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Abstract. Climate change impact studies require a refer-
ence climatological dataset providing a baseline period to
assess future changes and post-process climate model bi-
ases. High-resolution gridded precipitation and temperature
datasets interpolated from weather stations are available in
regions of high-density networks of weather stations, as is
the case in most parts of Europe and the United States. In
many of the world’s regions, however, the low density of
observational networks renders gauge-based datasets highly
uncertain. Satellite, reanalysis and merged product datasets
have been used to overcome this deficiency. However, it
is not known how much uncertainty the choice of a ref-
erence dataset may bring to impact studies. To tackle this
issue, this study compares nine precipitation and two tem-
perature datasets over 1145 African catchments to evaluate
the dataset uncertainty contribution to the results of climate
change studies. These deterministic datasets all cover a com-
mon 30-year period needed to define the reference period
climate. The precipitation datasets include two gauge-only
products (GPCC and CPC Unified), two satellite products
(CHIRPS and PERSIANN-CDR) corrected using ground-
based observations, four reanalysis products (JRA55, NCEP-
CFSR, ERA-I and ERA5) and one merged gauged, satellite
and reanalysis product (MSWEP). The temperature datasets
include one gauged-only (CPC Unified) product and one re-
analysis (ERA5) product.

All combinations of these precipitation and temperature
datasets were used to assess changes in future streamflows.
To assess dataset uncertainty against that of other sources
of uncertainty, the climate change impact study used a top-
down hydroclimatic modeling chain using 10 CMIP5 (fifth

Coupled Model Intercomparison Project) general circulation
models (GCMs) under RCP8.5 and two lumped hydrologi-
cal models (HMETS and GR4J) to generate future stream-
flows over the 2071–2100 period. Variance decomposition
was performed to compare how much the different uncer-
tainty sources contribute to actual uncertainty.

Results show that all precipitation and temperature
datasets provide good streamflow simulations over the ref-
erence period, but four precipitation datasets outperformed
the others for most catchments. They are, in order, MSWEP,
CHIRPS, PERSIANN and ERA5. For the present study, the
two-member ensemble of temperature datasets provided neg-
ligible levels of uncertainty. However, the ensemble of nine
precipitation datasets provided uncertainty that was equal to
or larger than that related to GCMs for most of the stream-
flow metrics and over most of the catchments. A selec-
tion of the four best-performing reference datasets (cred-
ibility ensemble) significantly reduced the uncertainty at-
tributed to precipitation for most metrics but still remained
the main source of uncertainty for some streamflow metrics.
The choice of a reference dataset can therefore be critical
to climate change impact studies as apparently small differ-
ences between datasets over a common reference period can
propagate to generate large amounts of uncertainty in future
climate streamflows.
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1 Introduction

General circulation models (GCMs) and Earth system mod-
els (ESMs) are the primary tools used to simulate the re-
sponse of the global climate system to increases in green-
house gas concentrations and to generate future climate pro-
jections. GCMs are complex mathematical representations of
the physical and dynamical processes governing atmospheric
and oceanic circulations as well as the interactions with the
land surface. In order to reduce the computational burden,
which can be considerable, GCMs represent the Earth with
a grid that has a relatively coarse spatial resolution (IPCC,
2001). Consequently, GCM projections cannot be used di-
rectly for fine-scale climate impact studies. Statistical and
empirical or dynamical downscaling techniques have, thus,
been commonly used to address this scale mismatch. In ad-
dition, climate model outputs are always biased, and the ex-
tent of these biases can be evaluated through a comparison
against observations over a common reference period. A bias
correction procedure is therefore generally performed in ad-
dition to the downscaling step, and biases are assumed to be
invariant in time when the correction is applied to future cli-
mate projections (Velázquez et al., 2015). Although a two-
step downscaling bias correction approach is preferable in
most cases, a single instance of bias correction is sometimes
used to account for both scale mismatch and GCM biases.
While this may be acceptable when the scale difference is
small (e.g., when using catchment-averaged values), recent
studies have shown that bias correction has limited down-
scaling skills (Maraun, 2016).

Statistical downscaling and bias correction approaches pri-
marily rely on hydrometeorological observations over a his-
torical reference period. It is, therefore, primordially impor-
tant that the observed reference dataset represents the true
climate state as closely as possible. For this task, ground
stations remain the standard and most accurate and trusted
source of weather data (New et al., 2001; Nicholson, 2013).
However, the spatial distribution of these stations varies
widely across the globe, and coverage is often sparse and
even deficient in many parts of the world outside of Europe
and the USA. Even in well-covered regions, gauge data are
subject to many problems, such as missing data, precipita-
tion undercatch and inhomogeneities related to a variety of
issues such as equipment change, station relocation and land
surface modifications near each station (Kidd et al., 2017;
Peterson et al., 1998).

In recent decades, extensive efforts have been devoted to
the development and improvement of gridded global and
quasi-global climate datasets to overcome the limitations of
gauge stations. These datasets provide meteorological record
time series with continuous spatiotemporal coverage and,
typically, no missing data. However, various error sources
are inherent in these datasets, thus also bringing uncertainty
to the data (Voisin et al., 2008). Thus, choosing an appropri-
ate reference dataset for climate change impact studies is an

important concern, and this is especially so in regions with
sparse ground station coverage.

