Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3331-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies
Mostafa Tarek
CORRESPONDING AUTHOR
Hydrology, Climate and Climate Change Laboratory, École de technologie supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
Department of Civil Engineering, Military Technical College, Cairo, Egypt
François Brissette
Hydrology, Climate and Climate Change Laboratory, École de technologie supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
Richard Arsenault
Hydrology, Climate and Climate Change Laboratory, École de technologie supérieure, 1100 Notre-Dame West, Montreal, Quebec H3C 1K3, Canada
Related authors
No articles found.
Frédéric Talbot, Simon Ricard, Guillaume Drolet, Annie Poulin, Jean-Luc Martel, Richard Arsenault, and Jean-Daniel Sylvain
EGUsphere, https://doi.org/10.5194/egusphere-2025-4450, https://doi.org/10.5194/egusphere-2025-4450, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study compares three hydrological modeling approaches for assessing climate change impacts on water systems. We evaluate the conventional method alongside a fully- and semi-asynchronous methods, which excels in capturing extreme events but faces challenges with event timing. The results highlight the potential of the semi-asynchronous method as an innovative and robust tool for hydrological modeling under climate change.
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025, https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Short summary
This study compares long short-term memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrological models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
Frédéric Talbot, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3353, https://doi.org/10.5194/egusphere-2024-3353, 2024
Short summary
Short summary
This research explores different modelling approaches within a distributed and physically based hydrological model, emphasizing configurations that integrate groundwater recharge and dynamics. The study demonstrates that precise adjustments in model calibration can enhance the accuracy and representation of hydrological variables, which are crucial for effective water management and climate change adaptation strategies.
Frédéric Talbot, Simon Ricard, Jean-Daniel Sylvain, Guillaume Drolet, Annie Poulin, Jean-Luc Martel, and Richard Arsenault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3037, https://doi.org/10.5194/egusphere-2024-3037, 2024
Preprint archived
Short summary
Short summary
This study compares two hydrological modeling approaches for assessing climate change impacts on water systems. We evaluate the conventional method alongside the asynchronous method, which excels in capturing extreme events but faces challenges with event timing. Our findings suggest that a semi-asynchronous approach, blending the strengths of both methods, could offer better results. This research provides key insights for supporting sustainable resource planning in a changing climate.
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134, https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Short summary
This study explores six methods to improve the ability of Long Short-Term Memory (LSTM) neural networks to predict peak streamflows, crucial for flood analysis. By enhancing data inputs and model techniques, the research shows LSTM models can match or surpass traditional hydrological models in simulating peak flows. Tested on 88 catchments in Quebec, Canada, these methods offer promising strategies for better flood prediction.
Mehrad Rahimpour Asenjan, Francois Brissette, Richard Arsenault, and Jean-Luc Martel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1183, https://doi.org/10.5194/egusphere-2024-1183, 2024
Preprint archived
Short summary
Short summary
Our study examines how combining climate models impacts future streamflow predictions, crucial for understanding climate change. Comparing six methods across 3,107 North American catchments, we found unequal weighting significantly improves rainfall and temperature projections. However, for streamflow, both equal and unequal weighting perform similarly with bias correction. Our findings underscore the need to carefully select weighting methods and correct biases for accurate climate projections.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Cited articles
