Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5251-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5251-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach
Oliver Miguel López Valencia
CORRESPONDING AUTHOR
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Kasper Johansen
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Bruno José Luis Aragón Solorio
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Rasmus Houborg
Planet, Analytics Engineering, San Francisco, CA 94107, USA
Yoann Malbeteau
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Samer AlMashharawi
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Muhammad Umer Altaf
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Essam Mohammed Fallatah
National Center for Water Research and Studies, Ministry of Environment Water and Agriculture, Riyadh, Saudi Arabia
Hari Prasad Dasari
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Ibrahim Hoteit
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Matthew Francis McCabe
Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Related authors
No articles found.
Alexander Ukhov, Georgiy Stenchikov, Jordan Schnell, Ravan Ahmadov, Umberto Rizza, Georg Grell, and Ibrahim Hoteit
EGUsphere, https://doi.org/10.5194/egusphere-2025-4124, https://doi.org/10.5194/egusphere-2025-4124, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Volcanic eruptions are natural hazards impacting aviation, environment, and climate. Here, we improve the simulation of volcanic material transport using the Weather Research and Forecasting (WRF-Chem) v4.8 model. Analysis of ash, sulfate, and SO2 mass budgets was performed. The direct radiative effect of volcanic aerosols was implemented. A preprocessor, PrepEmisSources, was developed to streamline the preparation of volcanic emissions.
Ibrahim Hoteit, Eric Chassignet, and Mike Bell
State Planet, 5-opsr, 21, https://doi.org/10.5194/sp-5-opsr-21-2025, https://doi.org/10.5194/sp-5-opsr-21-2025, 2025
Short summary
Short summary
This paper explores how using multiple predictions instead of just one can improve ocean forecasts and help prepare for changes in ocean conditions. By combining different forecasts, scientists can better understand the uncertainty in predictions, leading to more reliable forecasts and better decision-making. This method is useful for responding to hazards like oil spills, improving climate forecasts, and supporting decision-making in fields like marine safety and resource management.
Andreas Schiller, Simon A. Josey, John Siddorn, and Ibrahim Hoteit
State Planet, 5-opsr, 18, https://doi.org/10.5194/sp-5-opsr-18-2025, https://doi.org/10.5194/sp-5-opsr-18-2025, 2025
Short summary
Short summary
The study illustrates the way atmospheric fields are used in ocean models as boundary conditions for the provisioning of the exchanges of heat, freshwater, and momentum fluxes. Such fluxes can be based on remote sensing instruments or provided directly by numerical weather prediction systems. Air–sea flux datasets are defined by their spatial and temporal resolutions and are limited by associated biases. Air–sea flux datasets for ocean models should be chosen with the applications in mind.
Matthew J. Martin, Ibrahim Hoteit, Laurent Bertino, and Andrew M. Moore
State Planet, 5-opsr, 9, https://doi.org/10.5194/sp-5-opsr-9-2025, https://doi.org/10.5194/sp-5-opsr-9-2025, 2025
Short summary
Short summary
Observations of the ocean from satellites and platforms in the ocean are combined with information from computer models to produce predictions of how the ocean temperature, salinity, and currents will evolve over the coming days and weeks and to describe how the ocean has evolved in the past. This paper summarises the methods used to produce these ocean forecasts at various centres around the world and outlines the practical considerations for implementing such forecasting systems.
Ségolène Berthou, John Siddorn, Vivian Fraser-Leonhardt, Pierre-Yves Le Traon, and Ibrahim Hoteit
State Planet, 5-opsr, 20, https://doi.org/10.5194/sp-5-opsr-20-2025, https://doi.org/10.5194/sp-5-opsr-20-2025, 2025
Short summary
Short summary
Ocean forecasting is traditionally done independently from atmospheric, wave, or river modelling. We discuss the benefits and challenges of bringing all these modelling systems together for ocean forecasting.
Xuetong Wang, Raied S. Alharbi, Oscar M. Baez-Villanueva, Amy Green, Matthew F. McCabe, Yoshihide Wada, Albert I. J. M. Van Dijk, Muhammad A. Abid, and Hylke Beck
EGUsphere, https://doi.org/10.5194/egusphere-2025-254, https://doi.org/10.5194/egusphere-2025-254, 2025
Short summary
Short summary
Our paper introduces Saudi Rainfall (SaRa), a high-resolution, near real-time rainfall product for the Arabian Peninsula. Using machine learning, SaRa combines multiple satellite and (re)analysis datasets with static predictors, outperforming existing products in the region. With the fast development and continuing growth in water demand over this region, SaRa could help to address water challenges and support resource management.
Manal Hamdeno, Aida Alvera-Azcárate, George Krokos, and Ibrahim Hoteit
Ocean Sci., 20, 1087–1107, https://doi.org/10.5194/os-20-1087-2024, https://doi.org/10.5194/os-20-1087-2024, 2024
Short summary
Short summary
Our study focuses on the characteristics of MHWs in the Red Sea during the last 4 decades. Using satellite-derived sea surface temperatures (SSTs), we found a clear warming trend in the Red Sea since 1994, which has intensified significantly since 2016. This SST rise was associated with an increase in the frequency and days of MHWs. In addition, a correlation was found between the frequency of MHWs and some climate modes, which was more pronounced in some years of the study period.
