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Abstract. The agricultural sector in Saudi Arabia has wit-
nessed rapid growth in both production and area under cul-
tivation over the last few decades. This has prompted some
concern over the state and future availability of fossil ground-
water resources, which have been used to drive this ex-
pansion. Large-scale studies using satellite gravimetric data
show a declining trend over this region. However, water man-
agement agencies require much more detailed information
on both the spatial distribution of agricultural fields and their
varying levels of water exploitation through time than coarse
gravimetric data can provide. Relying on self-reporting from
farm operators or sporadic data collection campaigns to ob-
tain needed information are not feasible options, nor do they
allow for retrospective assessments. In this work, a water ac-
counting framework that combines satellite data, meteoro-
logical output from weather prediction models, and a modi-
fied land surface hydrology model was developed to provide
information on both irrigated crop water use and groundwa-
ter abstraction rates. Results from the local scale, compris-
ing several thousand individual center-pivot fields, were then
used to quantify the regional-scale response. To do this, a
semi-automated approach for the delineation of center-pivot
fields using a multi-temporal statistical analysis of Landsat
8 data was developed. Next, actual crop evaporation rates
were estimated using a two-source energy balance (TSEB)
model driven by leaf area index, land surface temperature,
and albedo, all of which were derived from Landsat 8. The
Community Atmosphere Biosphere Land Exchange (CA-

BLE) model was then adapted to use satellite-based vegeta-
tion and related surface variables and forced with a 3 km re-
analysis dataset from the Weather Research and Forecasting
(WRF) model. Groundwater abstraction rates were then in-
ferred by estimating the irrigation supplied to each individual
center pivot, which was determined via an optimization ap-
proach that considered CABLE-based estimates of evapora-
tion and TSEB-based satellite estimates. The framework was
applied over two study regions in Saudi Arabia: a small-scale
experimental facility of around 40 center pivots in Al Kharj
that was used for an initial evaluation and a much larger agri-
cultural region in Al Jawf province comprising more than
5000 individual fields across an area exceeding 2500 km?.
Total groundwater abstraction for the year 2015 in Al Jawf
was estimated at approximately 5.5 billion cubic meters, far
exceeding any recharge to the groundwater system and fur-
ther highlighting the need for a comprehensive water man-
agement strategy. Overall, this novel data—model fusion ap-
proach facilitates the compilation of national-scale ground-
water abstractions while also detailing field-scale informa-
tion that allows both farmers and water management agen-
cies to make informed water accounting decisions across
multiple spatial and temporal scales.
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1 Introduction

Global water consumption has increased at an unprecedented
rate during the last century, with many countries turning to
groundwater as either an additional or primary source of sup-
ply to meet growing agricultural and other sectoral demands
(FAO, 2015; Famiglietti, 2014). In arid and semi-arid regions
in particular, groundwater is routinely the major water source
driving such expansions in irrigated agriculture (Siebert et
al., 2010). Unfortunately, these expansions have come with a
number of associated costs related to sustainability of aquifer
systems, degrading water quality, and over-exploitation. In-
deed, global monitoring efforts targeting major aquifer sys-
tems around the world have identified strong depletion trends
(Wada et al., 2012; Famiglietti, 2014), making the prospect of
meeting future water and food security demands even more
challenging (Dalin et al., 2017). While these relatively re-
cent estimates of groundwater depletion (Famiglietti et al.,
2011; Voss et al, 2013; Rodell et al., 2018) have been ob-
tained through satellite systems such as the Gravity Recovery
and Climate Experiment (GRACE; Tapley et al., 2004), their
value as a monitoring and management tool is limited due to
the coarse observation scale (Alley and Konikow, 2015; Miro
and Famiglietti, 2018). In order to provide the granularity of
information needed to monitor groundwater abstractions at
the field scale (~ 50ha), a combination of higher-resolution
data and modeling is needed.