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and
Seibert, J.: Robust changes and sources of uncertainty in the projected
hydrological regimes of Swiss catchments, Water Resour. Res., 50,
7541–7562, 2014. a
Adeyeri, O., Laux, P., Lawin, A., and Oyekan, K.: Multiple bias-correction of
dynamically downscaled CMIP5 climate models temperature projection: a case
study of the transboundary Komadugu-Yobe river basin, Lake Chad region, West
Africa, SN Applied Sciences, 2, 1–18, 2020. a
Andermann, C., Bonnet, S., and Gloaguen, R.: Evaluation of precipitation data
sets along the Himalayan front, Geochem. Geophy. Geosy., 12, 475–496, 2011. a
Arsenault, R. and Brissette, F. P.: Continuous streamflow prediction in
ungauged basins: The effects of equifinality and parameter set selection on
uncertainty in regionalization approaches, Water Resour. Res., 50,
6135–6153, 2014. a
Arsenault, R., Poulin, A., Côté, P., and Brissette, F.: Comparison of
stochastic optimization algorithms in hydrological model calibration, J. Hydrol. Eng., 19, 1374–1384, 2014. a
Arsenault, R., Brissette, F., Chen, J., Guo, Q., and Dallaire, G.: NAC2H: The North-American
Climate Change and hydroclimatology dataset, Water Resour. Res., 56, https://doi.org/10.1029/2020wr027097, 2020. a, b, c
Arsenault, R., Brissette, F., and Chen, J.: NAC2H data base: available at: https://osf.io/s97cd/ (last access: 25 May 2020), 2021. a
Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil
moisture and streamflow data in a conceptual rainfall–runoff model, J. Hydrol., 280, 145–161, 2003. a
Bae, D.-H., Jung, I.-W., and Lettenmaier, D. P.: Hydrologic uncertainties in
climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea,
J. Hydrol., 401, 90–105, 2011. a
Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R.,
Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of
hydrologic model parameters, Water Resour. Res., 52, 3599–3622, 2016. a
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017. a, b, c
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019. a
Behrangi, A., Khakbaz, B., Jaw, T. C., AghaKouchak, A., Hsu, K., and
Sorooshian, S.: Hydrologic evaluation of satellite precipitation products
over a mid-size basin, J. Hydrol., 397, 225–237, 2011. a
Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M.,
and Schär, C.: Quantifying uncertainty sources in an ensemble of
hydrological climate-impact projections, Water Resour. Res., 49,
1523–1536, 2013. a
Boughton, W. and Chiew, F.: Estimating runoff in ungauged catchments from
rainfall, PET and the AWBM model, Environ. Modell. Softw., 22,
476–487, 2007. a
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional
probability density function transform for climate model simulations of
multiple variables, Clim. Dynam., 50, 31–49, 2018. a
Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method
in quantifying the impact of climate change on hydrology, J. Hydrol., 401, 190–202, 2011. a
Chen, S., Liu, H., You, Y., Mullens, E., Hu, J., Yuan, Y., Huang, M., He, L.,
Luo, Y., Zeng, X., et al.: Evaluation of high-resolution precipitation
estimates from satellites during July 2012 Beijing flood event using dense
rain gauge observations, PloS one, 9, https://doi.org/10.1371/journal.pone.0089681, 2014. a
Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S.,
Wood, A. W., Fowler, H. J., Prudhomme, C., Arnold, J. R., and Brekke, L. D.:
Characterizing uncertainty of the hydrologic impacts of climate change,
Current Climate Change Reports, 2, 55–64, 2016. a
Cutore, P., Cristaudo, G., Campisano, A., Modica, C., Cancelliere, A., and
Rossi, G.: Regional models for the estimation of streamflow series in
ungauged basins, Water Resour. Manag., 21, 789–800, 2007. a
Dallaire, G., Poulin, A., Arsenault, R., and Brissette, F.: Uncertainty of
potential evapotranspiration modelling in climate change impact studies on
low flows in North America, Hydrolog. Sci. J., 66, 1–14, 2021. a