According to Huth (2004), “For estimates based on down-
scaling of general circulation model (GCM) outputs, dif-
ferent levels of uncertainty are related to (1) GCM uncer-
tainty or intermodel variability, (2) scenario uncertainty or
inter-scenario variability, (3) different realizations of a given
GCM due to parameter uncertainty (inter-model variability)
and (4) uncertainty due to downscaling methods.” In most
climate change impact studies, it is generally assumed that
GCMs are the major source of uncertainty (Mpelasoka and
Chiew, 2009; Kay et al., 2009; Vetter et al., 2017). Row-
ell (2006) compared the effect of different sources of un-
certainty using the initial condition ensembles of different
GCMs, greenhouse gases emission scenarios (GHGESs) and
regional circulation models (RCMs) on changes in seasonal
precipitation and temperature in the United Kingdom. The
results indicated that the largest uncertainty comes from
the GCM choice. Minville et al. (2008) used 10 equally
weighted climate projections derived from a combination of
five GCMs, two GHGES and a single downscaling method
for downscaling to investigate the uncertainty envelope of
future hydrologic variables. Their results showed that the
uncertainty related to the GCM choice is dominant. These
results have also been confirmed by several studies (Prud-
homme and Davies, 2009; Nóbrega et al., 2011; Dobler et al.,
2012). Other studies have assessed other sources of uncer-
tainty such as GHGESs (Prudhomme et al., 2003; Kay et al.,
2009; Chen et al., 2011), the downscaling method (Wilby
and Harris, 2006; Khan et al., 2006) and hydrological mod-
eling (Bae et al., 2011; Vetter et al., 2017). Recent studies
have also looked at the uncertainty related to the choice of
the impact model (Giuntoli et al., 2018; Krysanova et al.,
2018). From these studies, a more complex picture emerges,
in which the main source of uncertainty may vary, depend-
ing on geographical location and metric under study. Dataset
uncertainty has been assessed in numerous studies, either by
direct intercomparison between datasets (Vila et al., 2009;
Andermann et al., 2011; Romilly et al., 2011; Jiang et al.,
2012; Chen et al., 2014; Prakash et al., 2018; Nashwan and
Shahid, 2019) or by using hydrological modeling (Behrangi
et al., 2011; Beck et al., 2017; Wu et al., 2018; Zhu et al.,
2018; Tarek et al., 2020). However, to the best of our knowl-
edge, the uncertainty of gridded datasets has not been evalu-
ated against other sources of uncertainties when performing
climate change impact studies. The objective of this study
is, therefore, to assess the impact of the choice of a given
reference dataset on the global uncertainty chain of climate
change impact studies. Since this is of particular concern to
regions with sparse weather station coverage, this study is
conducted over Africa.
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2 Study region and data

2.1 Study region

2.1.1 Geographic situation

Africa is the second-largest and second most populous con-
tinent in the world. It covers a land area of about 30.3 mil-
lion km2, including adjacent islands, which represents 6 %
of Earth’s total surface area and 20.4 % of its total land area
(Mawere, 2017). Deserts and dry lands cover 60 % of its en-
tire surface (Prăvălie, 2016). The average elevation of Africa
is almost 600 m above sea level, roughly close to the average
elevations of North and South America (Atrax, 2016). Gen-
erally, higher-elevation areas lie to the east and south, while
a progressive decrease in altitude towards the north and west
is apparent.

The African continent can be divided into 25 major hydro-
logical basins. Generally speaking, the main drainage for all
of the continent’s basins is towards the north and west and,
ultimately, into the Atlantic Ocean. About 95 % of its streams
are drained through permanent rivers. In some arid areas (i.e.,
northwestern Sahara desert), drainage is sometimes absent or
masked by sand seas. Roughly 60 % of the African continent
is drained by 10 large rivers (Congo, Limpopo, Niger, Nile,
Ogooue, Orange, Senegal, Shebelle, Volta and Zambezi) and
their tributaries (Paul et al., 2014).

2.1.2 Climate profile

Africa is the hottest continent on Earth and is the area that
has seen the highest ever recorded land surface temperature
(58 ◦C in Libya; El Fadli et al., 2013). The continent is char-
acterized by highly variable climates that range from tropi-
cal to subarctic on its highest peaks. According to the Köp-
pen climate classification (Köppen, 1900), the northern half
is mainly classified as dry (group B), whereas the central
and southern areas contain both savannah plains and dense
forests with tropical and humid subtropical climates (groups
A and C), with a semi-arid climate in between (El Fadli
et al., 2013). These wide climate ranges are characterized by
a wide variety of precipitation extremes, including droughts
and floods. Droughts occur mostly in the Sahel and in some
parts of southern Africa, whereas flooding is most prevalent
in the southern and eastern regions. Looking at the more
recent hydrological climate classification of Knoben et al.
(2018), Africa can be classified as a no-snow continent, with
a strong precipitation seasonality between the tropics and a
high aridity index in the extratropical zones, as well as along
the coast of the Indian Ocean in the tropical band.

2.2 Data

This project used several datasets built from climate models,
observed precipitation, temperature and streamflow, as well

as catchment boundaries. These are described in the follow-
ing four subsections.

2.2.1 General circulation models (GCMs)

All GCMs used in this study were part of the Coupled Model
Intercomparison Project Phase 5 (CMIP5; Taylor et al.,
2012). Long historical climate simulations (1850–2005) and
future climate projections (up to 2100 and beyond) for four
representative concentration pathways (RCPs) are included
in the CMIP5 database.

A total of 10 CMIP5 GCMs from 10 different modeling
centers were selected for this study, as shown in Table 1.
They were selected as a subset of the GCMs used to set up
the North American Climate Change and Hydroclimatology
(NAC2H) database (Arsenault et al., 2020). The number of
GCMs (10) was selected as a compromise between having
an accurate representation of GCM climate sensitivity vari-
ability and keeping the large computational burden of this
project reasonable. All GCM data were extracted over the
1983–2012 and 2071–2100 future periods under the RCP8.5
emission scenario.

2.2.2 Gridded precipitation and temperature datasets

The precipitation and temperature dataset selection was
made on the basis of a high spatial resolution, daily (or
higher) temporal resolution and of the availability of at least
30 years of data covering the same time period in order to
properly define the reference climate. Some recent datasets
that provide global and near-global rainfall information at
finer spatial and temporal resolutions, e.g., the Integrated
Multi-satellitE Retrievals for GPM (IMERG; Huffman et al.,
2015) and the Global Satellite Mapping of Precipitation
(GSMaP; Okamoto et al., 2005), were left out because their
temporal coverage was too short to properly represent the
mean climate over the reference period.

According to above criteria, nine precipitation and two
temperature datasets were selected for this study. The precip-
itation datasets include two gauge-only products, two satel-
lite products corrected using ground-based observations, four
reanalysis products and one gauge, satellite, and reanaly-
sis merged product. The temperature datasets include one
gauge-only and one reanalysis product as shown in Table 2.

2.2.3 Observed streamflow data

The observed streamflow records were obtained from the
Global Runoff Data Centre (GRDC) archive. The GRDC is
arguably the most complete global discharge database pro-
viding free access to river discharge data (Fekete and Vörös-
marty, 2007). The database provides streamflow records col-
lected from 9213 stations across the globe, with an aver-
age temporal coverage of 42 years per station (Do et al.,
2017). It is operated under the World Meteorological Organi-
zation (WMO) umbrella to provide broad hydrological data
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Table 1. List of chosen GCMs, research centers and spatial resolutions.