Despite its extreme arid environment (Kenawy and Mc-
Cabe, 2016), Saudi Arabia has quite an extensive agricul-
tural sector. Like most national efforts to monitor and man-
age agricultural water use, agencies in Saudi Arabia have re-
lied on farmer surveys to estimate agricultural land and wa-
ter extraction. In common with other national efforts, there is
also a lack of regular and consistent field metering to provide
measurements of agricultural water use. Nevertheless, histor-
ical estimates from early national studies indicate an agricul-
tural extent of about 12 135 km? in 2005, with associated wa-
ter use of 21 billion cubic meters (BCM) within the kingdom
(FAO, 2008a). While this may be relatively small compared
to other national accounts (Doll and Siebert, 2002; FAO,
2008b; Wisser et al., 2008), agricultural water use in Saudi
Arabia has been estimated to represent more than 80 % of the
total national water consumption (FAO, 2008a; Chowdhury
and Al-Zahrani, 2015). Indeed, it is thought that less than
20% of the agricultural water use comes from renewable
sources, with rain-fed agriculture present only in southwest-
ern regions such as Jizan and Aseer. Local alluvial aquifers
(e.g., wadis) that are occasionally recharged during storm
events provide another source of water that has been used
for more traditional agriculture in Saudi Arabia (Missimer
et al., 2012), but these do not represent a suitable source for
large commercial-scale applications. The primary origin of
water that has driven the dramatic expansion of irrigated agri-
culture in Saudi Arabia is non-renewable groundwater from
deep fossil aquifer systems. Although agriculture has fea-
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tured throughout the nation’s history, significant extraction
from groundwater resources really only commenced during
the 1970s, when subsidies directed towards increasing food
security incentivized farmers (FAO, 2008a; Al-Rumkhani et
al., 2004). These incentives, together with the relatively in-
expensive access to diesel fuel required for extraction via
pumping wells, combined to rapidly develop this sector of
the economy. Center-pivot irrigation, where water is pumped
from a well and sprayed using a rotating arm with nozzles,
became the predominant method of irrigation nation-wide
and is typically applied on a daily and continuous basis for
prolonged periods. The rapid expansion in agricultural land
use, especially from center-pivot irrigation fields, has thus
rendered ground-survey-based monitoring impractical and
increasingly unreliable.

With regular coverage from Earth-observing satellites, re-
mote sensing offers a capacity to monitor the Earth across a
range of spatial and temporal scales (McCabe et al., 2017a).
While moderate-resolution images (e.g., O ~ 250 m—1 km)
have been used for observing processes such as evaporation
(Mu et al., 2011), these techniques lack the capacity to de-
lineate individual fields. Typical center-pivot fields with di-
mensions approaching 50 ha (800 m diameter) are generally
densely vegetated, and crops with different growing seasons
are often located adjacent to each other or even within the
same field. In such a case, platforms such as the MODerate
resolution Imaging Spectroradiometer (MODIS) would only
capture a heterogeneous mix of vegetated and bare desert
soil, let alone be able to differentiate between crops (Kus-
tas et al., 2004; McCabe et al., 2006; Wardlow et al., 2007;
Guindin-Garcia et al., 2012). Landsat 8 data, on the other
hand, have a spatial resolution of 30 m, allowing them to
map individual fields with a revisit time of 16d. Whether
this temporal resolution is sufficient to capture the seasonal-
ity of different crops is certainly a question to be explored,
although it should be noted that new satellite platforms such
as Sentinel 2 (Drusch et al., 2012) and even CubeSats (Mc-
Cabe et al., 2017b) provide a much higher orbital repeat cy-
cle. Regardless, a satellite-driven framework would provide
a singular opportunity for improving agricultural water man-
agement and monitoring (Brocca et al., 2018; Jalilvand et al.,
2019).

Quantifying crop water use via evaporation is a fundamen-
tal step towards estimating agricultural water use. In the ab-
sence of within-field flow metering or a surface flux mon-
itoring system (Baldocchi et al., 2001), a remote-sensing-
based approach to estimate land surface evaporation provides
a suitable alternative. A comprehensive body of research has
been dedicated to developing and intercomparing techniques
(Kalma et al., 2008; Fisher et al., 2017) and exploring the
application of these from local (Allen et al., 2007; Ander-
son et al., 2011) to regional and global scales (Miralles et al.,
2016; McCabe et al., 2016). Most of these models combine
available meteorological data with satellite-based vegetation
retrievals or with vegetation and thermal infrared measure-
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ments to estimate the surface evaporation. For example, Song
et al. (2016) and Li et al. (2017) used the two-source energy
balance (TSEB; Norman et al. 1995) and surface energy bal-
ance (SEBS; Su, 2002) models, respectively, to map evapo-
ration from semi-arid irrigated sites. Aragoén et al. (2018) ap-
plied the Priestley—Taylor JPL (PT-JPL; Fisher et al., 2008)
model with ultra-high-resolution vegetation data from Cube-
Sats to map evaporation over irrigated fields. Anderson et
al. (2012) demonstrated and discussed the ability of Landsat
thermal imagery (e.g., with TSEB) to monitor evaporation
and its application for water resource management. TSEB
has also been used as part of the Atmosphere-Land Exchange
Inverse (ALEXI; Anderson et al., 1997) model and its as-
sociated disaggregation scheme (DisALEXI; Norman et al.,
2003) to generate high-resolution maps of agricultural water
use. As it currently stands, there remains no single retrieval
technique that has been identified as the best-performing
evaporation model across all biomes and scales (Ershadi et
al., 2014; Michel et al., 2016; McCabe et al., 2016), with
model selection ultimately based on past performance and
expert knowledge.

