Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5407-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5407-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Qiang Dai
Key Laboratory of VGE of Ministry of Education, Nanjing Normal
University, Nanjing, China
Department of Civil Engineering, University of Bristol, Bristol, UK
Jingxuan Zhu
Key Laboratory of VGE of Ministry of Education, Nanjing Normal
University, Nanjing, China
Shuliang Zhang
CORRESPONDING AUTHOR
Key Laboratory of VGE of Ministry of Education, Nanjing Normal
University, Nanjing, China
Shaonan Zhu
College of Geographical and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
Dawei Han
Department of Civil Engineering, University of Bristol, Bristol, UK
Guonian Lv
Key Laboratory of VGE of Ministry of Education, Nanjing Normal
University, Nanjing, China
Related authors
No articles found.
Yu Gao, Haipeng Lu, Yaru Zhang, Hengxu Jin, Shuai Wu, Yixuan Gao, and Shuliang Zhang
Nat. Hazards Earth Syst. Sci., 25, 3087–3108, https://doi.org/10.5194/nhess-25-3087-2025, https://doi.org/10.5194/nhess-25-3087-2025, 2025
Short summary
Short summary
This study focuses on the Yangtze River Delta Urban Agglomeration (YRDUA), where we determined flood risk assessment indices across different dimensions, including hazard, exposure, vulnerability, and resilience. We constructed a flood risk assessment model using automated machine learning and the analytic hierarchy process to examine the spatial and temporal changes in flood risk in the region over the past 30 years (1990 to 2020), aiming to provide a scientific basis for flood prevention and resilience strategies in the YRDUA.
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024, https://doi.org/10.5194/nhess-24-3381-2024, 2024
S. Zhu, H. Zhang, Y. Jiang, and X. Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 217–222, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-217-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-217-2022, 2022
Xichao Gao, Zhiyong Yang, Dawei Han, Kai Gao, and Qian Zhu
Hydrol. Earth Syst. Sci., 25, 6023–6039, https://doi.org/10.5194/hess-25-6023-2021, https://doi.org/10.5194/hess-25-6023-2021, 2021
Short summary
Short summary
We proposed a theoretical framework and conducted a laboratory experiment to understand the relationship between wind and the rainfall–runoff process in urban high-rise building areas. The runoff coefficient (relating the amount of runoff to the amount of precipitation received) found in the theoretical framework was close to that found in the laboratory experiment.
Cited articles
Alewell, C., Egli, M., and Meusburger, K.: An attempt to estimate tolerable
soil erosion rates by matching soil formation with denudation in Alpine
grasslands, J. Soil Sediment., 15, 1383–1399,
https://doi.org/10.1007/s11368-014-0920-6, 2015.
Angulo-Martínez, M. and Barros, A.: Measurement uncertainty in
rainfall kinetic energy and intensity relationships for soil erosion
studies: An evaluation using PARSIVEL disdrometers in the Southern
Appalachian Mountain, Geomorpholgy, 228, 28–40,
https://doi.org/10.1016/j.geomorph.2014.07.036, 2015.
Angulo-Martinez, M., Beguería, S., Navas, A., and Machin, J.: Splash
erosion under natural rainfall on three soil types in NE Spain,
Geomorphology, 175, 38–44, https://doi.org/10.1016/j.geomorph.2012.06.016,
2012.
Angulo-Martínez, M., Beguería, S., and Kyselý, J.: Use of
disdrometer data to evaluate the relationship of rainfall kinetic energy and
intensity (KE-I), Sci. Total Environ., 568, 83–94,
https://doi.org/10.1016/j.scitotenv.2016.05.223, 2016.
Atlas, D., Srivastava, R., and Sekhon, R. S.: Doppler radar characteristics
of precipitation at vertical incidence, Rev. Geophys., 11, 1–35,
https://doi.org/10.1029/rg011i001p00001, 1973.
Atlas, D. and Ulbrich, C. W.: Path-and area-integrated rainfall measurement
by microwave attenuation in the 1–3 cm band, J. Appl.
Meteorol., 16, 1322–1331,
https://doi.org/10.1175/1520-0450(1977)016<1322:paairm>2.0.co;2, 1977.