Dembélé, M., Schaefli, B., van de Giesen, N., and Mariéthoz, G.: Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa, Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, 2020. a
Do, H. X., Westra, S., and Leonard, M.: A global-scale investigation of trends
in annual maximum streamflow, J. Hydrol., 552, 28–43, 2017. a
Dobler, C., Hagemann, S., Wilby, R. L., and Stötter, J.: Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed, Hydrol. Earth Syst. Sci., 16, 4343–4360, https://doi.org/10.5194/hess-16-4343-2012, 2012. a
Donnelly, C., Dahné, J., Rosberg, J., Strömqvist, J., Yang, W., and
Arheimer, B.: High-resolution, large-scale hydrological modelling tools for
Europe, IAHS Publ., 340, 553–561, 2010. a
Duethmann, D., Blöschl, G., and Parajka, J.: Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?, Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020, 2020. a
ECMF: The ERA-Interim reanalysis dataset: available at: https://apps.ecmwf.int/datasets/90data/interim-full-daily/, last access 1 April 2020a. a
ECMF: The ERA5 reanalysis dataset: available at: https://cds.climate.copernicus.eu/#!/search?text=ERA5& type=dataset, last access: 1 May 2020b. a
El Fadli, K. I., Cerveny, R. S., Burt, C. C., Eden, P., Parker, D., Brunet, M.,
Peterson, T. C., Mordacchini, G., Pelino, V., Bessemoulin, P., et al.: World
Meteorological Organization assessment of the purported world record 58 ∘C
temperature extreme at El Azizia, Libya (13 September 1922), B. Am. Meteorol. Soc., 94, 199–204, 2013. a, b
Ensor, L. A. and Robeson, S. M.: Statistical characteristics of daily
precipitation: comparisons of gridded and point datasets, J. Appl. Meteorol. Clim., 47, 2468–2476, 2008. a
Essou, G. R. and Brissette, F.: Climate change impacts on the Oueme river,
Benin, West Africa, Journal of Earth Science & Climatic Change, 4, 1, https://doi.org/10.4172/2157-617.1000161, 2013. a
Essou, G. R., Arsenault, R., and Brissette, F. P.: Comparison of climate
datasets for lumped hydrological modeling over the continental United States,
J. Hydrol., 537, 334–345, 2016. a
Essou, G. R., Brissette, F., and Lucas-Picher, P.: The use of reanalyses and
gridded observations as weather input data for a hydrological model:
Comparison of performances of simulated river flows based on the density of
weather stations, J. Hydrometeorol., 18, 497–513, 2017. a
Fekete, B. M. and Vörösmarty, C. J.: The current status of global river
discharge monitoring and potential new technologies complementing traditional
discharge measurements, IAHS publ., 309, 129–136, 2007. a
Gosset, M., Viarre, J., Quantin, G., and Alcoba, M.: Evaluation of several
rainfall products used for hydrological applications over West Africa using
two high-resolution gauge networks, Q. J. Roy. Meteor. Soc., 139, 923–940, 2013. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91, 2009. a
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell,
N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., et al.: Multimodel
estimate of the global terrestrial water balance: setup and first results,
J. Hydrometeorol., 12, 869–884, 2011. a
Hamilton, A. and Moore, R.: Quantifying uncertainty in streamflow records,
Canadian Water Resources Journal/Revue canadienne des ressources hydriques,
37, 3–21, 2012. a
Hansen, N., Müller, S. D., and Koumoutsakos, P.: Reducing the time
complexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES), Evol. Comput., 11, 1–18, 2003. a
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P.,
and Yoo, S.-H.: NASA global precipitation measurement (GPM) integrated
multi-satellite retrievals for GPM (IMERG), Algorithm Theoretical Basis
Document (ATBD) Version, 4, 1–26, 2015. a
Hunger, M. and Döll, P.: Value of river discharge data for global-scale hydrological modeling, Hydrol. Earth Syst. Sci., 12, 841–861, https://doi.org/10.5194/hess-12-841-2008, 2008. a
Huth, R.: Sensitivity of local daily temperature change estimates to the
selection of downscaling models and predictors, J. Climate, 17,
640–652, 2004. a
IPCC: Working Group I: The Scientific Basis, Third Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, 2001. a
Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., and Ma, M.:
Comprehensive evaluation of multi-satellite precipitation products with a
