Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-1689-2021
https://doi.org/10.5194/hess-25-1689-2021
Research article
 | 
06 Apr 2021
Research article |  | 06 Apr 2021

Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations

Chuan-An Xia, Xiaodong Luo, Bill X. Hu, Monica Riva, and Alberto Guadagnini

Related authors

Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021,https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Probabilistic modeling of field-scale CO2 generation by carbonate–clay reactions in sedimentary basins
Giulia Ceriotti, Claudio Geloni, Matilde Dalla Rosa, Alberto Guadagnini, and Giovanni Porta
Hydrol. Earth Syst. Sci., 25, 3539–3553, https://doi.org/10.5194/hess-25-3539-2021,https://doi.org/10.5194/hess-25-3539-2021, 2021
Short summary
Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020,https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Interpretation of multi-scale permeability data through an information theory perspective
Aronne Dell'Oca, Alberto Guadagnini, and Monica Riva
Hydrol. Earth Syst. Sci., 24, 3097–3109, https://doi.org/10.5194/hess-24-3097-2020,https://doi.org/10.5194/hess-24-3097-2020, 2020
Short summary
Hierarchical Sensitivity Analysis for Large Scale Process-based Hydrological Modeling with Application in an Amazonian Watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Han Qiu, Dongwei Gui, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-246,https://doi.org/10.5194/hess-2019-246, 2019
Manuscript not accepted for further review

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Stochastic approaches
The effects of rain and evapotranspiration statistics on groundwater recharge estimations for semi-arid environments
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 27, 289–302, https://doi.org/10.5194/hess-27-289-2023,https://doi.org/10.5194/hess-27-289-2023, 2023
Short summary
Characterization of the highly fractured zone at the Grimsel Test Site based on hydraulic tomography
Lisa Maria Ringel, Mohammadreza Jalali, and Peter Bayer
Hydrol. Earth Syst. Sci., 26, 6443–6455, https://doi.org/10.5194/hess-26-6443-2022,https://doi.org/10.5194/hess-26-6443-2022, 2022
Short summary
Influence of low-frequency variability on high and low groundwater levels: example of aquifers in the Paris Basin
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022,https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary
Technical note: Using long short-term memory models to fill data gaps in hydrological monitoring networks
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022,https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Technical note: Discharge response of a confined aquifer with variable thickness to temporal, nonstationary, random recharge processes
Ching-Min Chang, Chuen-Fa Ni, We-Ci Li, Chi-Ping Lin, and I-Hsien Lee
Hydrol. Earth Syst. Sci., 25, 2387–2397, https://doi.org/10.5194/hess-25-2387-2021,https://doi.org/10.5194/hess-25-2387-2021, 2021
Short summary

Cited articles

Alfonzo, M. and Oliver, D. S.: Seismic data assimilation with an imperfect model, Comput. Geosci., 24, 889–905, https://doi.org/10.1007/s10596-019-09849-0, 2020. 
Bauser, H. H., Berg, D., Klein, O., and Roth, K.: Inflation method for ensemble Kalman filter in soil hydrology, Hydrol. Earth Syst. Sci., 22, 4921–4934, https://doi.org/10.5194/hess-22-4921-2018, 2018. 
Bianchi Janetti, E., Riva, M., Straface, S., and Guadagnini, A.: Stochastic characterization of the Montalto Uffugo research site (Italy) by geostatistical inversion of moment equations of groundwater flow, J. Hydrol., 381, 42–51, 2010. 
Bianchi Janetti, E., Guadagnini, L., Riva, M., Guadagnini, A.: Global sensitivity analyses of multiple conceptual models with uncertain parameters driving groundwater flow in a regional-scale sedimentary aquifer, J. Hydrol., 574, 544–556, 2019. 
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteorol. Soc., 140, 1521–1535, 2014. 
Download
Short summary
Our study shows that (i) monitoring wells installed with packers provide the (overall) best conductivity estimates; (ii) conductivity estimates anchored on information from partially and fully screened wells are of similar quality; (iii) inflation of the measurement-error covariance matrix can improve conductivity estimates when a simplified flow model is adopted; and (iv) when compared to the MC-based EnKF, the MEs-based EnKF can efficiently and accurately estimate conductivity and head fields.