Ballabio, C., Borrelli, P., Spinoni, J., Meusburger, K., Michaelides, S.,
Beguería, S., Klik, A., Petan, S., Janeček, M., Olsen, P., Aalto,
J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Tadić, M. P., Diodato,
N., Kostalova, J., Rousseva, S., Banasik, K., Alewell, C., and Panagos, P.:
Mapping monthly rainfall erosivity in Europe, Sci. Total Environ., 579, 1298–1315,
https://doi.org/10.1016/j.scitotenv.2016.11.123, 2017.
Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops
aloft, J. Atmos. Sci., 33, 851–864,
https://doi.org/10.1175/1520-0469(1976)033<0851:tvasoc>2.0.co;2, 1976.
Benaud, P., Anderson, K., Evans, M., Farrow, L., Glendell, M., James, M. R.,
Quine, T. A., Quinton, J. N., Rawlins, B., Rickson, R. J., and Brazier, R.
E.: National-scale geodata describe widespread accelerated soil erosion,
Geoderma, 371, 114378, https://doi.org/10.1016/j.geoderma.2020.114378, 2020.
Bilotta, G., Grove, M., and Mudd, S.: Assessing the significance of soil
erosion, T. I. Brit. Geogr., 37, 342–345,
https://doi.org/10.1111/j.1475-5661.2011.00497.x, 2012.
Bonta, J.: Development and utility of Huff curves for disaggregating
precipitation amounts, Appl. Eng. Agric., 20, 641,
https://doi.org/10.13031/2013.17467, 2004.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C.,
Alewell, C., Meusburger, K., Modugno, S., Schütt, B., and Ferro, V.,
Bagarello, V., Oost, K. V., Montanarella, L., and Panagos, P.: An assessment
of the global impact of 21st century land use change on soil erosion, Nat. Commun., 8, 1–13, https://doi.org/10.1038/s41467-017-02142-7, 2017.
Brown, B. R., Bell, M. M., and Frambach, A. J.: Validation of simulated
hurricane drop size distributions using polarimetric radar, Geophys.
Res. Lett., 43, 910–917, https://doi.org/10.1002/2015gl067278, 2016.
Brown, L. and Foster, G.: Storm erosivity using idealized intensity
distributions, T. ASAE, 30, 379–386,
https://doi.org/10.13031/2013.31957, 1987.
Carter, C. E., Greer, J., Braud, H., and Floyd, J.: Raindrop characteristics
in south central United States, T. ASAE, 17, 1033–1037,
https://doi.org/10.13031/2013.37021, 1974.
Cintineo, R., Otkin, J. A., Xue, M., and Kong, F.: Evaluating the
performance of planetary boundary layer and cloud microphysical
parameterization schemes in convection-permitting ensemble forecasts using
synthetic GOES-13 satellite observations, Mon. Weather Rev., 142,
163–182, https://doi.org/10.1175/mwr-d-13-00143.1, 2014.
Ćurić, M., Janc, D., Vučković, V., and Kovačević,
N.: The impact of the choice of the entire drop size distribution function
on Cumulonimbus characteristics, Meteorol. Z., 18, 207–222, 2009.
Dai, Q. and Han, D.: Exploration of discrepancy between radar and gauge
rainfall estimates driven by wind fields, Water. Resour. Res., 50,
8571–8588, https://doi.org/10.1127/0941-2948/2009/0366, 2014.
Dai, Q., Bray, M., Zhuo, L., Islam, T., and Han, D.: A scheme for raingauge
network design based on remotely-sensed rainfall measurements, J. Hydrometeorol., 18, 363–379, https://doi.org/10.1175/jhm-d-16-0136.1,
2017.
Dai, Q., Yang, Q., Han, D., Rico-Ramirez, M. A., and Zhang, S.: Adjustment
of radar-gauge rainfall discrepancy due to raindrop drift and evaporation
using the Weather Research and Forecasting model and dual-polarization
radar, Water. Resour. Res., 55, 9211–9233,
https://doi.org/10.1029/2019wr025517, 2019.
Davison, P., Hutchins, M. G., Anthony, S. G., Betson, M., Johnson, C., and
Lord, E. I.: The relationship between potentially erosive storm energy and
daily rainfall quantity in England and Wales, Sci. Total Environ., 344, 15–25, https://doi.org/10.1016/j.scitotenv.2005.02.002,
2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
De Roo, A. P. J., Wesseling, C. G., and Ritsema, C. J.: LISEM: a
single-event physically based hydrological and soil erosion model for
drainage basins. I: theory, input and output, Hydrol. Process., 10,
1107–1117, https://doi.org/10.1002/(sici)1099-1085(199608)10:8<1107::aid-hyp415>3.0.co;2-4, 1996.