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
P. Rouault, D. Courault, G. Pouget, F. Flamain, R. Lopez-Lozano, C. Doussan, M. Debolini, and M. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1531–1536, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1531-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1531-2023, 2023
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
M. G. Ziliani, M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1045–1052, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, 2022
Cited articles
Abo-Ghobar, H. M.: Losses from low-pressure center-pivot irrigation systems in a desert
climate as affected by nozzle height, Agr. Water Manage., 21, 23–32, 1992.
Ajami, H., Evans, J. P., McCabe, M. F., and Stisen, S.: Technical Note: Reducing the
spin-up time of integrated surface water–groundwater models, Hydrol. Earth Syst. Sci., 18,
5169–5179, https://doi.org/10.5194/hess-18-5169-2014, 2014.
Ajami, H., McCabe, M. F., and Evans, J. P.: Impacts of model initialization on an
integrated surface water–groundwater model, Hydrol. Process., 29, 3790–3801,
https://doi.org/10.1002/hyp.10478, 2015.
Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-based energy balance for mapping
evapotranspiration with internalized calibration (METRIC)–Model, J. Irrig. Drain Eng., 133,
380–394, 2007.
Alley, W. M. and Konikow, L. F.: Bringing GRACE down to earth, Groundwater, 53,
826–829, 2015.
Al-Abdulkader, A. M., Al-Namazi, A. A., AlTurki, T. A., Al-Khuraish, M. M., and
Al-Dakhil, A. I.: Optimizing coffee cultivation and its impact on economic growth and export
earnings of the producing countries: The case of Saudi Arabia, Saudi J. Biol. Sci., 25, 776–782,
2018.
Al-Rumkhani, Y. A. and Din, S. U.: Use of remote sensing for irrigation scheduling in
arid lands of Saudi Arabia, J. Indian Soc. Remot., 32, 225–233, 2004.
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J. R.: A
two-source time-integrated model for estimating surface fluxes using thermal infrared remote
sensing, Remote Sens. Environ., 60, 195–216, 1997.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A
climatological study of evapotranspiration and moisture stress across the continental United
States based on thermal remote sensing: 2. Surface moisture climatology, J. Geophys. Res.-Atmos.,
112, 1–17, 2007.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz,
L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily
evapotranspiration at field to continental scales using geostationary and polar orbiting satellite
imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat thermal
imagery in monitoring evapotranspiration and managing water resources, Remote Sens. Environ., 122,
50–65, 2012.
Anderson, M., Gao, F., Knipper, K., Hain, C., Dulaney, W., Baldocchi, D., Eichelmann, E., Hemes, K., Yang, Y., Medellin-Azuara, J., and Kustas, W.: Field-scale assessment of land and water use change over the California Delta using remote sensing, Remote Sens., 10, 889, https://doi.org/10.3390/rs10060889, 2018.
Aragón, B., Houborg, R., Tu, K., Fisher, J. B., and McCabe, M.: CubeSats Enable High Spatiotemporal Retrievals of Crop-Water Use for Precision Agriculture, Remote Sens., 10, 1867, https://doi.org/10.3390/rs10121867, 2018.
Arthur, D. and Vassilvitskii, S.: k-means : The advantages of careful seeding, in:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027–1035,
Society for Industrial and Applied Mathematics 3600 University City Science Center Philadelphia, PA, United States, ISBN: 978-0-89871-624-5, 2007.
Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., and le Maire,
G.: Comparative analysis of different retrieval methods for mapping grassland leaf area index
using airborne imaging spectroscopy, Int. J. Appl. Earth Obs., 43, 19–31,
https://doi.org/10.1016/j.jag.2015.01.009, 2015.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., and Fuentes, J.: FLUXNET: A new tool to study the temporal and
spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities,
B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Beck, H. E., McVicar, T. R., van Dijk, A. I. J. M., Schellekens, J., de Jeu, R. A. M.,
and Brujinzeel, L. A.: Global evaluation of four AVHRR–NDVI data sets: Intercomparison and
assessment against Landsat imagery, Remote Sens. Environ., 115, 2547–2563,
https://doi.org/10.1016/j.rse.2011.05.012, 2011.
Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., Fox,
M., Adler-Golden, S. M., Chetwynd, J. H., Hoke, M. L., and Lockwood, R. B.: MODTRAN 5: a
reformulated atmospheric band model with auxiliary species and practical multiple scattering
options: update, Proc. SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI (1 June 2005), available at: https://doi.org/10.1117/12.606026 (last
access: 15 January 2020), 2005.
Bierkens, M. F., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., de
Roo, A., Döll, P., Drost, N., Famiglietti, J. S., and Flörke, M.: Hyper-resolution global
hydrological modelling: what is next? “Everywhere and locally relevant”, Hydrol. Process., 29,
310–320, 2015.
Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A., and
Fernández-Prieto, D.: How much water is used for irrigation? A new approach exploiting coarse
resolution satellite soil moisture products, Int. J. Appl. Earth Obs., 73, 752–766, 2018.
Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., and Li, Z.: A
high-performance and in-season classification system of field-level crop types using time-series
Landsat data and a machine learning approach, Remote Sens. Environ., 210, 35–47, 2018.
Campbell, G. S. and Norman, J.: An introduction to environmental biophysics, Springer
Science and Business Media, New York, USA, https://doi.org/10.1007/978-1-4612-1626-1, 1998.
Castaño, S., Sanz, D., and Gómez-Alday, J. J.: Methodology for quantifying
groundwater abstractions for agriculture via remote sensing and GIS, Water Resour. Manag., 24,
795–814, 2010.