While there have been sustained efforts towards estimat-
ing agricultural water use through evaporation modeling,
there have been relatively few studies aimed at retrieving ac-
tual irrigation amounts for monitoring purposes. For exam-
ple, Folhes et al. (2009) combined known irrigation values
from 40 selected fields with satellite-based evaporation esti-
mates in order to derive an irrigation efficiency. They then
used this information to estimate the total water use in a
semi-arid irrigated agricultural region in Brazil. Santos et al.
(2008) integrated satellite-based evaporation estimates into
a water balance model in order to provide improved irriga-
tion guidelines to reduce water use. Another approach that
has been explored is to use satellite-based evaporation es-
timates to constrain the irrigation input into a land surface
model (LSM) by way of inverse modeling. Droogers et al.
(2010) used synthetic model runs to determine whether this
approach could be employed to retrieve irrigation amounts.
Importantly, they explored the effects of satellite retrieval fre-
quency on the estimated irrigation, demonstrating that while
RMSE increased with larger observation intervals, Landsat
data could potentially be used for this purpose. Huang et al.
(2015) used a similar approach by assimilating temporal vari-
ations of MODIS-derived Leaf Area Index (LAI) and evap-
oration data into the soil water atmosphere plant (SWAP)
model to derive irrigation depth. They found that assimilat-
ing both variables resulted in the least relative error of the
resulting crop yields compared to official county statistics.
Lépez (2018) also used evaporation estimates and an LSM
in an inverse modeling approach to retrieve irrigation rates
from 40 center-pivot fields, demonstrating the potential for
obtaining seasonal irrigation rates for individual fields. More
recently, Jalilvand et al. (2019) explored the possibility of
using an approach designed to retrieve rainfall from satellite-
based soil moisture data in order to infer irrigation amounts,
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expanding upon the work of Brocca et al. (2018). However,
this approach is limited by the scale at which soil moisture
can currently be retrieved (e.g., 0.25°) as well as by the un-
certainty of the techniques used to obtain the actual rainfall
amounts that need to be removed (Jalilvand et al., 2019).

To date, the potential of coupling a land surface model
with satellite estimates (via evaporation) has yet to be fully
exploited for operational field-scale irrigation monitoring.
While estimates of evaporation represent the main loss of wa-
ter from agricultural systems (through soil evaporation and
vegetation transpiration), losses through deep drainage are
not generally accounted for in evaporation models. LSMs can
account for such hydrology, simulating the exchanges of wa-
ter and heat between the land surface and the atmosphere and
providing a detailed water balance that is beyond standard
evaporation process models. One simple method to incorpo-
rate irrigation into an LSM is to directly add the irrigation
rate to the rainfall component (e.g., Ozdogan et al., 2010),
but this requires the values of the irrigation rates to be known
(or assumed) a priori. However, satellite-based evaporation
estimates could be used to constrain the irrigation value
needed to reproduce the observed water use. In this study,
the idea of combining satellite-based evaporation estimates
with LSM simulations to indirectly obtain irrigation rates,
and consequently groundwater extraction amounts, was ap-
plied over two distinct irrigated agricultural regions. As in
the soil moisture-based approach of Brocca et al. (2018) and
Jalilvand et al. (2019), rainfall is not explicitly considered in
this water balance. The application of this inverse modeling
approach can be simplified in arid environments, as irrigation
rates are typically not modified when short-duration sporadic
rainfall events occur, since the amounts that can be captured
by the crops are limited. Indeed, over the growth cycle of a
typical crop, the applied irrigation volume is at least an order
of magnitude greater than any rainfall component (Kenawy
and McCabe, 2016).

