainty in the projected
hydrological regimes of Swiss catchments, Water Resour. Res., 50,
7541–7562, 2014. a
Adeyeri, O., Laux, P., Lawin, A., and Oyekan, K.: Multiple bias-correction of
dynamically downscaled CMIP5 climate models temperature projection: a case
study of the transboundary Komadugu-Yobe river basin, Lake Chad region, West
Africa, SN Applied Sciences, 2, 1–18, 2020. a
Andermann, C., Bonnet, S., and Gloaguen, R.: Evaluation of precipitation data
sets along the Himalayan front, Geochem. Geophy. Geosy., 12, 475–496, 2011. a
Arsenault, R. and Brissette, F. P.: Continuous streamflow prediction in
ungauged basins: The effects of equifinality and parameter set selection on
uncertainty in regionalization approaches, Water Resour. Res., 50,
6135–6153, 2014. a
Arsenault, R., Poulin, A., Côté, P., and Brissette, F.: Comparison of
stochastic optimization algorithms in hydrological model calibration, J. Hydrol. Eng., 19, 1374–1384, 2014. a
Arsenault, R., Brissette, F., Chen, J., Guo, Q., and Dallaire, G.: NAC2H: The North-American
Climate Change and hydroclimatology dataset, Water Resour. Res., 56, https://doi.org/10.1029/2020wr027097, 2020. a, b, c
Arsenault, R., Brissette, F., and Chen, J.: NAC2H data base: available at: https://osf.io/s97cd/ (last access: 25 May 2020), 2021. a
Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil
moisture and streamflow data in a conceptual rainfall–runoff model, J. Hydrol., 280, 145–161, 2003. a
Bae, D.-H., Jung, I.-W., and Lettenmaier, D. P.: Hydrologic uncertainties in
climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea,
J. Hydrol., 401, 90–105, 2011. a
Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R.,
Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of
hydrologic model parameters, Water Resour. Res., 52, 3599–3622, 2016. a
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017. a, b, c
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019. a
Behrangi, A., Khakbaz, B., Jaw, T. C., AghaKouchak, A., Hsu, K., and
Sorooshian, S.: Hydrologic evaluation of satellite precipitation products
over a mid-size basin, J. Hydrol., 397, 225–237, 2011. a
Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M.,
and Schär, C.: Quantifying uncertainty sources in an ensemble of
hydrological climate-impact projections, Water Resour. Res., 49,
1523–1536, 2013. a
Boughton, W. and Chiew, F.: Estimating runoff in ungauged catchments from
rainfall, PET and the AWBM model, Environ. Modell. Softw., 22,
476–487, 2007. a
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional
probability density function transform for climate model simulations of
multiple variables, Clim. Dynam., 50, 31–49, 2018. a
Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method
in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, 2011. a
Chen, S., Liu, H., You, Y., Mullens, E., Hu, J., Yuan, Y., Huang, M., He, L.,
Luo, Y., Zeng, X., et al.: Evaluation of high-resolution precipitation
estimates from satellites during July 2012 Beijing flood event using dense
rain gauge observations, PloS one, 9, https://doi.org/10.1371/journal.pone.0089681, 2014. a
Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S.,
Wood, A. W., Fowler, H. J., Prudhomme, C., Arnold, J. R., and Brekke, L. D.:
Characterizing uncertainty of the hydrologic impacts of climate change,
Current Climate Change Reports, 2, 55–64, 2016. a
Cutore, P., Cristaudo, G., Campisano, A., Modica, C., Cancelliere, A., and
Rossi, G.: Regional models for the estimation of streamflow series in
ungauged basins, Water Resour. Manag., 21, 789–800, 2007. a
Dallaire, G., Poulin, A., Arsenault, R., and Brissette, F.: Uncertainty of
potential evapotranspiration modelling in climate change impact studies on
low flows in North America, Hydrolog. Sci. J., 66, 1–14, 2021. a