Chowdhury, S. and Al-Zahrani, M.: Characterizing water resources and trends of sector
wise water consumptions in Saudi Arabia, J. King Saud Univ.-Engin. Sci., 27, 68–82, 2015.
Chowdhury, S., Al-Zahrani, M., and Abbas, A.: Implications of climate change on crop
water requirements in arid region: an example of Al-Jouf, Saudi Arabia, J. King Saud
Univ.-Engin. Sci., 28, 21–31, 2016.
Colaizzi, P. D., Kustas, W. P., Anderson, M. C., Agam, N., Tolk, J. A., Evett, S. R., Howell, T. A., Gowda, P. H., and O’Shaughnessy, S. A.: Two-source energy balance
model estimates of evapotranspiration using component and composite surface temperatures,
Adv. Water Resour., 50, 134–151, https://doi.org/10.1016/j.advwatres.2012.06.004, 2012.
Colombo, R., Bellingeri, D., Fasolini, D., and Marino, C. M.: Retrieval of leaf area
index in different vegetation types using high resolution satellite data, Remote Sens. Environ.,
86, 120–131, https://doi.org/10.1016/S0034-4257(03)00094-4, 2003.
Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion embedded in
international food trade, Nature 543, 700–704, 2017.
Dasari, H. P., Srinivas, D., Sabique, L., Raju, A., Yesubabu, V., Ravikumar, K., and
Hoteit, I.: Assessment of solar radiation resources and its variability over Arabian Peninsula,
Appl. Ener., 248, 354–371, 2019.
Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, Water
Resour. Res., 38, 8-1–8-10, https://doi.org/10.1029/2001WR000355, 2002.
Droogers, P., Immerzeel, W. W., and Lorite, I. J.: Estimating actual irrigation
application by remotely sensed evapotranspiration observations, Agr. Water Manage., 97,
1351–1359, 2010.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch,
B., Isola, C., Laberinti, P., Martimort, P., and Meygret, A.: Sentinel-2: ESA's optical
high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25–36, 2012.
Erban, L. E., Gorelick, S. M., and Zebker, H. A.: Groundwater extraction, land
subsidence, and sea-level rise in the Mekong Delta, Vietnam, Environ. Res. Lett., 9, 084010, https://doi.org/10.1088/1748-9326/9/8/084010, 2014.
Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., and Wood, E. F.: Multi-site
evaluation of terrestrial evaporation models using FLUXNET data, Agr. Forest Meteorol., 187,
46–61, 2014.
Famiglietti, J. S.: The global groundwater crisis, Nat. Clim. Change, 4, 945–948, 2014.
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., Swenson, S. C., de Linage, C. R., and Rodell, M.: Satellites measure recent rates of groundwater depletion in California's Central Valley, Geophys. Res. Lett., 38, L03403, https://doi.org/10.1029/2010GL046442, 2011.
Fan, L., Gao, Y., Brück, H., and Bernhofer, Ch.: Investigating the relationship
between NDVI and LAI in semi-arid grassland in Inner Mongolia using in-situ measurements,
Theor. Appl. Climatol., 95, 151–156, https://doi.org/10.1007/s00704-007-0369-2, 2009.
FAO: AQUASTAT Country profile – Saudi Arabia. FAO Aquastat report, Food and
Agriculture Organization of the United Nations, Rome, 2008a.
FAO: AQUASTAT: FAO's information system of water and agriculture. FAO Aquastat report,
Food and Agriculture Organization of the United Nations, Rome, 2008b.
FAO: Global map of irrigation areas – Saudi Arabia. Food and Agriculture Organization
of the United Nations, Rome, 2013.
FAO: Towards a water and food secure future. FAO white paper, Food and Agriculture
Organization of the United Nations, Rome, 2015.
Ferrant, S., Selles, A., Le Page, M., Herrault, P. A., Pelletier, C., Al-Bitar, A., Mermoz, S., Gascoin, S., Bouvet, A., Saqalli, M., and Dewandel, B.: Detection of irrigated crops from Sentinel-1 and Sentinel-2 data to estimate seasonal groundwater use in South India, Remote Sens., 9, 1119, https://doi.org/10.3390/rs9111119, 2017.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the
land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET
sites, Remote Sens. Environ., 112, 901–919, 2008.
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R. et al: The
future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate
feedbacks, agricultural management, and water resources, Water Resour. Res., 53, 2618–2626, 2017.
Folhes, M. T., Rennó, C. D., and Soares, J. V.: Remote sensing for irrigation water
management in the semi-arid Northeast of Brazil, Agr. Water Manage., 96, 1398–1408, 2009.
French, A. N., Jacob, F., Anderson, M. C., Kustas, W. P., Timmermans, W., Gieske, A.,
Su, Z., Su, H., McCabe, M. F., Li, F., and Prueger, J.: Surface energy fluxes with the Advanced
Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA),
Remote Sens. Environ., 99, 55–65, 2005.
Ganguly, S., Samanta, A., Schull, M. A., Shabanov, N. V., Milesi, C., Nemani, R. R., Knyazikhin, Y., and Myneni, R. B.: Generating vegetation leaf area
index Earth system data record from multiple sensors. Part 2: Implementation, analysis and
validation, Remote Sens. Environ., 112, 4318–4332, 2008.
Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., Myneni, R., Tan, B., and Nightingale, J.: An algorithm to produce temporally
and spatially continuous MODIS-LAI time series, IEEE Geosci. Remote S., 5, 60–64, 2008.