The present study details the first large-scale implementa-
tion of this framework, focusing on quantifying groundwater
abstractions for a single year to illustrate the feasibility of
larger-scale and longer-term implementation. The integrated
satellite data and modeling approach is designed to map the
extent and distribution of fields, estimate crop water use, and
infer groundwater abstraction rates. To do this, the frame-
work exploits an object-based image classification technique
(Johansen et al., 2010) for mapping individual fields, where
one field is defined as the area covered by a single center-
pivot rotating arm. The latter is an important aspect that
was required in order to apply the data-modeling framework
in parallel, i.e., to effectively obtain irrigation rates over a
large region containing thousands of fields. Naturally, this
allows the display and aggregation of groundwater abstrac-
tion rates and other relevant information over arbitrary de-
lineations, such as management zones or farms, and repre-
sents a novel aspect of this work. To date, there have been
no comparable efforts attempting the retrieval of individual
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irrigation rates for a large number (thousands) of fields, and
thus this study represents an effort that moves closer towards
big-data-driven operational monitoring of individual fields.
Our framework provides a novel water accounting system
for agricultural management in Saudi Arabia and offers an
independent benchmark for water loss over a region that is
routinely omitted in global (and even regional-scale) evapo-
ration products (Mu et al., 2011; Miralles et al., 2011). Cov-
ering one of the largest agricultural regions in Saudi Arabia,
the study provides a benchmark against which the impact
of water policy changes can be evaluated in the future and
demonstrates the potential of broader-scale application else-
where.

2 Description of study regions

The study focused on two different agricultural areas in Saudi
Arabia, which enabled an evaluation of the proposed ground-
water abstraction estimation framework (Sect. 3) and sub-
sequent larger-scale application to be explored. To evaluate
the performance at the individual field scale, the strategy
was first applied to 40 center pivots located on a small farm
(Sect. 2.1) southeast of Riyadh. For this site, available irriga-
tion data for the year 2015 were obtained directly from the
farm management (Sect. 3.5) based on in-house field report-
ing. To assess the large-scale application of our groundwater
abstraction estimation strategy, it was then applied to thou-
sands of center-pivot fields in Al Jawf (Sect. 2.2), one of the
largest agricultural regions in Saudi Arabia. With no indi-
vidual field data available for comparison on this region, the
total groundwater abstraction estimates were compared with
some previous regional-scale estimates.

2.1 The Tawdeehiya experimental farm

The Tawdeehiya farm (Fig. 1) is a medium-sized commercial
agricultural facility that consists of approximately 40 center-
pivot fields, each with an extent of approximately 50 ha, n.b.,
within the average field size of those found in the larger
Al Jawf region (see Fig. 1 and Sect. 4.2). The farm is lo-
cated about 200 km southeast of Riyadh and exhibits sim-
ilar environmental and climatic conditions to the Al Jawf
study area (i.e., low rainfall and high daytime summer tem-
peratures exceeding 40 °C). Crops grown in this farm during
2015 included a range of vegetables, alfalfa, Rhodes grass,
and maize, with a total area under cultivation of more than
2000 ha. While one Landsat tile (path/row 165/43) is enough
to observe the entire farm, the adjacent tile (164/43) of-
fers additional coverage of fields on the eastern side of the
farm. Additional details of the site and data can be found in
Lépez (2018) as well as some related remote-sensing-based
studies that provide further description (Aragén et al., 2018;
Houborg and McCabe, 2018b).
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2.2 The Al Jawf agricultural region

The Al Jawf province is located in the north of Saudi Ara-
bia (29°-32°N, 36°-41°E) and is one of the top five agri-
cultural regions in terms of both agricultural area and wa-
ter use (FAO, 2013; Chowdhury et al., 2016). Most of the
agricultural area is managed by large commercial farms, the
majority employing center-pivot irrigation (Fig. 1). The irri-
gated area in Al Jawf has increased significantly over the last
3 decades, from being practically non-existent in the 1980s
to covering more than 1500 km? by 2005 (FAO, 2013), with
more than 90 % estimated to be irrigated using groundwa-
ter delivered via center-pivot systems (Al-Rhumikhani and
Din, 2004). The Saudi Statistical Yearbook (SSYB, 2010)
reported a decline in acreage in Al Jawf from 1600 km?
in 2007 to 1200 km? in 2009. However, newer versions of
this report (SSYB, 2013) do not offer a regional disaggrega-
tion of agricultural area. Under the Ninth Development Plan
from the Ministry of Economy and Planning (MEP, 2010),
it was reported that there was a 2.5 % annual decrease in
agricultural water use in the kingdom, from 17.5 BCM in
2004 to 15.4BCM in 2009, which was attributed to regu-
lations to rationalize water consumption and cultivation of
water-intensive crops (MEP, 2010). In Al Jawf, the same re-
port forecasts a continued decline in groundwater abstraction
from 1.5BCM in 2009 to 1.2 BCM in 2014. Although other
sources include more recent estimates for the total agricul-
tural water demand in the kingdom (MEWA, 2019), these
are not available on a regional basis. The majority of crops
grown in Al Jawf in 2009 (SSYB, 2010) were cereals (60 %
in area, with wheat being the most predominant), followed
by fruits (24 %, consisting of dates, grapes, and citrus), fod-
der (11 %, mostly clover), and vegetables (4 %, mostly pota-
toes and tomatoes). Unfortunately, the same level of detail
is not available from more recent reports (SSYB, 2013), but
we note that cereal production is no longer supported to any
significant extent. One of the challenges for attributing water
use to crop type in this region is the lack of available ground-
based land cover data. Al-Rhumikhani and Din (2004) used
a dataset from one agricultural site in 2001 that cultivated
alfalfa, potatoes, tomato, and wheat to classify crops in Al
Jawf from Landsat imagery. To our knowledge, no other re-
cent crop classification efforts have been made in the region.