Defra: Safeguarding our soils – a strategy for England, Department for
Environment, Food & Rural Affairs, London, UK, available at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69261/pb13297-soil-strategy-090910.pdf (last access: 16 October
2020), 2009.
Doelling, I. G., Joss, J., and Riedl, J.: Systematic variations of
Z–R-relationships from drop size distributions measured in northern Germany
during seven years, Atmos. Res., 47, 635–649,
https://doi.org/10.1016/s0169-8095(98)00043-x, 1998.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107,
https://doi.org/10.1175/1520-0469(1989)046<3077:nsocod>2.0.co;2, 1989.
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno,
G., and Tarpley, J.: Implementation of Noah land surface model advances in
the National Centers for Environmental Prediction operational mesoscale Eta
model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002jd003296, 2003.
Environment Agency: The state of soils in England and Wales, Environment
Agency, Bristol, UK, available at:
http://www.adlib.ac.uk/resources/000/030/045/stateofsoils_775492.pdf (last access: 16 October 2020) 2004.
Evans, R.: Soils at risk of accelerated erosion in England and Wales, Soil Use Manage., 6, 125–131,
https://doi.org/10.1111/j.1475-2743.1990.tb00821.x, 1990.
Fornis, R. L., Vermeulen, H. R., and Nieuwenhuis, J. D.: Kinetic
energy–rainfall intensity relationship for Central Cebu, Philippines for
soil erosion studies, J. Hydrol., 300, 20–32,
https://doi.org/10.1016/j.jhydrol.2004.04.027, 2005.
Gilmore, M. S., Straka, J. M., and Rasmussen, E. N.: Precipitation
uncertainty due to variations in precipitation particle parameters within a
simple microphysics scheme, Mon. Weather Rev., 132, 2610–2627,
https://doi.org/10.1175/mwr2810.1, 2004.
Hanel, M., Máca, P., Bašta, P., Vlnas, R., and Pech, P.: The
rainfall erosivity factor in the Czech Republic and its uncertainty,
Hydrol. Earth. Syst. Sc., 20, 4307–4322,
https://doi.org/10.5194/hess-20-4307-2016, 2016.
Hong, S.-Y., Lim, K.-S. S., Lee, Y.-H., Ha, J.-C., Kim, H.-W., Ham, S.-J.,
and Dudhia, J.: Evaluation of the WRF double-moment 6-class microphysics
scheme for precipitating convection, Adv. Meteorol., 2010, 707253,
https://doi.org/10.1155/2010/707253, 2010.
Hudson, N.: Raindrop size distribution in high intensity storms, Rhod. J. Agr. Res., 1, 6–11, 1963.
Islam, T., Rico-Ramirez, M. A., Thurai, M., and Han, D.: Characteristics of
raindrop spectra as normalized gamma distribution from a Joss–Waldvogel
disdrometer, Atmos. Res., 108, 57–73,
https://doi.org/10.1016/j.atmosres.2012.01.013, 2012.
Janjić, Z. I.: The step-mountain eta coordinate model: further
developments of the convection, viscous sublayer, and turbulence closure
schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:tsmecm>2.0.co;2, 1994.
Johnson, M., Jung, Y., Dawson, D. T., and Xue, M.: Comparison of simulated
polarimetric signatures in idealized supercell storms using two-moment bulk
microphysics schemes in WRF, Mon. Weather Rev., 144, 971–996,
https://doi.org/10.1175/mwr-d-15-0233.1, 2016.
Jones, D. M. A.: The shape of raindrops, J. Atmos. Sci., 16, 511–515, https://doi.org/10.1175/1520-0469(1959)016<0504:TSOR>2.0.CO;2, 1959.
Jung, Y., Xue, M., and Zhang, G.: Simulations of polarimetric radar
signatures of a supercell storm using a two-moment bulk microphysics scheme,
J. Appl. Meteorol. Clim., 49, 146–163,
https://doi.org/10.1175/2009jamc2178.1, 2010.