Dembélé, M., Schaefli, B., van de Giesen, N., and Mariéthoz, G.: Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa, Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, 2020. a
Do, H. X., Westra, S., and Leonard, M.: A global-scale investigation of trends
in annual maximum streamflow, J. Hydrol., 552, 28–43, 2017. a
Dobler, C., Hagemann, S., Wilby, R. L., and Stötter, J.: Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed, Hydrol. Earth Syst. Sci., 16, 4343–4360, https://doi.org/10.5194/hess-16-4343-2012, 2012. a
Donnelly, C., Dahné, J., Rosberg, J., Strömqvist, J., Yang, W., and
Arheimer, B.: High-resolution, large-scale hydrological modelling tools for
Europe, IAHS Publ., 340, 553–561, 2010. a
Duethmann, D., Blöschl, G., and Parajka, J.: Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?, Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020, 2020. a
ECMF: The ERA-Interim reanalysis dataset: available at: https://apps.ecmwf.int/datasets/90data/interim-full-daily/, last access 1 April 2020a. a
ECMF: The ERA5 reanalysis dataset: available at: https://cds.climate.copernicus.eu/#!/search?text=ERA5& type=dataset, last access: 1 May 2020b. a
El Fadli, K. I., Cerveny, R. S., Burt, C. C., Eden, P., Parker, D., Brunet, M.,
Peterson, T. C., Mordacchini, G., Pelino, V., Bessemoulin, P., et al.: World
Meteorological Organization assessment of the purported world record 58 ∘C
temperature extreme at El Azizia, Libya (13 September 1922), B. Am. Meteorol. Soc., 94, 199–204, 2013. a, b
Ensor, L. A. and Robeson, S. M.: Statistical characteristics of daily
precipitation: comparisons of gridded and point datasets, J. Appl. Meteorol. Clim., 47, 2468–2476, 2008. a
Essou, G. R. and Brissette, F.: Climate change impacts on the Oueme river,
Benin, West Africa, Journal of Earth Science & Climatic Change, 4, 1, https://doi.org/10.4172/2157-617.1000161, 2013. a
Essou, G. R., Arsenault, R., and Brissette, F. P.: Comparison of climate
datasets for lumped hydrological modeling over the continental United States,
J. Hydrol., 537, 334–345, 2016. a
Essou, G. R., Brissette, F., and Lucas-Picher, P.: The use of reanalyses and
gridded observations as weather input data for a hydrological model:
Comparison of performances of simulated river flows based on the density of
weather stations, J. Hydrometeorol., 18, 497–513, 2017. a
Fekete, B. M. and Vörösmarty, C. J.: The current status of global river
discharge monitoring and potential new technologies complementing traditional
discharge measurements, IAHS publ., 309, 129–136, 2007. a
Gosset, M., Viarre, J., Quantin, G., and Alcoba, M.: Evaluation of several
rainfall products used for hydrological applications over West Africa using
two high-resolution gauge networks, Q. J. Roy. Meteor. Soc., 139, 923–940, 2013. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91, 2009. a
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell,
N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., et al.: Multimodel
estimate of the global terrestrial water balance: setup and first results,
J. Hydrometeorol., 12, 869–884, 2011. a
Hamilton, A. and Moore, R.: Quantifying uncertainty in streamflow records,
Canadian Water Resources Journal/Revue canadienne des ressources hydriques,
37, 3–21, 2012. a
Hansen, N., Müller, S. D., and Koumoutsakos, P.: Reducing the time
complexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES), Evol. Comput., 11, 1–18, 2003. a
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P.,
and Yoo, S.-H.: NASA global precipitation measurement (GPM) integrated
multi-satellite retrievals for GPM (IMERG), Algorithm Theoretical Basis
Document (ATBD) Version, 4, 1–26, 2015. a
Hunger, M. and Döll, P.: Value of river discharge data for global-scale hydrological modeling, Hydrol. Earth Syst. Sci., 12, 841–861, https://doi.org/10.5194/hess-12-841-2008, 2008. a