Gao, F., Kustas, W., and Anderson, M.: A data mining approach for sharpening thermal
satellite imagery over land, Remote Sens., 4, 3287–3319, 2012.
Gao, R. X. and Yan, R.: Wavelets: Theory and applications for manufacturing, Springer US, Springer Science and Business Media, US, https://doi.org/10.1007/978-1-4419-1545-0, 2010.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., and Wargan, K.: The modern-era
retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, 2017.
Giorgi, F and Mearns, L. O.: Approaches to the simulation of regional climate change: a
review, Rev. Geophys., 29, 191–216, 1991.
Guindin-Garcia, N., Gitelson, A. A., Arkebauer, T. J., Shanahan, J., and Weiss, A.: An
evaluation of MODIS 8-and 16-day composite products for monitoring maize green leaf area index,
Agr. Forest Meteorol., 161, 15–25, 2012.
Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps,
C., Roxburgh, S. H., van Gorsel, E., Viscarra Rossel, R. A., and Wang, Z.: Multiple observation
types reduce uncertainty in Australia's terrestrial carbon and water cycles, Biogeosciences, 10,
2011–2040, https://doi.org/10.5194/bg-10-2011-2013, 2013.
Haverd, V., Cuntz, M., Nieradzik, L. P., and Harman, I. N.: Improved representations of
coupled soil–canopy processes in the CABLE land surface model (Subversion revision 3432),
Geosci. Model Dev., 9, 3111–3122, https://doi.org/10.5194/gmd-9-3111-2016, 2016.
Heil, C. E. and Walnut, D. F.: Continuous and discrete wavelet transforms, SIAM Rev.,
31, 628–666, 1989.
Hirsch, A. L., Kala, J., Carouge, C. C., De Kauwe, M. G., Di Virgilio, G., Ukkola, A. M., Evans, J. P., and Abramowitz, G.: Evaluation of the
CABLEv2.3.4 Land Surface Model Coupled to NU-WRFv3.9.1.1 in Simulating Temperature and
Precipitation Means and Extremes Over CORDEX AustralAsia Within a WRF Physics Ensemble, J.
Adv. Model. Earth Syst., 11, 4466–4488, https://doi.org/10.1029/2019ms001845, 2019.
Houborg, R., McCabe, M., Cescatti, A., Gao, F., Schull, M., and Gitelson, A.: Joint
leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model
inversion system (REGFLEC), Remote Sens. Environ., 159, 203–221, 2015.
Houborg, R. and McCabe, M. F.: Adapting a regularized canopy reflectance model
(REGFLEC) for the retrieval challenges of dryland agricultural systems, Remote Sens. Environ.,
186, 105–120, https://doi.org/10.1016/j.rse.2016.08.017, 2016.
Houborg, R. and McCabe, M. F.: Impacts of dust aerosol and adjacency effects on the
accuracy of landsat 8 and rapideye surface reflectances, Remote Sens. Environ., 194, 127–145,
https://doi.org/10.1016/j.rse.2017.03.013, 2017.
Houborg, R. and McCabe, M. F.: A hybrid training approach for leaf area index
estimation via cubist and random forests machine-learning, ISPRS J. Photogramm., 135, 173–188,
https://doi.org/10.1016/j.isprsjprs.2017.10.004, 2018a.
Houborg, R. and McCabe, M. F.: Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data, Remote Sens., 10, 890, https://doi.org/10.3390/rs10060890, 2018b.
Houborg, R. and McCabe, M. F.: A Cubesat enabled spatio-temporal enhancement method
(CESTEM) utilizing Planet, Landsat and MODIS data, Remote Sens. Environ., 209, 211–226, 2018c.
Huang, J., Ma, H., Su, W., Zhang, X., Huang, Y., Fan, J., and Wu, W.: Jointly
assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation, IEEE
J. Sel. Top. Appl., 8, 4060–4071, 2015.
Jackson, R. D., Moran, M. S., Gay, L. W., and Raymond, L. H.: Evaluating evaporation
from field crops using airborne radiometry and ground-based meteorological data, Irrig. Sci., 8,
81–90, 1987.
Jacquemoud, S. and Baret, F.: PROSPECT: a model of leaf optical properties spectra,
Remote Sens. Environ., 34, 75–91, https://doi.org/10.1016/0034-4257(90)90100-Z, 1990.
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P., Asner, G. P.,
François, C., and Ustin, S. L.: PROSPECT + SAIL models: a review of use for vegetation
characterization, Remote Sens. Environ., 113, S56–S66, https://doi.org/10.1016/j.rse.2008.01.026, 2009.
Jain, A. K.: Data clustering: 50 years beyond K-means, Pattern Recogn. Lett., 31, 651–666, 2010.
Jain, A. K. and Dubes, R. C.: Algorithms for clustering data, vol. 6, Englewood Cliffs,
NJ, Prentice Hall, 1988.
Jain, A. K., Murty, M. N., and Flynn, P. J.: Data clustering: a review, ACM
Comput. Surv. (CSUR), 31, 264–323, 1999.
Jalilvand, E., Tajrishy, M., Hashemi, S. A. G. Z., and Brocca, L.: Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region, Remote Sens. Environ., 231, 111226, https://doi.org/10.1016/j.rse.2019.111226, 2019.
Jiang, H., Farrar, J. T., Beardsley, R. C., Chen, R., and Chen, C.: Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea, Geophys. Res. Lett., 36, L19605, https://doi.org/10.1029/2009GL040008, 2009.