Kain, J. S.: The Kain–Fritsch convective parameterization: an update,
J. Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:tkcpau>2.0.co;2, 2004.
Kinnell, P. I. A.: Rainfall intensity-kinetic energy relationships for soil
loss prediction, Soil. Sci. Soc. Am. J., 45, 153–155,
https://doi.org/10.2136/sssaj1981.03615995004500010033x, 1981.
Kinnell, P. I. A. and Risse, L. M.: USLE-M: empirical modeling rainfall
erosion through runoff and sediment concentration, Soil. Sci. Soc. Am. J., 62, 1667–1672,
https://doi.org/10.2136/sssaj1998.03615995006200060026x, 1998.
Kumar, P., Kishtawal, C. M., and Pal, P. K.: Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian Region, Theor. Appl. Climatol., 127, 143–151, https://doi.org/10.1007/s00704-015-1629-1, 2017.
Lim, K.-S. S. and Hong, S.-Y.: Development of an effective double-moment
cloud microphysics scheme with prognostic cloud condensation nuclei (CCN)
for weather and climate models, Mon. Weather Rev., 138, 1587–1612,
https://doi.org/10.1175/2009mwr2968.1, 2010.
Lim, Y. S., Kim, J. K., Kim, J. W., Park, B. I., and Kim, M. S.: Analysis of
the relationship between the kinetic energy and intensity of rainfall in
Daejeon, Korea, Quatern. Int., 384, 107–117,
https://doi.org/10.1016/j.quaint.2015.03.021, 2015.
Liu, J., Bray, M., and Han, D.: Exploring the effect of data assimilation by WRF-3DVar for numerical rainfall prediction with different types of storm events, Hydrol. Process., 27, 3627–3640, https://doi.org/10.1002/hyp.9488, 2012.
Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with
size, J. Meteorol., 5, 165–166,
https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948.
McIsaac, G.: Apparent geographic and atmospheric influences on raindrop
sizes and rainfall kinetic energy, J. Soil Water Conserv.,
45, 663–666, 1990.
McManus, J. and Duck, R. W.: Regional variations of fluvial sediment yield
in eastern Scotland, in: Erosion and Sediment Yield: Global and Regional
Perspectives, edited by: Walling, D. and Webb, B., IAHS Press,
Wallingford, UK, 157–161, 1996.
Meshesha, D. T., Tsunekawa, A., and Haregeweyn, N.: Influence of raindrop
size on rainfall intensity, kinetic energy, and erosivity in a sub-humid
tropical area: a case study in the northern highlands of Ethiopia,
Theor. Appl. Climatol., 136, 1221–1231,
https://doi.org/10.1007/s00704-018-2551-0, 2019.
Meshesha, D. T., Tsunekawa, A., Tsubo, M., Haregeweyn, N., and Adgo, E.:
Drop size distribution and kinetic energy load of rainfall events in the
highlands of the Central Rift Valley, Ethiopia, Hydrolog. Sci.
J., 59, 2203–2215, https://doi.org/10.1080/02626667.2013.865030, 2014.
Meshesha, D. T., Tsunekawa, A., Tsubo, M., Haregeweyn, N., and Tegegne, F.:
Evaluation of kinetic energy and erosivity potential of simulated rainfall
using Laser Precipitation Monitor, Catena, 137, 237–243,
https://doi.org/10.1016/j.catena.2015.09.017, 2016.
Met Office: MIDAS UK Hourly Rainfall Data, NCAS British Atmospheric Data Centre, available at: https://catalogue.ceda.ac.uk/uuid/bbd6916225e7475514e17fdbf11141c1 (last access: 15 November 2020), 2006.
Meteorological Office: Met Office Integrated Data Archive System (MIDAS)
land and marine surface stations data (1853-current), NCAS British
Atmospheric Data Centre, available at:
http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0 (last
access: 16 October 2020) 2012.
Mikoš, M., Jošt, D., and Petkovšek, G.: Rainfall and runoff
erosivity in the alpine climate of north Slovenia: a comparison of different
estimation methods, Hydrolog. Sci. J., 51, 115–126,
https://doi.org/10.1623/hysj.51.1.115, 2006.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237, 1997.