Huth, R.: Sensitivity of local daily temperature change estimates to the
selection of downscaling models and predictors, J. Climate, 17,
640–652, 2004. a
IPCC: Working Group I: The Scientific Basis, Third Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, 2001. a
Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., and Ma, M.:
Comprehensive evaluation of multi-satellite precipitation products with a
dense rain gauge network and optimally merging their simulated hydrological
flows using the Bayesian model averaging method, J. Hydrol., 452,
213–225, 2012. a
Khan, M. S., Coulibaly, P., and Dibike, Y.: Uncertainty analysis of statistical
downscaling methods, J. Hydrol., 319, 357–382, 2006. a
Khedhaouiria, D., Mailhot, A., and Favre, A.-C.: Daily precipitation fields
modeling across the great lakes region (Canada) by Using the CFSR reanalysis,
J. Appl. Meteorol. Clim., 57, 2419–2438, 2018. a
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, how much of the Earth’s
surface is covered by rain gauges?,
B. Am. Meteorol. Soc., 98, 69–78, 2017. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol.,
424, 264–277, 2012. a
Knoben, W. J., Woods, R. A., and Freer, J. E.: A quantitative hydrological
climate classification evaluated with independent streamflow data, Water Resour. Res., 54, 5088–5109, 2018. a
Köppen, W.: Versuch einer Klassifikation der Klimate, vorzugsweise nach
ihren Beziehungen zur Pflanzenwelt, Geogr. Z., 6, 593–611,
1900. a
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from
spaceborne elevation data, Eos, Transactions American Geophysical Union, 89,
93–94, 2008. a
Maraun, D.: Bias correcting climate change simulations-a critical review,
Current Climate Change Reports, 2, 211–220, 2016. a
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez,
J. M., Hagemann, S., Richter, I., Soares, P. M., Hall, A., et al.: Towards
process-informed bias correction of climate change simulations,
Nat. Clim. Change, 7, 764–773, 2017. a
Mawere, M.: Theorising development in Africa: Towards building an African
framework of development, Langaa RPCIG, 2017. a
McIntyre, N., Lee, H., Wheater, H., Young, A., and Wagener, T.: Ensemble
predictions of runoff in ungauged catchments, Water Resour. Res., 41, https://doi.org/10.1029/2005WR004289, 2005. a
Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters,
J. Hydrol., 287, 95–123, 2004. a
Meyer, J., Kohn, I., Stahl, K., Hakala, K., Seibert, J., and Cannon, A. J.: Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments, Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, 2019. a
Milliman, J. D., Farnsworth, K., Jones, P., Xu, K., and Smith, L.: Climatic and
anthropogenic factors affecting river discharge to the global ocean,
1951–2000, Global Planet. Change, 62, 187–194, 2008. a
Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of
climate change on the hydrology of a nordic watershed, J. Hydrol.,
358, 70–83, 2008. a
Mpelasoka, F. S. and Chiew, F. H.: Influence of rainfall scenario construction
methods on runoff projections, J. Hydrometeorol., 10, 1168–1183,
2009. a
Nashwan, M. S. and Shahid, S.: Symmetrical uncertainty and random forest for
the evaluation of gridded precipitation and temperature data, Atmos.
Res., 230, 104632, https://doi.org/10.1016/j.atmosres.2019.104632, 2019. a
New, M., Todd, M., Hulme, M., and Jones, P.: Precipitation measurements and
trends in the twentieth century, Int. J. Climatol., 21, 1889–1922, 2001. a
Nicholson, S. E.: The West African Sahel: A review of recent studies on the
rainfall regime and its interannual variability, ISRN Meteorology, 2013, 453521, https://doi.org/10.1155/2013/453521, 2013. a
Nóbrega, M. T., Collischonn, W., Tucci, C. E. M., and Paz, A. R.: Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil, Hydrol. Earth Syst. Sci., 15, 585–595, https://doi.org/10.5194/hess-15-585-2011, 2011. a