No. Models Research center Spatial resolution

1 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, China 2.79◦
× 2.81◦

2 BNU-ESM College of Global Change and Earth System Science, Beijing Normal University, China 2.79◦
× 2.81◦

3 CanESM2 Canadian Center for Climate Modeling and Analysis, Canada 2.79◦
× 2.81◦

4 CCSM4 National Center of Atmospheric Research, USA 0.94◦
× 1.25◦

5 CMCC-CESM Euro-Mediterranean Center on Climate Change, Italy 3.44◦
× 3.75◦

6 CNRM-CM5 National Centre for Meteorological Research, France 1.40◦
× 1.40◦

7 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.79◦
× 2.81◦

8 INMCM4 Institute of Numerical Mathematics of the Russian Academy of Sciences, Russia 1.5◦
× 2.0◦

9 MIROC5 Atmosphere and Ocean Research Institute (University of Tokyo), National Institute for
Environmental Studies and Japan Agency for Marine-Earth Science and Technology,
Japan

1.40◦
× 1.40◦

10 MRI-CGCM3 Meteorological Research Institute, Japan 1.12◦
× 1.125◦

Table 2. The selected global gridded datasets.

No. Short Data Spatial Spatial Temporal Temporal
name source resolution coverage resolution coverage

Precipitation datasets

1 CPC Unified Gauge 0.5◦ Global d 1979–present
2 GPCC Gauge 1.0◦ Global d 1982–2016
3 PERSIANN-CDR (V1R1) Gauge, satellite 0.25◦

±60◦ lat. 6 h 1983–2012
4 CHIRPS V2.0 Gauge, satellite 0.05◦

±50◦ lat. d 1981–present
5 NCEP-CFSR Reanalysis 0.5◦ Global 6 h 1979–2012
6 ERA-Interim Reanalysis 0.75◦ Global 3 h 1979–August 2019
7 ERA5 Reanalysis 0.25◦ Global h 1979–2017
8 JRA-55 Reanalysis 0.5625◦ Global 3 h 1959–present
9 MSWEP V1.2 Gauge, satellite and reanalysis 0.25◦ Global 3 h 1979–2015

Temperature datasets

1 CPC Unified Gauge 0.5◦ Global d 1979-present
2 ERA5 Reanalysis 0.25◦ Global h 1979–2017

to support the scientific research community. GRDC data
have been widely used in various hydrological studies, such
as those examining hydrological model calibrations (Milli-
man et al., 2008; Hunger and Döll, 2008; Donnelly et al.,
2010; Haddeland et al., 2011), or as a benchmark to compare
simulated streamflows (Trambauer et al., 2013; Zhao et al.,
2017). The streamflow records in the GRDC database have
all undergone a quality control process, but there is always
the possibility that some level of regulation may affect the
data (Tramblay et al., 2020). No direct homogeneity testing
was performed to detect potential changes due to regulation,
but an indirect quality assessment was done through the hy-
drological modeling performance during the calibration pro-
cess.

2.2.4 Watersheds boundaries data

The HydroSHEDS (Hydrological data and maps based on the
SHuttle Elevation Derivatives at multiple Scales) database is
a freely available global archive, developed through a World
Wildlife Fund (WWF) program, that uses a hydrologically
corrected digital elevation model to provide hydrographic
information for regional and global studies (Lehner et al.,
2008). In addition, it applies a consistent methodology us-
ing geographic information system (GIS) technology to pro-
vide watershed polygons for more than 7000 GRDC gauging
stations. Figure 1 shows watershed polygon layers at differ-
ent spatial scales for the African continent. The vector layer
(Lev05), which consists of 1145 watersheds, was chosen to
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be used in this study. It was selected as a compromise be-
tween having a sensible number of watersheds and keeping
the large computational burden of this project reasonable.

3 Methodology

Figure 2 presents the methodological framework for this
study. A large sample hydrological climate change impact
study is performed over 1145 African catchments. It uses the
standard top-down approach in a modeling chain, which con-
sists of 10 GCMs, two hydrological models, two tempera-
ture and nine precipitation datasets for a total of 360 possible
combinations. A single GHGES (RCP8.5), a single climate
projection for each GCM and a single downscaling method
(see below) are used, since the focus of this work is not on
conducting a complete uncertainty chain study. The uncer-
tainty related to the reference dataset will, therefore, be com-
pared to that of the climate model ensemble and against that
of both hydrological models. These two sources are gener-
ally considered to be the most important in climate change
impact studies (e.g., Giuntoli et al., 2018; Krysanova et al.,
2018). For each catchment, 360 30 year streamflow time se-
ries are generated for both the reference (1983–2012) and
future (2071–2100) time periods. A total of six streamflow
metrics are computed for each of these time series. An n di-
mensional analysis of variance is performed to partition the
uncertainty linked to the four selected groups of components
of the uncertainty modeling chain, namely precipitation and
temperature datasets and GCMs and hydrological models.

Both hydrological models were calibrated on all catch-
ments for all 18 combinations of reference datasets (two tem-
perature datasets × nine precipitation datasets), for a total of
41 220 independent hydrological model calibrations. Com-
bining different – and somewhat independent – data sources
for temperature and precipitation raises potential issues about
the mass and energy balance. Most of the products used in
this work originate from a gridding process that is indepen-
dently done for precipitation and temperature, which, there-
fore, do not take temporal correlations between both vari-
ables into account. Most precipitation products are also de-
veloped independently of temperature. Reanalyses are the
most consistent dataset with respect to energy budget and wa-
ter balance. However, even though the weather model of the
reanalysis is entirely physically coherent, the data assimila-
tion does not preserve this physical coherency and, therefore,
reanalysis does not conserve water balance. The combination
of precipitation and temperature datasets is therefore unlikely
to be problematic. More details about the calibration process
are described later in Sect. 3.1.3.