Johansen, K., Bartolo, R., and Phinn, S.: Special Feature–Geographic object-based
image analysis, J. Spat. Sci., 55, 3–7, 2010.
Kang, Y., Özdoğan, M., Zipper, S., Román, M., Walker, J., Hong, S.,
Marshall, M., Magliulo, V., Moreno, J., Alonso, L., Miyata, A., Kimball, B., and Loheide, S: How
universal is the relationship between remotely sensed vegetation indices and crop leaf area index?
A global assessment, Remote Sens., 8, 597, https://doi.org/10.3390/rs8070597, 2016.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating land surface evaporation: A
review of methods using remotely sensed surface temperature data, Surv. Geophys., 29, 421–469,
2008.
Kenawy, A. M. and McCabe, M. F.: A multi-decadal assessment of the performance of
gauge- and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends,
Int. J. Climatol., 36, 656–674, https://doi.org/10.1002/joc.4374, 2016.
Kirby, J. M., Mainuddin, M., Ahmad, M. D., and Gao, L.: Simplified monthly hydrology
and irrigation water use model to explore sustainable water management options in the
Murray-Darling Basin, Water Resour. Manag., 27, 4083–4097, 2013.
Kotchenova, S. Y., Vermote, E. F., Matarrese, R., and Klemm Jr., F. J.: Validation of a
vector version of the 6S radiative transfer code for atmospheric correction of satellite
data. Part I: Path radiance, Appl. Opt., 45, 6762–6774, 2006.
Kowalczyk, E. A., Wang, Y. P, Law, R. M., Davies, H. L, McGregor, J. L, and Abramowitz, G.: The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model, CSIRO Marine and atmospheric research, Aspendale, Vic., Tech. Rep., 13, https://doi.org/10.4225/08/58615c6a9a51d, 2006.
Kowalczyk, E., Stevens, L., Law, R. M., Dix, M., Wang, Y. P., Harman, I. N., Haynes,
K., Srbinovsky, J., Pak, B., and Ziehn, T.: The land surface model component of ACCESS:
description and impact on the simulated surface climatology, Aust. Meteorol. Ocean., 63, 65–82,
2013.
Kustas, W. P. and Norman, J. M.: Evaluation of soil and vegetation heat flux
predictions using a simple two-source model with radiometric temperatures for partial canopy
cover, Agr. Forest Meteorol., 94, 13–29, https://doi.org/10.1016/S0168-1923(99)00005-2, 1999.
Kustas, W. P., Li, F., Jackson, T. J., Prueger, J. H., MacPherson, J. I., and Wolde,
M.: Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in
Iowa, Remote Sens. Environ., 92, 535–547, 2004.
Lai, C. and Katul, G.: The dynamic role of root-water uptake in coupling potential to
actual transpiration, Adv. Water Resour., 427–439, https://doi.org/10.1016/S0309-1708(99)00023-8, 2000.
Langodan, S., Cavaleri, L., Viswanadhapalli, Y., and Hoteit, I.: The Red Sea: a natural
laboratory for wind and wave modelling, J. Phys. Oceanogr., 44, 3139–3159,
https://doi.org/10.1175/JPO-D-13-0242.1, 2014.
Langodan, S., Viswanadhapalli, Y., Dasari, H. P., Knio, O., and Hoteit, I.: A
high-resolution assessment of wind and wave energy potentials in the Red Sea, Appl. Energ., 181,
244–255, https://doi.org/10.1016/j.apenergy.2016.08.076, 2016.
Lee, J. Y. and Song, S. H.: Evaluation of groundwater quality in coastal areas:
implications for sustainable agriculture, Environ. Geol., 52, 1231–1242, 2007.
Leuning, R., Kelliher, F. M., De Pury, D. G. G., and Schulze, E. D.: Leaf nitrogen,
photosynthesis, conductance and transpiration: scaling from leaves to canopies, Plant Cell
Environ., 18, 1183–1200, 1995.
Lezzaik, K. and Milewski, A.: A quantitative assessment of groundwater resources in the
Middle East and North Africa region, Hydrogeol. J., 26, 251–266, 2018.
Li, Y., Huang, C., Hou, J., Gu, J., Zhu, G., and Li, X.: Mapping daily
evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated
agricultural areas in the Heihe River Basin, Northwest China, Agr. Forest Meteorol., 244, 82–97,
2017.
Liang, S.: Narrowband to broadband conversions of land surface albedo I: Algorithms,
Remote Sens. Environ., 76, 213–238, https://doi.org/10.1016/S0034-4257(00)00205-4, 2001.
Long, D., Longuevergne, L., and Scanlon, B. R.: Global analysis of approaches for
deriving total water storage changes from GRACE satellites, Water Resour. Res., 51, 2574–2594,
https://doi.org/10.1002/2014wr016853, 2015.
López, O.: Monitoring arid-land groundwater abstraction through optimization of a land
surface model with remote sensing-based evaporation, Ph.D. Thesis, King Abdullah University of
Science and Technology, Saudi Arabia, 180 pp., 2018.
López, O., Houborg, R., and McCabe, M. F.: Evaluating the hydrological consistency of
evaporation products using satellite-based gravity and rainfall data, Hydrol. Earth Syst. Sci.,
21, 323–343, https://doi.org/10.5194/hess-21-323-2017, 2017.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and
Merchant, J. W.: Development of a global land cover characteristics database and IGBP DISCover
from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, 2000.