Odon, P., West, G., and Stull, R.: Evaluation of Reanalyses over British
Columbia. Part II: Daily and Extreme Precipitation,
J. Appl. Meteorol. Clim., 58, 291–315, 2019. a
Okamoto, K., Ushio, T., Iguchi, T., Takahashi, N., and Iwanami, K.: The global
satellite mapping of precipitation (GSMaP) project, in: Proceedings, 2005
IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05,
vol. 5, 3414–3416, IEEE, 29–29 July 2005, Seoul, 2005. a
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil,
F., and Loumagne, C.: Which potential evapotranspiration input for a lumped
rainfall–runoff model?: Part 2 – Towards a simple and efficient potential
evapotranspiration model for rainfall–runoff modelling, J. Hydrol., 303, 290–306, 2005. a
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.:
Spatial proximity, physical similarity, regression and ungaged catchments: A
comparison of regionalization approaches based on 913 French catchments,
Water Resour. Res., 44, https://doi.org/10.1029/2007WR006240, 2008. a
Paul, J. D., Roberts, G. G., and White, N.: The African landscape through space
and time, Tectonics, 33, 898–935, 2014. a
Pechlivanidis, I. G. and Arheimer, B.: Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case, Hydrol. Earth Syst. Sci., 19, 4559–4579, https://doi.org/10.5194/hess-19-4559-2015, 2015. a, b
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious
model for streamflow simulation, J. Hydrol., 279, 275–289, 2003. a
Prakash, S., Kumar, M. R., Mathew, S., and Venkatesan, R.: How accurate are
satellite estimates of precipitation over the north Indian Ocean?,
Theor. Appl. Climatol., 134, 467–475, 2018. a
Prăvălie, R.: Drylands extent and environmental issues. A global
approach, Earth-Sci. Rev., 161, 259–278, 2016. a
Prudhomme, C. and Davies, H.: Assessing uncertainties in climate change impact
analyses on the river flow regimes in the UK. Part 2: future climate,
Climatic Change, 93, 197–222, 2009. a
Prudhomme, C., Jakob, D., and Svensson, C.: Uncertainty and climate change
impact on the flood regime of small UK catchments, J. Hydrol., 277,
1–23, 2003. a
Raimonet, M., Thieu, V., Silvestre, M., Oudin, L., Rabouille, C., Vautard, R.,
and Garnier, J.: Landward perspective of coastal eutrophication potential
under future climate change: The Seine River case (France), Front. Mar. Sci., 5, 136, https://doi.org/10.3389/fmars.2018.00136, 2018. a
Riboust, P., Thirel, G., Le Moine, N., and Ribstein, P.: Revisiting a simple
degree-day model for integrating satellite data: implementation of SWE-SCA
hystereses, J. Hydrol. Hydromech., 67, 70–81, 2019. a
Romilly, T. G. and Gebremichael, M.: Evaluation of satellite rainfall estimates over Ethiopian river basins, Hydrol. Earth Syst. Sci., 15, 1505–1514, https://doi.org/10.5194/hess-15-1505-2011, 2011. a
Rowell, D. P.: A demonstration of the uncertainty in projections of UK climate
change resulting from regional model formulation, Climatic Change, 79,
243–257, 2006. a
Saadi, M., Oudin, L., and Ribstein, P.: Random Forest Ability in Regionalizing
Hourly Hydrological Model Parameters, Water, 11, 1540, https://doi.org/10.3390/w11081540, 2019. a
Samaniego, L., Bárdossy, A., and Kumar, R.: Streamflow prediction in
ungauged catchments using copula-based dissimilarity measures, Water
Resour. Res., 46, https://doi.org/10.1029/2008WR007695, 2010. a
Satgé, F., Defrance, D., Sultan, B., Bonnet, M.-P., Seyler, F., Rouché,
N., Pierron, F., and Paturel, J.-E.: Evaluation of 23 gridded precipitation
datasets across West Africa, J. Hydrol., 581, 124412, https://doi.org/10.1016/j.jhydrol.2019.124412, 2020. a
Simonneaux, V., Hanich, L., Boulet, G., and Thomas, S.: Modelling runoff in the
Rheraya Catchment (High Atlas, Morocco) using the simple daily model GR4J.