The watershed boundaries for the African continent
were extracted from the HydroSHEDS database. Streamflow
records from the GRDC database were used to calibrate the
hydrological models and to evaluate the hydrological model-
ing performance. In this study, 350 stations were chosen from

the GRDC database based on three criteria. First, stations
should have data for the 1983–2012 study period. Second,
stations that have fewer than 5 consecutive years of data dur-
ing this period were excluded. Finally, all the stations should
be compatible with the selected HydroSHEDS catchments.
In order to include additional catchments to allow for a bet-
ter spatial coverage over the African continent, an additional
795 catchments (the remaining catchments from the Lev05
layer of Fig. 1) were selected and an additional regionaliza-
tion step was performed to generate streamflows at these 795
catchments. The climatological data from nine precipitation
and two temperature datasets were then extracted for each of
these 1145 catchments. The main methodological steps are
described in Fig. 2.

3.1 Hydrological modeling

Given the large-scale nature of this study, distributed and
physically based models were not considered. A total of two
lumped hydrological models, GR4J and HMETS, were se-
lected and calibrated over each of the 350 gauged catch-
ments. The two hydrological models have been shown to per-
form well in a wide range of studies and over a wide range
of climate zones (Arsenault et al., 2018; Essou and Brissette,
2013; Gosset et al., 2013; Martel et al., 2017; Simonneaux
et al., 2008; Tarek et al., 2020, a; Valéry et al., 2014).

3.1.1 The GR4J hydrological model

The GR4J (Génie Rural à 4 paramètres Journalier) model is a
four-parameter lumped and conceptual rainfall-runoff model
(Perrin et al., 2003). This model has shown overall good per-
formance in several studies across the globe (Aubert et al.,
2003; Raimonet et al., 2018; Riboust et al., 2019; Westra
et al., 2014; Youssef et al., 2018). The model requires daily
precipitation, temperature and potential evapotranspiration
(PET) as inputs to simulate the streamflow. The Oudin for-
mulation (Oudin et al., 2005) was used in the present study
to compute the daily PET series as it was shown to be simple
and efficient.

3.1.2 The HMETS hydrological model

The HMETS (Hydrological Model – École de technologie
supérieure; Martel et al., 2017) hydrological model is more
complex than GR4J, with 21 model parameters. It has four
reservoirs (surface runoff, subsurface flow from the vadose
zone reservoir, delayed runoff from infiltration and ground-
water flow from the phreatic zone reservoir). HMETS uses
the same Oudin PET formulation but with scaling parame-
ters to control the mass balance.

3.1.3 Hydrological model calibration

The nine precipitation and two temperature datasets were
combined in their 18 possible arrangements for analysis pur-
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Figure 1. Sample of the different vector layers of watersheds on the African continent. Each layer has a different number of watersheds,
depending on the required scale.

Figure 2. Overview of the various methodological steps implemented in this study.
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poses. Due to the large number of calibrations to be per-
formed (41 220 model calibrations), an automatic model pa-
rameter calibration approach was selected. The covariance
matrix adaptation evolution strategy (CMAES) algorithm
was chosen because of its flexibility and robustness (Hansen
et al., 2003). CMAES has been shown to be one of the best
and fastest automatic calibration algorithms available (Arse-
nault et al., 2014; Yu et al., 2013).

All 30 years were used for calibration, and no validation
step was performed, following the work of Arsenault et al.
(2018). They showed that validation and calibration skills
are not necessarily correlated, and that adding more years to
the calibration dataset improves the hydrological model per-
formance and robustness. The Arsenault et al. (2018) study
was performed on catchments which showed no signs of
nonstationarity. We applied the same methodology here de-
spite foregoing any testing for homogeneity. For regional-
ization purposes, the maximum parameter identifiability was
deemed preferable and using a longer time period maximized
the likelihood of parameter identifiability. The same also
holds for simulation in that, in the absence of any knowl-
edge a priori of the impacts of climate change, using the
entire parameter set is prudent as it protects against highly
variable changing conditions in the future. The calibration
objective function was the Kling–Gupta efficiency (KGE)
metric, introduced by Gupta et al. (2009) and modified by
Kling et al. (2012). It is defined as a combination of equally
weighted bias, variance and correlation aggregate metrics.
The KGE values theoretically range from negative infinity,
implying an extremely poor performance of the model, all
the way to one, suggesting a perfect performance. Pechli-
vanidis and Arheimer (2015) divided the KGE values into
three performance groups, i.e., bad (KGE < 0.4), acceptable
(0.4 ≤ KGE < 0.7) and good (KGE ≥ 0.7).

3.2 Regionalization

The transfer of hydrological information (i.e., model param-
eters or streamflow) from one catchment (gauged) to an-
other (ungauged) is known as regionalization (Razavi and
Coulibaly, 2013). Regionalization can be conducted us-
ing the following two methods: (1) rainfall–runoff mod-
els or the model-dependent method, which typically trans-
fers the model parameters from one or more gauged wa-
tersheds to an ungauged watershed, and (2) hydrological
model-independent methods, which transfer the streamflow
directly from gauged to ungauged watersheds (Razavi and
Coulibaly, 2013). In this paper, the model-dependent method
was applied as it has been used in several studies and has
shown acceptable results (Merz and Blöschl, 2004; McIn-
tyre et al., 2005; Boughton and Chiew, 2007; Cutore et al.,
2007; Samaniego et al., 2010; Beck et al., 2016; Arsenault
and Brissette, 2014; Saadi et al., 2019).

The three approaches, namely, the spatial proximity (SP),
physical similarity (PS) and multi-linear regression (MLR)

methods (Oudin et al., 2008), have been used to estimate the
model parameters in ungauged catchments. First, the three
approaches were tested to find the best method to apply.
Then, the best-performing precipitation–temperature combi-
nation datasets were used to feed the hydrological models
and simulate the streamflow of the ungauged catchments.
Based on the hydrological modeling performance on the
350 gauged catchments, as represented by the KGE calibra-
tion score, the MSWEP precipitation and ERA5 temperature
datasets were found to be the best combination used in com-
puting the streamflow for the 795 ungauged catchments. This
regionalization study is one of the very few performed over
Africa and will be detailed in another paper. It showed that
the best regionalization methods were consistent with the
ones identified in other regions of the world, and that region-
alization performance was similar to that obtained in studies
elsewhere around the world.