dense rain gauge network and optimally merging their simulated hydrological
flows using the Bayesian model averaging method, J. Hydrol., 452,
213–225, 2012. a
Khan, M. S., Coulibaly, P., and Dibike, Y.: Uncertainty analysis of statistical
downscaling methods, J. Hydrol., 319, 357–382, 2006. a
Khedhaouiria, D., Mailhot, A., and Favre, A.-C.: Daily precipitation fields
modeling across the great lakes region (Canada) by Using the CFSR reanalysis,
J. Appl. Meteorol. Clim., 57, 2419–2438, 2018. a
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, how much of the Earth’s
surface is covered by rain gauges?,
B. Am. Meteorol. Soc., 98, 69–78, 2017. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol.,
424, 264–277, 2012. a
Knoben, W. J., Woods, R. A., and Freer, J. E.: A quantitative hydrological
climate classification evaluated with independent streamflow data, Water Resour. Res., 54, 5088–5109, 2018. a
Köppen, W.: Versuch einer Klassifikation der Klimate, vorzugsweise nach
ihren Beziehungen zur Pflanzenwelt, Geogr. Z., 6, 593–611,
1900. a
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from
spaceborne elevation data, Eos, Transactions American Geophysical Union, 89,
93–94, 2008. a
Maraun, D.: Bias correcting climate change simulations-a critical review,
Current Climate Change Reports, 2, 211–220, 2016. a
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez,
J. M., Hagemann, S., Richter, I., Soares, P. M., Hall, A., et al.: Towards
process-informed bias correction of climate change simulations,
Nat. Clim. Change, 7, 764–773, 2017. a
Mawere, M.: Theorising development in Africa: Towards building an African
framework of development, Langaa RPCIG, 2017. a
McIntyre, N., Lee, H., Wheater, H., Young, A., and Wagener, T.: Ensemble
predictions of runoff in ungauged catchments, Water Resour. Res., 41, https://doi.org/10.1029/2005WR004289, 2005. a
Merz, R. and Blöschl, G.: Regionalisation of catchment model parameters,
J. Hydrol., 287, 95–123, 2004. a
Meyer, J., Kohn, I., Stahl, K., Hakala, K., Seibert, J., and Cannon, A. J.: Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments, Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, 2019. a
Milliman, J. D., Farnsworth, K., Jones, P., Xu, K., and Smith, L.: Climatic and
anthropogenic factors affecting river discharge to the global ocean,
1951–2000, Global Planet. Change, 62, 187–194, 2008. a
Minville, M., Brissette, F., and Leconte, R.: Uncertainty of the impact of
climate change on the hydrology of a nordic watershed, J. Hydrol.,
358, 70–83, 2008. a
Mpelasoka, F. S. and Chiew, F. H.: Influence of rainfall scenario construction
methods on runoff projections, J. Hydrometeorol., 10, 1168–1183,
2009. a
Nashwan, M. S. and Shahid, S.: Symmetrical uncertainty and random forest for
the evaluation of gridded precipitation and temperature data, Atmos.
Res., 230, 104632, https://doi.org/10.1016/j.atmosres.2019.104632, 2019. a
New, M., Todd, M., Hulme, M., and Jones, P.: Precipitation measurements and
trends in the twentieth century, Int. J. Climatol., 21, 1889–1922, 2001. a
Nicholson, S. E.: The West African Sahel: A review of recent studies on the
rainfall regime and its interannual variability, ISRN Meteorology, 2013, 453521, https://doi.org/10.1155/2013/453521, 2013. a
Nóbrega, M. T., Collischonn, W., Tucci, C. E. M., and Paz, A. R.: Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil, Hydrol. Earth Syst. Sci., 15, 585–595, https://doi.org/10.5194/hess-15-585-2011, 2011. a
Odon, P., West, G., and Stull, R.: Evaluation of Reanalyses over British
Columbia. Part II: Daily and Extreme Precipitation,
J. Appl. Meteorol. Clim., 58, 291–315, 2019. a
Okamoto, K., Ushio, T., Iguchi, T., Takahashi, N., and Iwanami, K.: The global
satellite mapping of precipitation (GSMaP) project, in: Proceedings, 2005
IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05,
vol. 5, 3414–3416, IEEE, 29–29 July 2005, Seoul, 2005. a
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil,
F., and Loumagne, C.: Which potential evapotranspiration input for a lumped
rainfall–runoff model?: Part 2 – Towards a simple and efficient potential
evapotranspiration model for rainfall–runoff modelling, J. Hydrol., 303, 290–306, 2005. a