Montopoli, M., Marzano, F. S., and Vulpiani, G.: Analysis and synthesis of
raindrop size distribution time series from disdrometer data, IEEE T. Geosci. Remote, 46, 466–478,
https://doi.org/10.1109/tgrs.2007.909102, 2008.
Morgan, R. P. C.: Assessment of soil erosion risk in England and Wales, Soil Use Manage., 1, 127–131,
https://doi.org/10.1111/j.1475-2743.1985.tb00974.x, 1985.
Morrison, H., Milbrandt, J. A., Bryan, G. H., Ikeda, K., Tessendorf, S. A.,
and Thompson, G.: Parameterization of cloud microphysics based on the
prediction of bulk ice particle properties. Part II: Case study comparisons
with observations and other schemes, J. Atmos. Sci.,
72, 312–339, https://doi.org/10.1175/jas-d-14-0066.1, 2015.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics
on the development of trailing stratiform precipitation in a simulated
squall line: Comparison of one-and two-moment schemes, Mon. Weather
Rev., 137, 991–1007, https://doi.org/10.1175/2008mwr2556.1, 2009.
Naipal, V., Reick, C., Pongratz, J., and Van Oost, K.: Improving the global applicability of the RUSLE model – adjustment of the topographical and rainfall erosivity factors, Geosci. Model Dev., 8, 2893–2913, https://doi.org/10.5194/gmd-8-2893-2015, 2015.
Nyssen, J., Vandenreyken, H., Poesen, J., Moeyersons, J., Deckers, J.,
Haile, M., Salles, C., and Govers, G.: Rainfall erosivity and variability in
the Northern Ethiopian Highlands, J. Hydrol., 311, 172–187,
https://doi.org/10.1016/j.jhydrol.2004.12.016, 2005.
O'Neil, D.: The total external environmental costs and benefits of
agriculture in the UK, Environment Agency, Bristol, UK, 2007.
Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva,
S., Tadić, M. P., Michaelides, S., Hrabalíková, M., Olsen, P.,
Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Beguería, S., and Alewell, C.: Rainfall erosivity in Europe, Sci. Total Environ., 511, 801–814, https://doi.org/10.1016/j.scitotenv.2015.01.008,
2015a.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger,
K., Montanarella, L., and Alewell, C.: The new assessment of soil loss by
water erosion in Europe, Environ. Sci. Policy, 54, 438–447,
https://doi.org/10.1016/j.envsci.2015.08.012, 2015b.
Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J.,
Yang, J. E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S. H.,
Hazbavi, Z., Zabihi, M., Larionov, G. A., Krasnov, S. F., Gorobets, A. V.,
Levi, Y., Erpul, G., Birkel, C., Hoyos, N., Naipal, V., Oliveira, P. T. S.,
Bonilla, C. A., Meddi, M., Nel, W., Dashti, H. A., Boni, M., Diodato, N.,
Oost, K. V., Nearing, M., and Ballabio, C.: Global rainfall erosivity
assessment based on high-temporal resolution rainfall records, Sci. Rep.-UK, 7, 1–12, https://doi.org/10.1038/s41598-017-04282-8, 2017.
Park, S. W., Mitchell, J. K., and Bubenzer, G. D.: Splash erosion modeling:
physical analysis, T. ASAE, 25, 357–361,
https://doi.org/10.13031/2013.33535, 1982.
Petan, S., Rusjan, S., Vidmar, A., and Mikoš, M.: The rainfall kinetic
energy–intensity relationship for rainfall erosivity estimation in the
mediterranean part of Slovenia, J. Hydrol., 391, 314–321,
https://doi.org/10.1016/j.jhydrol.2010.07.031, 2010.
Pickering, B. S., Neely III, R. R., and Harrison, D.: The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments, Atmos. Meas. Tech., 12, 5845–5861, https://doi.org/10.5194/amt-12-5845-2019, 2019.
Prigent, C.: Precipitation retrieval from space: An overview, C. R. Geosci., 342, 380-389, https://doi.org/10.1016/j.crte.2010.01.004, 2010.
Renard, K. G., Foster, G. R., Weesies, G., McCool, D., and Yoder, D.:
Predicting soil erosion by water: a guide to conservation planning with the
Revised Universal Soil Loss Equation (RUSLE), United States Department of
Agriculture, Washington, DC, USA, 1997.