3.3 Bias correction

Most climate change impact studies have been applying uni-
variate bias correction methods to correct climate model out-
puts. Univariate approaches cannot account for the tempo-
ral dependence between precipitation and temperature (and
other variables). For example, if a model has a cold temper-
ature bias and a dry precipitation bias, these biases would be
corrected individually, whereas in reality precipitation and
temperature are correlated (e.g., Wu et al., 2013). Multivari-
ate techniques have been introduced as an alternative to over-
come this deficiency. In this study, the n-dimensional multi-
variate bias correction algorithm (MBCn) was used (Cannon,
2018).

MBCn is an image processing technique extension that
transfers all statistical characteristics between the historical
and projected periods while preserving the change projected
for all quantiles of the distribution. The algorithm consists
of the following three main steps: (1) application of an or-
thogonal rotation to both model and observational data, (2)
correction of the marginal distributions of the rotated model
data using quantile mapping and (3) application of an in-
verse rotation to the results. These three steps are repeated
until the model distribution matches the observational distri-
bution. This computational complexity is one disadvantage
of that method, as it requires several iterations to correct
the projected outputs. However, MBCn is arguably the best-
performing quantile-based method available (Adeyeri et al.,
2020; Meyer et al., 2019).

3.4 Variance analysis

An n-dimensional analysis of variance (ANOVA-N) was
used to quantify the contribution of the different uncertainty
sources to the overall variance (Von Storch and Zwiers,
2001). This method has been applied in many previous stud-
ies for this purpose (Addor et al., 2014; Bosshard et al., 2013;
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Trudel et al., 2017). For each catchment, 360 values for each
metric are obtained, each related to a unique combination of
one GCM, one precipitation dataset, one hydrology model
and one temperature dataset. The variance analysis attributes
the percentage of the total variance of this vector of 360 val-
ues, separating the main effects (the independent contribu-
tion of each of the four components) and the interactions be-
tween these components. The interactions imply that the be-
havior of one source depends on another source (for exam-
ple, the precipitation dataset may generate lots of variance
with some GCM but not for others). Computing the main
effect and first-order interactions is relatively cheap, compu-
tationally speaking, but higher orders (which typically carry
much less variance) become exponentially costlier. For the
four uncertainty components under study (GCMs, precipi-
tation and temperature datasets and hydrological models), a
total of 11 variance components can therefore be computed,
namely four main effect components and six first-order, three
second-order and one third-order interaction components.

The ANOVA was performed for six streamflow metrics
out of the 51 metrics defined in Arsenault et al. (2020) for
each of the 1145 catchments. These six metrics cover a wide
range of streamflow conditions, i.e., mean annual (mean Q),
seasonal (winter Q and summer Q) values, the 5th and 95th
distribution quantiles (QQ5 and QQ95, respectively), as well
as annual daily extreme (QX1) metrics.

4 Results

This section outlines the main findings of the work. Fig-
ure 3 presents the calibration results for both hydrological
models using all possible combinations of the nine precipita-
tion and two temperature datasets. Each box plot consists of
350 KGE values corresponding to the calibration result for
each of the 350 selected gauged catchments. Each box ex-
tends from the 25th quantile to the 75th quantile, with the
median displayed as the red line within that range. The top
and bottom whiskers (where shown) represent highest and
lowest values. Red crosses are considered statistical outliers.

Results show that both hydrological models perform well,
but that there are important differences between datasets.
HMETS performs better than GR4J, with respective over-
all mean KGEs of 0.58 and 0.41. All the precipitation and
temperature datasets result in acceptable median KGE simu-
lations Pechlivanidis and Arheimer (2015).

Based on the models’ calibration performance, both tem-
perature datasets perform similarly across all combinations,
with ERA5 generally slightly outperforming CPC. Figure
3 clearly shows that most of the variability seen originates
from the precipitation datasets; four precipitation datasets
are ahead of the field. They are, in order of performance,
the merged product MSWEP, followed by the two satellite
datasets, CHIRPS and PERSIANN, and the ERA5 reanalysis
dataset. The gauge-based precipitation datasets (e.g., GPCC

and CPC) and the ERA-I reanalysis follow with a similar per-
formance. Finally, the CFSR and JRA55 reanalysis are the
worst-performing products for hydrological model calibra-
tion.

Table 3 presents the main results of the ANOVA for the
2071–2100 period for the gauged catchments. It shows the
relative variance for all main effect and first-order interac-
tions of the four components of uncertainty under study and
for six streamflow metrics. The variance originating from
second- and third-order interactions are summed up and pre-
sented in the last row. Results show that most of the vari-
ance consistently comes from five sources for all six stream-
flow metrics. They are the precipitation (P) datasets, GCMs,
hydrological models (HMs), interactions between precipita-
tion datasets and GCMs (P-GCM), as well as interactions
between precipitation datasets and hydrological models (P-
HMs).

Table 3 indicates that both the precipitation datasets and
GCMs are the main contributors to variance, including
through interactions (P-GCM). The hydrology models also
generate some uncertainty, particularly through interaction
with the precipitation datasets. All metrics exhibit a simi-
lar pattern, with the exception of the low-flow metric (QQ5),
where precipitation, hydrological models and their interac-
tion components (P-HMs) are dominant and for which GCM
uncertainty is minimal. In almost all cases, the five high-
lighted components represent approximately 85 % of the to-
tal variance. The average amount of variance introduced by
both temperature datasets is less than 0.25 % for all six dif-
ferent streamflow metrics.

To show cross-catchment variability, Fig. 4 shows box
plots of the relative variance attribution results for the five
main contributors to variance, as identified in Table 3, and for
the same six streamflow metrics. The results are also decom-
posed into three parts, i.e., all 1145 catchments (A) and the
350 gauged (G) and 795 ungauged (U) catchments, in order
to ensure that the regionalization process does not introduce
undesirable effects on the results.

Figure 4 shows that the response of the gauged and un-
gauged catchments is very similar across all variance compo-
nents and streamflow metrics, and that no major variance ar-
tifact is introduced by the regionalization step. Consequently,
all further results will only be shown for all 1145 catchments,
with no differentiation made between the gauged and un-
gauged ones.