Trends over the last decades, 13th IWRA World Water Congress,
Montpellier, France, 2008. a
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020. a, b
Tarek, M., Brissette, F. P., and Arsenault, R.: Large-scale analysis of global
gridded precipitation and temperature datasets for climate change impact
studies, J. Hydrometeorol., 21, 1–54, 2020b. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, 2012. a
Tomkins, K. M.: Uncertainty in streamflow rating curves: methods, controls and
consequences, Hydrol. Process., 28, 464–481, 2014. a
Trambauer, P., Maskey, S., Winsemius, H., Werner, M., and Uhlenbrook, S.: A
review of continental scale hydrological models and their suitability for
drought forecasting in (sub-Saharan) Africa, Phys. Chem. Earth, 66, 16–26, 2013. a
Tramblay, Y., Rouché, N., Paturel, J.-E., Mahé, G., Boyer, J.-F., Amoussou, E., Bodian, A., Dacosta, H., Dakhlaoui, H., Dezetter, A., Hughes, D., Hanich, L., Peugeot, C., Tshimanga, R., and Lachassagne, P.: ADHI: the African Database of Hydrometric Indices (1950–2018), Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, 2021. a
Trudel, M., Doucet-Généreux, P.-L., and Leconte, R.: Assessing river
low-flow uncertainties related to hydrological model calibration and
structure under climate change conditions, Climate, 5, 19, https://doi.org/10.3390/cli5010019, 2017. a
Valéry, A., Andréassian, V., and Perrin, C.: “As simple as possible
but not simpler”: What is useful in a temperature-based snow-accounting
routine? Part 2–Sensitivity analysis of the Cemaneige snow accounting
routine on 380 catchments, J. Hydrol., 517, 1176–1187, 2014. a
van Kempen, G., van der Wiel, K., and Melsen, L. A.: The impact of hydrological model structure on the simulation of extreme runoff events, Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, 2021. a
Velázquez, J. A., Troin, M., Caya, D., and Brissette, F.: Evaluating the
time-invariance hypothesis of climate model bias correction: implications for
hydrological impact studies, J. Hydrometeorol., 16, 2013–2026,
2015. a
Vetter, T., Reinhardt, J., Flörke, M., van Griensven, A., Hattermann, F.,
Huang, S., Koch, H., Pechlivanidis, I. G., Plötner, S., Seidou, O.,
et al.: Evaluation of sources of uncertainty in projected hydrological
changes under climate change in 12 large-scale river basins, Climatic Change,
141, 419–433, 2017. a, b, c
Vila, D. A., De Goncalves, L. G. G., Toll, D. L., and Rozante, J. R.:
Statistical evaluation of combined daily gauge observations and rainfall
satellite estimates over continental South America, J. Hydrometeorol., 10, 533–543, 2009. a
Voisin, N., Wood, A. W., and Lettenmaier, D. P.: Evaluation of precipitation
products for global hydrological prediction, J. Hydrometeorol., 9,
388–407, 2008. a
Von Storch, H. and Zwiers, F. W.: Statistical analysis in climate research,
Cambridge university press, United Kingdom, 2001. a
Wang, H.-M., Chen, J., Xu, C.-Y., Zhang, J., and Chen, H.: A framework to
quantify the uncertainty contribution of GCMs over multiple sources in
hydrological impacts of climate change, Earth's Future, 8, e2020EF001602, https://doi.org/10.1029/2020ef001602, 2020. a
Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A strategy
for diagnosing and interpreting hydrological model nonstationarity, Water
Resour. Res., 50, 5090–5113, 2014. a
Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in climate
change impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, https://doi.org/10.1029/2005wr004065, 2006. a
Wu, Z., Xu, Z., Wang, F., He, H., Zhou, J., Wu, X., and Liu, Z.: Hydrologic
evaluation of multi-source satellite precipitation products for the upper
Huaihe River Basin, China, Remote Sens., 10, 840, https://doi.org/10.3390/rs10060840, 2018. a
Youssef, H., Simon, G., Younes, F., Ghani, C., and Vincent, S.: Rainfall-Runoff
modeling in a semi-arid catchment with presence of snow. The Rheraya wadi
case study (Marrakech, Morocco), EGUGA, p. 5214, Vienna, Austria, 2018. a
Yu, X., Bhatt, G., Duffy, C., and Shi, Y.: Parameterization for distributed
watershed modeling using national data and evolutionary algorithm, Comput. Geosci., 58, 80–90, 2013. a
Zhao, F., Veldkamp, T. I., Frieler, K., Schewe, J., Ostberg, S., Willner, S.,
Schauberger, B., Gosling, S. N., Schmied, H. M., Portmann, F. T., et al.: The
critical role of the routing scheme in simulating peak river discharge in
global hydrological models, Environ. Res. Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250, 2017. a
Zhu, H., Li, Y., Huang, Y., Li, Y., Hou, C., and Shi, X.: Evaluation and
hydrological application of satellite-based precipitation datasets in driving
hydrological models over the Huifa river basin in Northeast China,
Atmos. Res., 207, 28–41, 2018. a
Short summary
It is not known how much uncertainty the choice of a reference data set may bring to impact studies. This study compares precipitation and temperature data sets to evaluate the uncertainty contribution to the results of climate change studies. Results show that all data sets provide good streamflow simulations over the reference period. The reference data sets also provided uncertainty that was equal to or larger than that related to general circulation models over most of the catchments.
It is not known how much uncertainty the choice of a reference data set may bring to impact...