Rosewell, C. J.: Rainfall kinetic energy in eastern Australia, J. Appl. Meteorol. Clim. , 25, 1695–1701,
https://doi.org/10.1175/1520-0450(1986)025<1695:rkeiea>2.0.co;2, 1986.
Sanchez-Moreno, J. F., Mannaerts, C. M., Jetten, V., and Löffler-Mang,
M.: Rainfall kinetic energy–intensity and rainfall momentum–intensity
relationships for Cape Verde, J. Hydrol., 454, 131–140,
https://doi.org/10.1016/j.jhydrol.2012.06.007, 2012.
Science and Technology Facilities Council; Chilbolton Facility for Atmospheric and Radio Research; Natural Environment Research Council; and Wrench, C. L.: Chilbolton Facility for Atmospheric and Radio Research (CFARR) Disdrometer Data, Chilbolton Site, NCAS British Atmospheric Data Centre, available at: https://catalogue.ceda.ac.uk/uuid/aac5f8246987ea43a68e3396b530d23e (last access: 15 November 2020), 2003.
Sempere-Torres, D., Porrà, J. M., and Creutin, J. D.: Experimental
evidence of a general description for raindrop size distribution properties,
J. Geophys. Res.-Atmos., 103, 1785–1797,
https://doi.org/10.1029/97jd02065, 1998.
Song, Y., Han, D., and Rico-Ramirez, M. A.: High temporal resolution
rainfall rate estimation from rain gauge measurements, J. Hyydroinfom., 19, 930–941, https://doi.org/10.2166/hydro.2017.054, 2017.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J. Atmos. Sci., 71, 3636–3658,
https://doi.org/10.1175/jas-d-13-0305.1, 2014.
Uplinger, W.: A new formula for raindrop terminal velocity, in: Proceedings
of the 20th Conference on Radar Meteorology, American Meteorological
Society, 30 November–3 December 1981, Boston, MA, USA, 389–391, 1981.
Van Dijk, A. I. J. M., Bruijnzeel, L. A., and Rosewell, C. J.: Rainfall
intensity–kinetic energy relationships: a critical literature appraisal,
J. Hydrol., 261, 1–23,
https://doi.org/10.1016/s0022-1694(02)00020-3, 2002.
Wang, L., Shi, Z., Wang, J., Fang, N., Wu, G., and Zhang, H.: Rainfall
kinetic energy controlling erosion processes and sediment sorting on steep
hillslopes: a case study of clay loam soil from the Loess Plateau, China,
J. Hydrol., 512, 168–176,
https://doi.org/10.1016/j.jhydrol.2014.02.066, 2014.
Weiss, L. L.: Ratio of true to fixed-interval maximum rainfall, J. Hydr. Eng. Div.-ASCE, 90, 77–82, 1964.
Williams, R. G. and Sheridan, J. M.: Effect of rainfall measurement time
and depth resolution on EI calculation, T. ASAE, 34,
402–406, https://doi.org/10.13031/2013.31675, 1991.
Wischmeier, W. H. and Smith, D. D.: Rainfall energy and its relationship to
soil loss, Transactions American Geophysical Union, 39, 285–291,
https://doi.org/10.1029/tr039i002p00285, 1958.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses-a
guide to conservation planning, Department of Agriculture, Washington, DC,
USA, 1978.
Xie, Y., Yin, S., Liu, B., Nearing, M. A., and Zhao, Y.: Models for
estimating daily rainfall erosivity in China, J. Hydrol., 535,
547–558, https://doi.org/10.1016/j.jhydrol.2016.02.020, 2016.
Yang, Q., Dai, Q., Han, D., Chen, Y., and Zhang, S.: Sensitivity analysis of
raindrop size distribution parameterizations in weather research and
forecasting rainfall simulation, Atmos. Res., 228, 1–13,
https://doi.org/10.1016/j.atmosres.2019.05.019, 2019.
Short summary
Rainfall is a driving force that accounts for a large proportion of soil loss around the world. Most previous studies used a fixed rainfall–energy relationship to estimate rainfall energy, ignoring the spatial and temporal changes of raindrop microphysical processes. This study proposes a novel method for large-scale and long-term rainfall energy and rainfall erosivity investigations based on rainfall microphysical parameterization schemes in the Weather Research and Forecasting (WRF) model.
Rainfall is a driving force that accounts for a large proportion of soil loss around the world....