The results show that there is considerable cross-
catchment variability, as shown by the extent of the box plots,
with GCM and P-GCM interactions being the most important
and most variable contributors to variance. As was shown in
Table 3, the low-flow metric displays a pattern that is very
different to the other five metrics, with HM being impor-
tant and GCM being the lowest. Also, the HM and P-HM
show significant contributions to the uncertainty in the sum-
mer Q metric. There is a relatively large difference between
the two metrics representing high flows (QQ95 and QX1).
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Figure 3. KGE calibration values using the 18 possible combinations of precipitation and temperature datasets, for both hydrological models
(GR4J in blue and HMETS in green) for each of the 350 selected gauged catchments.

Table 3. Mean percentage of variance for six streamflow metrics for 1145 catchments. All main effects (P, GCM, temperature (T ) and HM)
and first-order interactions are shown in rows 3 to 12. The last row sums up the second- and third-order elements’ contribution to variance.
QQ5 and QQ95 are, respectively, the 5th and 95th quantiles of streamflow distribution. QX1 is the 30-year mean of the annual daily maximum
streamflow value. The rows in bold outline the main contributors to variance.

Mean relative variance (%)

Mean Q Winter Q Summer Q QQ5 QQ95 QX1 Average

P 21.62 24.12 28.54 34.38 23.17 22.36 25.70
GCM 39.71 24.93 27.29 4.39 39.56 25.82 26.95
T 0.17 0.12 0.09 0.02 0.15 0.04 0.09
HM 5.18 8.43 19.99 21.96 5.59 5.50 10.11
P-GCM 21.55 25.19 10.20 3.42 16.01 26.33 17.12
P-T 0.02 0.01 0.02 0.01 0.02 0.01 0.015
P-HM 7.38 9.72 14.69 31.12 8.17 8.78 12.31
GCM-T 0.01 0.01 0.006 0.0018 0.017 0.005 0.008
GCM-HM 1.30 2.13 1.44 1.36 2.49 3.49 2.04
T -HM 0.0087 0.0098 0.0069 0.0041 0.0189 0.0058 0.009
Others 2.78 5.20 3.46 2.99 4.60 7.58 4.43

While GCM dominates the former, a much larger part of the
uncertainty is transferred to the precipitation dataset (P and
P-GCM) for the latter.

In order to study the impact of spatial variability, Fig. 5
presents the spatial distribution of the relative variance at-
tribution for the five main contributors to variance of Table
3 and all six streamflow metrics. Mean Q, winter Q, QX1
and QQ95 display somewhat similar spatial patterns. Sum-

mer Q and QQ5 metrics display somewhat similar spatial
patterns. The largest precipitation uncertainty (P and P-GCM
interactions) is found in the northern parts of sub-Saharan
Africa, between 0 and 30◦ N. GCM uncertainty appears to
be larger all around the coastlines of Africa. HM uncertainty
is strongest for QQ5, but spatial patterns are fairly consis-
tent across all six streamflow metrics. GCM uncertainty is
strongly different for both summer Q and winter Q, likely
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Figure 4. Box plots of the relative variance attribution results for the five main contributors to overall variance (P, GCM, HM, P-GCM
and P-HM) and six streamflow metrics. Relative variance is shown for all 1145 catchments (A) and 350 gauged (G) and 795 ungauged (U)
catchments.

because of the monsoon pattern. Above 20◦ N, there is gener-
ally less than 100 mm of total annual precipitation, and some
level of care should therefore be taken when analyzing results
in relative contribution to variance. The relative contribution
to variance is not related to absolute mean streamflow values,
and therefore, the color scale is the same for major rivers and
smaller intermittent streams. Many of the catchments above
20◦ N run dry for a large part of the year.

In other words, a variance analysis of a metric with very
little absolute variance could be misleading. Consequently,
Fig. 6 displays the standard deviation of the 360 streamflow
values computed for each streamflow metric and for each wa-
tershed. Therefore, Fig. 6 does not represent the variance
contribution of any given component of the hydroclimatic
chain but represents the total variance of all components
combined. A low value indicates that a streamflow metric
shows little variability across its 360 values. This would be
expected, for example, for catchments with a high aridity in-
dex resulting in very transient flow. The streamflow value for
each metric is normalized per unit area to allow for a com-
parison of large and small watersheds in the same figure. Not
surprisingly, the results demonstrate a larger variance along
the equatorial band where precipitation is largest. This pat-
tern is particularly clear for the QQ95 high-flow metric. The
catchment database is, however, large enough to show some
catchments which exhibit a large variance, even in arid re-
gions above 20◦ N and below 20◦ S.

Since some precipitation datasets are clearly better than
others, based on the hydrological model calibration results, it

may not be entirely fair to compare precipitation uncertainty
to GCM uncertainty. To investigate this further, the uncer-
tainty contribution obtained when using all nine precipitation
datasets is compared to that of three sub-ensembles, as pre-
sented in Table 4. While ensemble 4 is clearly composed of
the best-performing datasets for model calibration, the main
goal here is to investigate the impact of dataset selection and
not the definition of a credibility ensemble, as will be further
discussed later.

Figure 7 presents the box plots of percentages of variance
for each catchment for the five main contributors to variance
for all four precipitation dataset ensembles of Table 4. Unsur-
prisingly, it shows that reducing the size of the precipitation
ensemble results in a consistent decrease in the variance at-
tributed to precipitation. Most of this reduction in variance
comes from the P-GCM interaction term, although there is
also a noticeable decrease in the main effect P component.
The lost precipitation variance is transferred mostly to GCMs
and, to a lesser extent, to hydrological modeling. The ex-
ception is the low-flow QQ5, where most of the variance is
transferred to HM. Most of the drop observed is obtained by
dropping the five worst precipitation datasets (ensemble 4),
as no significant difference is observed between precipitation
ensembles 3 and 4. Even in a reduced ensemble, precipita-
tion datasets still provide between 10 % and 20 % of median
variance and more than 30 % for the low-flow metric (QQ5)
when taking into account the main effect and first-order in-
teraction term.
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Figure 5. Spatial distribution of the five main contributors to variance, with columns showing precipitation (P), GCMs (GCM), hydrological
models (HMs), interactions between precipitation datasets and GCMs (P-GCMs) and interactions between precipitation datasets and hydro-
logical models (P-HMs) for each of the six streamflow metrics. The rows show the mean Q, winter Q, summer Q, the 5th and 95th quantiles
of streamflow distribution (QQ5 and QQ95, respectively) and the 30-year mean of the annual daily maximum streamflow (QX1). Each dot
represents the watershed centroid.
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Figure 6. Standard deviation of discharge per unit area (in cubic meters per second per square kilometer), constructed from 360 values for
each catchment and streamflow metric.