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.:
Spatial proximity, physical similarity, regression and ungaged catchments: A
comparison of regionalization approaches based on 913 French catchments,
Water Resour. Res., 44, https://doi.org/10.1029/2007WR006240, 2008. a
Paul, J. D., Roberts, G. G., and White, N.: The African landscape through space
and time, Tectonics, 33, 898–935, 2014. a
Pechlivanidis, I. G. and Arheimer, B.: Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case, Hydrol. Earth Syst. Sci., 19, 4559–4579, https://doi.org/10.5194/hess-19-4559-2015, 2015. a, b
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious
model for streamflow simulation, J. Hydrol., 279, 275–289, 2003. a
Prakash, S., Kumar, M. R., Mathew, S., and Venkatesan, R.: How accurate are
satellite estimates of precipitation over the north Indian Ocean?,
Theor. Appl. Climatol., 134, 467–475, 2018. a
Prăvălie, R.: Drylands extent and environmental issues. A global
approach, Earth-Sci. Rev., 161, 259–278, 2016. a
Prudhomme, C. and Davies, H.: Assessing uncertainties in climate change impact
analyses on the river flow regimes in the UK. Part 2: future climate,
Climatic Change, 93, 197–222, 2009. a
Prudhomme, C., Jakob, D., and Svensson, C.: Uncertainty and climate change
impact on the flood regime of small UK catchments, J. Hydrol., 277,
1–23, 2003. a
Raimonet, M., Thieu, V., Silvestre, M., Oudin, L., Rabouille, C., Vautard, R.,
and Garnier, J.: Landward perspective of coastal eutrophication potential
under future climate change: The Seine River case (France), Front. Mar. Sci., 5, 136, https://doi.org/10.3389/fmars.2018.00136, 2018. a
Riboust, P., Thirel, G., Le Moine, N., and Ribstein, P.: Revisiting a simple
degree-day model for integrating satellite data: implementation of SWE-SCA
hystereses, J. Hydrol. Hydromech., 67, 70–81, 2019. a
Romilly, T. G. and Gebremichael, M.: Evaluation of satellite rainfall estimates over Ethiopian river basins, Hydrol. Earth Syst. Sci., 15, 1505–1514, https://doi.org/10.5194/hess-15-1505-2011, 2011. a
Rowell, D. P.: A demonstration of the uncertainty in projections of UK climate
change resulting from regional model formulation, Climatic Change, 79,
243–257, 2006. a
Saadi, M., Oudin, L., and Ribstein, P.: Random Forest Ability in Regionalizing
Hourly Hydrological Model Parameters, Water, 11, 1540, https://doi.org/10.3390/w11081540, 2019. a
Samaniego, L., Bárdossy, A., and Kumar, R.: Streamflow prediction in
ungauged catchments using copula-based dissimilarity measures, Water
Resour. Res., 46, https://doi.org/10.1029/2008WR007695, 2010. a
Satgé, F., Defrance, D., Sultan, B., Bonnet, M.-P., Seyler, F., Rouché,
N., Pierron, F., and Paturel, J.-E.: Evaluation of 23 gridded precipitation
datasets across West Africa, J. Hydrol., 581, 124412, https://doi.org/10.1016/j.jhydrol.2019.124412, 2020. a
Simonneaux, V., Hanich, L., Boulet, G., and Thomas, S.: Modelling runoff in the
Rheraya Catchment (High Atlas, Morocco) using the simple daily model GR4J.
Trends over the last decades, 13th IWRA World Water Congress,
Montpellier, France, 2008. a
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020. a, b
Tarek, M., Brissette, F. P., and Arsenault, R.: Large-scale analysis of global
gridded precipitation and temperature datasets for climate change impact
studies, J. Hydrometeorol., 21, 1–54, 2020b. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, 2012. a
Tomkins, K. M.: Uncertainty in streamflow rating curves: methods, controls and
consequences, Hydrol. Process., 28, 464–481, 2014. a
Trambauer, P., Maskey, S., Winsemius, H., Werner, M., and Uhlenbrook, S.: A
review of continental scale hydrological models and their suitability for
drought forecasting in (sub-Saharan) Africa, Phys. Chem. Earth, 66, 16–26, 2013. a
Tramblay, Y., Rouché, N., Paturel, J.-E., Mahé, G., Boyer, J.-F., Amoussou, E., Bodian, A., Dacosta, H., Dakhlaoui, H., Dezetter, A., Hughes, D., Hanich, L., Peugeot, C., Tshimanga, R., and Lachassagne, P.: ADHI: the African Database of Hydrometric Indices (1950–2018), Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, 2021. a
Trudel, M., Doucet-Généreux, P.-L., and Leconte, R.: Assessing river
