Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-1689-2021
https://doi.org/10.5194/hess-25-1689-2021
Research article
 | 
06 Apr 2021
Research article |  | 06 Apr 2021

Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations

Chuan-An Xia, Xiaodong Luo, Bill X. Hu, Monica Riva, and Alberto Guadagnini

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by editor) (24 Feb 2021) by Brian Berkowitz
AR by chuanan Xia on behalf of the Authors (24 Feb 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (24 Feb 2021) by Brian Berkowitz
AR by chuanan Xia on behalf of the Authors (25 Feb 2021)
Download
Short summary
Our study shows that (i) monitoring wells installed with packers provide the (overall) best conductivity estimates; (ii) conductivity estimates anchored on information from partially and fully screened wells are of similar quality; (iii) inflation of the measurement-error covariance matrix can improve conductivity estimates when a simplified flow model is adopted; and (iv) when compared to the MC-based EnKF, the MEs-based EnKF can efficiently and accurately estimate conductivity and head fields.