Table 4. List of ensemble of precipitation datasets.

Ensemble No. of Rationale for selection Datasets included datasets excluded
no. precipitation

datasets

1 9 All nine All None

2 7 Mean KGE ≥ 0.65 MSWEP, GPCC, CPC,
CHIRPS, PERSIANN
ERA5 and ERA-I

CFSR and JRA55

3 4 Best in each category
(merged, satellite,
gauge and reanalysis)

MSWEP, CHIRPS,
GPCC and ERA5

CPC, PERSIANN,
ERA-I, CFSR
and JRA55

4 4 Best (four) MSWEP, CHIRPS,
PERSIANN and ERA5

CPC, GPCC, ERA-I,
CFSR and JRA55

Figure 8 presents the spatial distribution of the relative
variance attribution for each of the six streamflow metrics af-
ter including only the four best overall precipitation datasets
(ensemble 4 in Table 4). This is the same as Fig. 5 but with
a reduced precipitation ensemble. Results outline that GCM
uncertainty is the dominant source of uncertainty when using
the reduced precipitation ensemble, with the exception of the
low-flow metric for which hydrological model uncertainty
is dominant. There are, however, significant interactions be-
tween GCM and precipitation for all metrics, especially in
the northern half of the continent. Otherwise, the observed
spatial patterns are similar to the ones presented in Fig. 5.

5 Discussion

Defining a reference climate dataset is an important but diffi-
cult task. A reference climate dataset is used as a benchmark
for monitoring environmental changes and correcting climate
model biases of future climate projections to assess future
impacts of a changing climate. Data from weather stations
are still mostly considered to be the most accurate represen-
tation of the current climate, despite suffering from several
important issues, such as precipitation undercatch and inho-
mogeneities (Peterson et al., 1998). To allow for regular data
coverage and remove missing data, it is now common prac-
tice to interpolate station data onto a regular grid. Such grid-
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Figure 7. Box plots of the five main components of the variance attribution, including precipitation (P), GCMs (G), hydrological models
(H), interaction between precipitation datasets and GCMs (PG) and interaction between precipitation datasets and hydrological models (PH).
Columns represent the four precipitation ensembles of Table 4, while rows represent the six hydrological indices investigated in this study.

ded datasets greatly simplify the processing of meteorologi-
cal data for environmental studies at the regional, continen-
tal and global scales. However, even in regions with a good
weather station coverage, gridded datasets using the same un-
derlying data differ due to the different interpolation methods
(Essou et al., 2016) and typically see an increase in the num-

ber of wet days and a decrease in the frequency of extreme
events (Ensor and Robeson, 2008). In regions with scarce
weather station coverage (such as Africa), interpolation be-
comes extrapolation and is therefore potentially highly un-
reliable. In such cases, environmental studies have had to
rely on additional sources of data, such as satellite and atmo-
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Figure 8. Spatial distribution of the five main contributors to variance (columns) for each of the six streamflow metrics (rows), using the four
best precipitation datasets (ensemble 4 in Table 4). Each dot represents the watershed centroid.
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spheric reanalysis for environmental studies. Several inter-
comparison studies have been done (e.g., Beck et al., 2017;
Essou et al., 2017), including over Africa (Satgé et al., 2020;
Dembélé et al., 2020). These studies outline a complex pic-
ture in which performance depends on scale, climate and data
source and for which no dataset consistently outperforms all
of the others. Because of this, in data-sparse regions such
as Africa, there is not only no commonly agreed upon ref-
erence dataset but there is also no agreement on the optimal
source of climate data (e.g., satellite vs. reanalysis), and dif-
ferent environmental studies have used completely different
datasets. This is particularly problematic for climate change
impact studies since there is no knowledge of how dataset
uncertainty may propagate in the typical hydroclimatic mod-
eling chain. The results presented in this study attempt to an-
swer this question by comparing dataset uncertainty to other
sources of uncertainty, such as that derived from GCMs.

Results show that most of the dataset uncertainty origi-
nates from precipitation. Temperature displays much smaller
spatial and temporal variability than precipitation and can,
therefore, be a lot more reliably interpolated by using the adi-
abatic lapse rate to account for elevation and terrain orienta-
tion in mountain areas. Precipitation interpolation is a much
more challenging problem, which explains why most dataset
intercomparison work has focused on this variable. Based
on KGE performance over a common reference period, all
nine precipitation datasets performed adequately in terms of
hydrological modeling performance, but some clearly per-
formed much better than others. This is in agreement with
the results of Beck et al. (2017) and Beck et al. (2019).
The uncertainty contribution of datasets to future stream-
flow uncertainty was first evaluated using all nine precipi-
tation datasets in conjunction with two temperature datasets,
a sample of 10 GCMs and two hydrological models for a
total of 360 possible element combinations. While this is a
relatively large sample, not all sources of uncertainty were
accounted for. In particular, GHGESs, downscaling and bias
correction were not included in the analysis. In compari-
son, the North American Climate Change and Hydroclima-
tology Dataset (NAC2H) database (Arsenault et al., 2020)
offers 16 000 combinations, allowing the examination of fu-
ture streamflow uncertainty. In this regard, the relative vari-
ance contribution of the climate dataset is best examined in
comparison to that of GCMs, the most studied source of cli-
mate change impact uncertainty. Results outline the impor-
tant and, in some cases, dominant contribution of the pre-
cipitation dataset to the overall uncertainty of future stream-
flows. For all six streamflow metrics presented here, the pre-
cipitation dataset uncertainty was comparable and sometimes
larger than that of the GCMs.

Uncertainty contribution was then studied by retaining
subsets of precipitation datasets and eliminating the least-
performing ones with respect to the chosen KGE metric. This
follows the concept of a credibility ensemble based on care-
fully selecting the best or most robust components of the hy-

droclimatic modeling chain in order to obtain the most cred-
ible uncertainty range (Giuntoli et al., 2018; Maraun et al.,
2017). Results demonstrate a large decrease in contribution
to uncertainty for five of six streamflow metrics. The precipi-
tation dataset remained the largest contributor to uncertainty
for the low-flow metric and still accounted for 10 % to 20 %
of the total variance for the other metrics. Much of the de-
crease in uncertainty was obtained by dropping the worst-
performing datasets rather than keeping the best-performing
ones.