MacQueen, J.: Some methods for classification and analysis of multivariate
observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, University of California Press, Berkeley, California, Vol. 1, No. 14, 281–297, 1967.
Martínez, B. and Gilabert, M. A.: Vegetation dynamics from NDVI time series
analysis using the wavelet transform, Remote Sens. Environ., 113, 1823–1842, 2009.
McCabe, M. F. and Wood, E. F.: Scale influences on the remote estimation of
evapotranspiration using multiple satellite sensors, Remote Sens. Environ., 105, 271–285, 2006.
McCabe, M. F., Wood, E. F., Wójcik, R., Pan, M., Sheffield, J., Gao, H. and Su,
H.: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle
studies, Remote Sens. Environ., 112, 430–444, 2008.
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and Wood, E. F.:
The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded
forcing data, Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, 2016.
McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner,
W., Lucieer, A., Houborg, R., Verhoest, N. E. C., Franz, T. E., Shi, J., Gao, H., and Wood, E. F.:
The future of Earth observation in hydrology, Hydrol. Earth Syst. Sci., 21, 3879–3914,
https://doi.org/10.5194/hess-21-3879-2017, 2017a.
McCabe, M. F., Aragón, B., Houborg, R., and Mascaro, J.: CubeSats in Hydrology:
Ultrahigh-Resolution Insights Into Vegetation Dynamics and Terrestrial Evaporation, Water
Resour. Res., 53, 10017–10024, 2017b.
McCabe, M. F., Miralles, D. G., Holmes, T. R., and Fisher, J. B.: Advances in the Remote Sensing of Terrestrial Evaporation, Remote Sens., 11, 1138, https://doi.org/10.3390/rs11091138, 2019.
McNaughton, K. G. and Van den Hurk, B. J. J. M.: A “Lagrangian” revision of the
resistors in the two-layer model for calculating the energy budget of a plant canopy,
Bound.-Lay. Meteorol., 74, 261–288, 1995.
MEP: The Ninth Development Plan, Ministry of Economy and Planning, Saudi Arabia,
Chapter 28 (Agriculture), 545–560, available at: https://mep.gov.sa/en (last access: 10 January 2020), 2010.
MEWA: Annual water demand (Saudi Open Data), Ministry of Environment, Water and
Agriculture, available at: https://data.gov.sa/Data/en/dataset/annual_water_demand (last access: 10 January 2020), 2019.
Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens,
B., McCabe, M. F., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto,
D.: The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based
evapotranspiration algorithms, Hydrol. Earth Syst. Sci., 20, 803–822,
https://doi.org/10.5194/hess-20-803-2016, 2016.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters,
A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based
observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011,
2011.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F.,
Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F.,
and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial
evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842,
https://doi.org/10.5194/hess-20-823-2016, 2016.
Miro, M. E. and Famiglietti, J. S.: Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley, Remote Sens., 10, 143, https://doi.org/10.3390/rs10010143, 2018.
Missimer, T. M., Drewes, J. E., Amy, G., Maliva, R. G., and Keller, S.: Restoration of
wadi aquifers by artificial recharge with treated waste water, Groundwater, 50, 514–527,
https://doi.org/10.1111/j.1745-6584.2012.00941.x, 2012.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial
evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800,
https://doi.org/10.1016/j.rse.2011.02.019, 2011.
National Computational Infrastructure (NCI): CABLE: The Community Atmosphere Biosphere Land Exchange Model source code, available at: https://trac.nci.org.au/trac/cable/, last access: 20 November 2019.
Nieto, H., Kustas, W. P., Torres-Rúa, A., Alfieri, J. G., Gao, F., Anderson, M. C., White, W. A., Song, L., del Mar Alsina, M., Prueger, J. H., and McKee, M.: Evaluation of TSEB turbulent
fluxes using different methods for the retrieval of soil and canopy component temperatures from
UAV thermal and multispectral imagery, Irr. Sci., 37, 389–406, https://doi.org/10.1007/s00271-018-0585-9,
2019.
Norman, J. M., Kustas, W. P., and Humes, K. S.: Source approach for estimating soil
and vegetation energy fluxes in observations of directional radiometric surface temperature,
Agr. Forest. Meteorol., 77, 263–293, https://doi.org/10.1016/0168-1923(95)02265-Y, 1995.
Norman, J. M., Anderson, M. C., Kustas, W. P., French, A. N., Mecikalski, J., Torn, R., Diak, G. R., Schmugge, T. J., and Tanner, B. C. W.: Remote sensing of surface energy fluxes at 101 m pixel resolutions, Water Resour. Res., 39, 1221, https://doi.org/10.1029/2002WR001775, 2003.
Ozdogan, M., Rodell, M., Beaudoing, H. K., and Toll, D. L.: Simulating the effects of
irrigation over the United States in a land surface model based on satellite-derived agricultural
data, J. Hydrometeorol., 11, 171–184, 2010.
Piedelobo, L., Hernández-López, D., Ballesteros, R., Chakhar, A., Del Pozo,
S., González-Aguilera, D., and Moreno, M. A.: Scalable pixel-based crop classification
combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin,
Agr. Syst., 171, 36–50, 2019.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J. F., Kim, H., Kanae, S., and Oki, T.: Incorporating anthropogenic water
regulation modules into a land surface model, J. Hydrometeorol., 13, 255–269, 2012.