low-flow uncertainties related to hydrological model calibration and
structure under climate change conditions, Climate, 5, 19, https://doi.org/10.3390/cli5010019, 2017. a
Valéry, A., Andréassian, V., and Perrin, C.: “As simple as possible
but not simpler”: What is useful in a temperature-based snow-accounting
routine? Part 2–Sensitivity analysis of the Cemaneige snow accounting
routine on 380 catchments, J. Hydrol., 517, 1176–1187, 2014. a
van Kempen, G., van der Wiel, K., and Melsen, L. A.: The impact of hydrological model structure on the simulation of extreme runoff events, Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, 2021. a
Velázquez, J. A., Troin, M., Caya, D., and Brissette, F.: Evaluating the
time-invariance hypothesis of climate model bias correction: implications for
hydrological impact studies, J. Hydrometeorol., 16, 2013–2026,
2015. a
Vetter, T., Reinhardt, J., Flörke, M., van Griensven, A., Hattermann, F.,
Huang, S., Koch, H., Pechlivanidis, I. G., Plötner, S., Seidou, O.,
et al.: Evaluation of sources of uncertainty in projected hydrological
changes under climate change in 12 large-scale river basins, Climatic Change,
141, 419–433, 2017. a, b, c
Vila, D. A., De Goncalves, L. G. G., Toll, D. L., and Rozante, J. R.:
Statistical evaluation of combined daily gauge observations and rainfall
satellite estimates over continental South America, J. Hydrometeorol., 10, 533–543, 2009. a
Voisin, N., Wood, A. W., and Lettenmaier, D. P.: Evaluation of precipitation
products for global hydrological prediction, J. Hydrometeorol., 9,
388–407, 2008. a
Von Storch, H. and Zwiers, F. W.: Statistical analysis in climate research,
Cambridge university press, United Kingdom, 2001. a
Wang, H.-M., Chen, J., Xu, C.-Y., Zhang, J., and Chen, H.: A framework to
quantify the uncertainty contribution of GCMs over multiple sources in
hydrological impacts of climate change, Earth's Future, 8, e2020EF001602, https://doi.org/10.1029/2020ef001602, 2020. a
Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A strategy
for diagnosing and interpreting hydrological model nonstationarity, Water
Resour. Res., 50, 5090–5113, 2014. a
Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in climate
change impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, https://doi.org/10.1029/2005wr004065, 2006. a
Wu, Z., Xu, Z., Wang, F., He, H., Zhou, J., Wu, X., and Liu, Z.: Hydrologic
evaluation of multi-source satellite precipitation products for the upper
Huaihe River Basin, China, Remote Sens., 10, 840, https://doi.org/10.3390/rs10060840, 2018. a
Youssef, H., Simon, G., Younes, F., Ghani, C., and Vincent, S.: Rainfall-Runoff
modeling in a semi-arid catchment with presence of snow. The Rheraya wadi
case study (Marrakech, Morocco), EGUGA, p. 5214, Vienna, Austria, 2018. a
Yu, X., Bhatt, G., Duffy, C., and Shi, Y.: Parameterization for distributed
watershed modeling using national data and evolutionary algorithm, Comput. Geosci., 58, 80–90, 2013. a
Zhao, F., Veldkamp, T. I., Frieler, K., Schewe, J., Ostberg, S., Willner, S.,
Schauberger, B., Gosling, S. N., Schmied, H. M., Portmann, F. T., et al.: The
critical role of the routing scheme in simulating peak river discharge in
global hydrological models, Environ. Res. Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250, 2017. a
Zhu, H., Li, Y., Huang, Y., Li, Y., Hou, C., and Shi, X.: Evaluation and
hydrological application of satellite-based precipitation datasets in driving
hydrological models over the Huifa river basin in Northeast China,
Atmos. Res., 207, 28–41, 2018. a
Short summary
It is not known how much uncertainty the choice of a reference data set may bring to impact studies. This study compares precipitation and temperature data sets to evaluate the uncertainty contribution to the results of climate change studies. Results show that all data sets provide good streamflow simulations over the reference period. The reference data sets also provided uncertainty that was equal to or larger than that related to general circulation models over most of the catchments.
It is not known how much uncertainty the choice of a reference data set may bring to impact...