The results presented here indicate that hydrological
model uncertainty is relatively small, with the exception of
the low-flow metric. These results should be taken with cau-
tion because only two hydrological models were used and
also because they both share the same potential evapotranspi-
ration (PET) formula. For climate change impact studies, the
climate sensitivity of PET is now thought to be an important
source of uncertainty for impact studies (Clark et al., 2016),
and the importance of hydrological model uncertainty has
been outlined in many studies (Vetter et al., 2017; Krysanova
et al., 2018; Giuntoli et al., 2018). A better understanding
of how hydrological model components affect uncertainty
would therefore be very valuable for climate change impact
studies (e.g., Dallaire et al., 2021; Duethmann et al., 2020;
van Kempen et al., 2021). Taking the above into considera-
tion, it is therefore likely that the contribution of hydrological
models is underestimated here. The number of components
in a variance attribution study is an important issue. How-
ever, the contribution to variance is related to how dissimilar
the ensemble members are and not strictly to their numbers.
As such, the ensemble with the fewest members can still pro-
vide the largest contribution to variance. There is, therefore,
no need for all ensembles to have the same number of mem-
bers but rather to have enough credible members to cover the
uncertainty. Despite having only two temperature datasets
here, adding more temperature datasets is unlikely to change
the results considering how little uncertainty is present in the
two datasets when compared to other sources. Temperature is
the easiest variable to measure and to extrapolate, especially
when compared to precipitation. It is, therefore, expected that
precipitation uncertainty would normally dwarf the contri-
bution of temperature. Based on previously published work,
10 GCMs is very likely more than enough to frame the uncer-
tainty contribution from this source (e.g., Wang et al., 2020).

The selection of the best-performing precipitation dataset
was evaluated over a reference period using the single metric
of the KGE criterion. This criterion is considered to be a good
metric as it weighs bias, correlation and root mean square er-
ror (RMSE) between simulation and observations, all right-
fully considered to be important attributes of a good hydro-
logical simulation. There are, however, many other metrics
that could have been chosen to perform this comparison,
some of which might be even more important for specific
applications such as floods. For example, the JRA55 and
CFSR reanalyses were at the bottom of the list of the best-
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performing datasets presented here. However, in other stud-
ies, JRA55 was shown to provide the best reanalysis (Odon
et al., 2019), while CFSR was successfully used for precipi-
tation modeling (Khedhaouiria et al., 2018). Clearly, the re-
sults presented in this paper should only be used as intended
(i.e., to study uncertainty related to the choice of a reference
climate dataset) and not as a judgment of the absolute perfor-
mance of each dataset. As mentioned earlier, it is important
to keep in mind that all of the datasets used in this paper gen-
erate adequate streamflow simulations.

It is recommended that reference dataset uncertainty be in-
cluded in climate change impact studies and especially so in
regions with a sparse network of weather stations. We be-
lieve that climate dataset uncertainty can be minimized for
most streamflow metrics using a careful validation and selec-
tion of the best-performing ones. A dataset ensemble should
nonetheless be retained to assess the sensitivity of the impact
study to the choice of a reference dataset. As is the case for
most other elements of the hydroclimatic modeling chain of
future climate change impacts, there is no free lunch in the
sense that there is no single recipe which will be applicable
in all cases. Climate dataset performance is spatially depen-
dent, as shown here and in other studies, and will depend on
the criteria used to assess said performance. In addition, the
relative uncertainty contribution also depends on the catch-
ment location and streamflow metric under study. The im-
portance of first-order interactions in variance analysis, and
especially of interactions between precipitation datasets with
GCMs and with the hydrology models, testify to the com-
plex nature of the propagation of uncertainties in the hydro-
climatic modeling chain. The use of an appropriate credibil-
ity climate dataset ensemble is therefore more than likely to
be catchment related and metric dependent, and some mini-
mum level of upstream validation would be needed to select
the best components.

Some level of guidance for impact modelers can nonethe-
less be offered from the results of this work. Precipitation is
the key driver of dataset uncertainty and should, therefore,
be evaluated in climate change studies alongside the more
traditional sources of uncertainty. In cases where it is not
possible to select multiple precipitation datasets, the results
presented in Fig. 3 and in Tarek et al. (2020a) indicate that
the MSWEP merged product dataset is the best-performing
one, with CHIRPS and ERA5 being the next best. The gauge-
only-based products were clearly not the best-performing
ones over Africa, which is in contrast to a similar study per-
formed over North America (Tarek et al., 2020b). This per-
formance ranking is, however, only based on the KGE cali-
bration metric. While the KGE is a good overall performance
metric, it is possible that using a different performance met-
ric might affect this ranking. Streamflow data also come with
many potential quality issues that must be taken into consid-
eration (e.g., Tomkins, 2014; Hamilton and Moore, 2012).
However, in the overwhelming majority of cases, there are
no competing streamflow datasets from which to study un-

certainty, but flawed streamflow records will impact hydro-
logical model calibration and performance and may, there-
fore, indirectly contribute to hydrological model uncertainty.

6 Conclusions

The main objective of this study was to assess the uncer-
tainty related to the choice of a reference dataset against
that of other sources of uncertainty in climate change impact
studies. This was achieved by performing a large-sample hy-
drological climate change impact study over 1145 African
catchments. The study used nine precipitation and two tem-
perature datasets, along with 10 GCMs and two hydrological
models, for a total of 360 possible combinations. Tempera-
ture data-set-related uncertainty was minimal, with a median
relative contribution to uncertainty of less than 0.25 % for
all six presented streamflow metrics. On the other hand, the
nine precipitation dataset ensembles generated a future un-
certainty equal to or larger than that related to GCMs. Us-
ing a reduced ensemble of the best-performing precipitation
datasets systematically reduced the precipitation dataset un-
certainty but still accounted for 10 % to 20 % of the total vari-
ance for five of the six streamflow metrics and still remained
the main source of uncertainty for the low-flow metric. The
main conclusion of this study is that the choice of a climate
reference dataset can induce significant uncertainty in cli-
mate change impact studies, at least in regions with sparse
weather station coverage.
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