Rana, G. and Katerji, N.: Measurement and estimation of actual evapotranspiration in
the field under Mediterranean climate: a review, Eur. J. Agron., 13, 125–153, 2000.
Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., and Rodell, M.: Quantifying renewable groundwater
stress with GRACE, Water Resour. Res., 51, 5217–5238, https://doi.org/10.1002/2015wr017349, 2015.
Rivera, J. P., Verrelst, J., Leonenko, G., and Moreno, J.: Multiple cost functions and
regularization options for improved retrieval of leaf chlorophyll content and LAI through
inversion of the PROSAIL model, Remote Sens., 5, 3280–3304, https://doi.org/10.3390/rs5073280, 2013.
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K.,
Landerer, F. W., and Lo, M. H.: Emerging trends in global freshwater availability, Nature, 557,
651–659, 2018.
Rosas, J., Houborg, R., and McCabe, M.: Sensitivity of landsat 8 surface temperature estimates to atmospheric profile data: A study using modtran in dryland irrigated systems, Remote Sens., 9, 988, https://doi.org/10.3390/rs9100988, 2017.
Ryel, R., Caldwell, M., Yoder, C., Or, D., and Leffler, A.: Hydraulic redistribution
in a stand of Artemisia tridentate: evaluation of benefits to transpiration assessed with a
simulation model, Oecologia, 130, 173–184, https://doi.org/10.1007/s004420100794, 2002.
Sadeghi, S. H., Peters, T. R., Amini, M. Z., Malone, S. L., and Loescher, H. W.:
Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving
irrigation systems, Biosyst. Eng., 135, 44–53, 2015.
Sadeghi, S. H., Peters, T., Shafii, B., Amini, M. Z., and Stöckle, C.: Continuous
variation of wind drift and evaporation losses under a linear move irrigation system, Agr. Water
Manage., 182, 39–54, https://doi.org/10.1016/j.agwat.2016.12.009, 2017.
Sánchez-Ruiz, S., Piles, M., Sánchez, N., Martínez-Fernández, J.,
Vall-llossera, M., and Camps, A.: Combining SMOS with visible and near/shortwave/thermal infrared
satellite data for high resolution soil moisture estimates, J. Hydrol., 516, 273–283, 2014.
Santanello, J. A. and Friedl, M.: Diurnal covariation in soil heat flux and net
radiation, J. Appl. Meteorol., 42, 851–862,
https://doi.org/10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2, 2003.
Santos, C., Lorite, I. J., Tasumi, M., Allen, R. G., and Fereres, E.: Integrating
satellite-based evapotranspiration with simulation models for irrigation management at the scheme
level, Irrig. Sci., 26, 277–288, 2008.
Sauer, T. J., Norman, J. M., Tanner, C. B., and Wilson, T. B.: Measurement of heat and
vapor transfer coefficients at the soil surface beneath a maize canopy using source plates,
Agr. Forest Meteorol., 75, 161–189, 1995
Sayed, O. H., Masrahi, Y. S., Remesh, M., and Al-Ammari, B. S.: Coffee production in
southern Saudi Arabian highlands: Current status and water conservation, Saudi J. Biol. Sci., 26,
1911–1914, https://doi.org/10.1016/j.sjbs.2019.03.002, 2019.
Scanlon, B. R., Longuevergne, L., and Long, D.: Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA, Water Resour. Res., 48, W04520, https://doi.org/10.1029/2011WR011312, 2012.
Shamsudduha, M., Taylor, R. G., and Longuevergne, L.: Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin, Water Resour. Res., 48, W02508, https://doi.org/10.1029/2011WR010993, 2012.
Shuttleworth, W. J. and Wallace, J. S.: Evaporation from sparse crops-an energy
combination theory, Q. J. Roy. Meteorol. Soc., 111, 839–855, 1985.
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and
Portmann, F. T.: Groundwater use for irrigation – a global inventory, Hydrol. Earth Syst. Sci.,
14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, 2010.
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang X.,
Wang, W., and Powers, J.: A description of the Advanced Research WRF Version 3, NCAR Technical
note NCAR/TN-475+STR, https://doi.org/10.5065/D68S4MVH, 2008.
Song, L., Liu, S., Kustas, W. P., Zhou, J., Xu, Z., Xia, T., and Li, M.: Application
of remote sensing-based two-source energy balance model for mapping field surface fluxes with
composite and component surface temperatures, Agr. Forest Meteorol., 230, 8–19, 2016.
Spall, J. C.: Implementation of the simultaneous perturbation algorithm for stochastic
optimization, IEEE T. Aero. Elec. Sys., 34, 817–823, 1998.
SSYB (Saudi Statistical Year book): Ministry of Economy and Planning, Central
Department of Statistics and Information, Riyadh, Saudi Arabia, 2010.
SSYB (Saudi Statistical Year book): Ministry of Economy and Planning, Central
Department of Statistics and Information, Riyadh, Saudi Arabia, 2013.
Srbinovsky, J., Law, R., and Pak, B.: The Community Atmosphere Biosphere Land Exchange (CABLE) land surface model – User guide for CABLE-2.0, CSIRO Marine and Atmospheric Research, available at: http://hdl.handle.net/102.100.100/98778?index=1 (last access: 20 November 2019), 2012.
Steiner, J. L., Kanemasu, E. T., and Clark, R. N.: Spray losses and partitioning of
water use under a center pivot sprinkler system, T. ASABE, 26, 1128–1134,
https://doi.org/10.13031/2013.34090, 1983.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat
fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.: GRACE
measurements of mass variability in the Earth system, Science, 305, 503–505, 2004.
Tucker, C.: Red and photographic infrared linear combinations for monitoring
vegetation, Remote Sens. Environ., 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., and Briggs, J. M.:
Relationships between leaf area index and Landsat TM spectral vegetation indices across three
temperate zone sites, Remote Sens. Environ., 70, 52–68, https://doi.org/10.1016/S0034-4257(99)00057-7,
1999.
U.S. Geological Survey and NASA: Landsat data, available at: https://cloud.google.com/storage/docs/public-datasets/landsat, last access: 15 January 2020.
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., and
Ceschia, E.: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like
data for agricultural applications, Remote Sens. Environ., 199, 415–426, 2017.
Verhoef, W.: Light scattering by leaf layers with application to canopy reflectance
modeling: The SAIL model, Remote Sens. Environ., 16, 125–141, https://doi.org/10.1016/0034-4257(84)90057-9,
1984.
Viswanadhapalli, Y., Dasari, H. P., Langodan, S., Challa, V. S., and Hoteit, I.:
Climatic features of the Red Sea from a regional assimilative model, Int. J. Climatol., 37,
2563–2581, https://doi.org/10.1002/joc.4865, 2017.
Viswanadhapalli, Y., Dasari, H. P., Dwivedi, S., Ratnam, MV., Langodan, S., and
Hoteit, I.: Variability of Monsoon Low Level Jet and associated rainfall over India,
Int. J. Climatol., 1–23, https://doi.org/10.1002/joc.6256, 2019.
Vohland, M., Mader, S., and Dorigo, W.: Applying different inversion techniques to
retrieve stand variables of summer barley with PROSPECT + SAIL, Int. J. Appl. Earth Obs., 12,
71–80, https://doi.org/10.1016/j.jag.2009.10.005, 2010.
Voss, K. A., Famiglietti, J. S., Lo, M., De Linage, C., Rodell, M., and Swenson,
S. C.: Groundwater depletion in the Middle East from GRACE with implications for transboundary
water management in the Tigris-Euphrates-Western Iran region, Water Resour. Res., 49, 904–914,
2013.
Wada, Y., Van Beek, L. P. H., and Bierkens, M. F.: Nonsustainable groundwater sustaining irrigation: A global assessment, Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562, 2012.
Wardlow, B. D., Egbert, S. L., and Kastens, J. H.: Analysis of time-series MODIS 250 m
vegetation index data for crop classification in the US Central Great Plains, Remote
Sens. Environ., 108, 290–310, 2007.
Wang, Q., Adiku, S., Tenhunen, J., and Granier, A.: On the relationship of NDVI with
leaf area index in a deciduous forest site, Remote Sens. Environ., 94, 244–255,
https://doi.org/10.1016/j.rse.2004.10.006, 2005.
Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R., Pak, B., van
Gorsel, E., and Luhar, A.: Diagnosing errors in a land surface model (CABLE) in the time and
frequency domains, J. Geophys. Res., 116, G01034, https://doi.org/10.1029/2010JG001385, 2011.
Wang, W. and Paliwal, J.: Spectral data compression and analyses techniques to
discriminate wheat classes, T. ASABE, 49, 1607–1612, 2006.
Wilby, R. L. and Wigley, T. M. L.: Downscaling general circulation model output: a
review of methods and limitations, Prog. Phys. Geog., 21, 530–548, 1997.
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets, Geophys. Res. Lett., 35, L24408, https://doi.org/10.1029/2008GL035296, 2008.
Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L. P. H., Bierkens, M. F., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., and Gochis, D.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090, 2011.
Yang, J., Ren, W., Ouyang, Y., Feng, G., Tao, B., Granger, J. J., and Poudel, K. P.:
Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial
Valley, Agr. Water Manage., 217, 60–72, 2019.
Zhang, L., Zhang, H., and Li, Y.: Surface energy, water and carbon cycle in China
simulated by the Australian community land surface model (CABLE), Theor. Appl. Climatol., 96,
375–394, https://doi.org/10.1007/s00704-008-0047-z, 2009.
Zhou, Y., Dong, D., Liu, J., and Li, W.: Upgrading a regional groundwater level
monitoring network for Beijing Plain, China, Geosci. Front., 4, 127–138, 2013.
Zhu, C. and Yang, X.: Study of remote sensing image texture analysis and
classification using wavelet, Int. J. Remote Sens., 19, 3197–3203, 1998.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection in Landsat
imagery, Remote Sens. Environ., 118, 83–94, 2012.
Zhuang, Q. and Wu, B.: Estimating Evapotranspiration from an Improved Two-Source
Energy Balance Model Using ASTER Satellite Imagery, Water, 7, 6673–6688, 2015.
Zobler, L.: Global Soil Types, 1-Degree Grid (Zobler), Data set, available at:
https://doi.org/10.3334/ORNLDAAC/418, from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN,
USA, 1999.
Short summary
The agricultural sector in Saudi Arabia has expanded rapidly over the last few decades, supported by non-renewable groundwater abstraction. This study describes a novel data–model fusion approach to compile national-scale groundwater abstractions and demonstrates its use over 5000 individual center-pivot fields. This method will allow both farmers and water management agencies to make informed water accounting decisions across multiple spatial and temporal scales.
The agricultural sector in Saudi Arabia has expanded rapidly over the last few decades,...