Although rain-fed agriculture represents about 10 % of the
cultivated area within Saudi Arabia, this is limited to the
southwestern regions of Jizan, Baha, Aseer, and Makkah
(FAO, 2008a). Annual rainfall values in Al Jawf are, as in
most of Saudi Arabia, less than 50 mmyr_1 (Kenawy et al.,
2016), and consequently there is insufficient water to sup-
port rain-fed irrigation. Indeed, agriculture in Al Jawf is en-
tirely supported by groundwater extraction (Al-Rhumikhani
and Din, 2004; MEP, 2010; Chowdhury et al., 2016). In
2015, average wind speeds in this region were relatively low
(less than 5ms~!) throughout the year but reached maxi-
mum speeds up to 16 ms~! (the meteorological data used
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Figure 1. Location of the two study regions. Left: the Tawdeehiya farm in Al Kharj (southeast of Riyadh). A false color Landsat 8 image (9
June 2015) is shown to highlight active center-pivot fields over the desert environment. Right: the Al Jawf agricultural region in the northwest
of Saudi Arabia spans two Landsat 8 tiles. Two false color images are shown: 9 June 2015 for path/row 172/39 (left) and 19 June 2015 for
path/row 171/39 (right). Center-pivot fields are densely packed and largely uniform in size in the main area (30° N, 38.25° E), while in other
areas they are sparser and less uniform (for example, the image on the right).

in this study are described in Sect. 3.4.3). Average temper-
atures ranged from about 10°C in January and December
up to 32 °C in July and August and were consistently higher
than 25 °C from May to October. Maximum temperatures of
up to 44 °C occurred in August, while the minimum temper-
ature reached was —1°C and occurred in January. Relative
humidity ranged from about 25 % from May to September
and around 55 % during January, November, and December.

3 Pivot-based groundwater abstraction framework

A key output of this study is the estimation of ground-
water abstraction from thousands of individually delineated
center-pivot fields. At the core of the methodology is the
indirect estimation of the volume of irrigation that needs
to be applied to a field in order to reproduce the satellite-
observed crop water use. Figure 2 presents a schematic of
the methodology with the necessary inputs, intermediate pro-
cesses, and relevant outputs. In this approach, the first step
is an automated processing framework (Sect. 3.1) that per-
forms Landsat image acquisition, cloud and cloud shadow
detection, regionally optimized atmospheric correction, and
finally higher-level product generation of albedo, Normal-
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ized Difference Vegetation Index (NDVI), LAI, and land sur-
face temperature (LST). This procedure was based on recent
efforts in combining machine-learning techniques with phys-
ically based model inversion results (Houborg and McCabe,
2018a), which have made the automatic estimation of these
parameters over large arid regions possible. The data ob-
tained in this crucial first step were then directed into both the
evaporation and land surface models (see Sect. 3.4). The next
step uses a geographical object-based image analysis (GEO-
BIA) procedure (Johansen et al., 2010) to detect and map in-
dividual center-pivot fields based on NDVI data (Sect. 3.2).
Meteorological data were retrieved from a reanalysis per-
formed using the Advanced Research WRF (ARW; Ska-
marock et al., 2008) model over the Arabian Peninsula. De-
tails of this dataset are described in Langodan et al. (2014),
Viswanadhapalli et al. (2017, 2019), and Dasari et al. (2019),
so only a brief description is provided in Sect. 3.4.3. To pro-
vide needed estimates of crop water use (via evaporation), the
TSEB model (see Sect. 3.4.1) was run over two Landsat tiles
in each study region (172/39 and 171/39 for Al Jawf; 165/43
and 164/43 for the Tawdeehiya farm) using the WRF data to-
gether with the Landsat-based vegetation and biophysical pa-
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rameters (at 30 m spatial resolution and at a 16 d frequency)
obtained in the first step.

Up to this point, all processes involved use of the en-
tire Landsat tiles. The following steps in the framework
were performed independently over each separately delin-
eated center-pivot field (herein simply referred to as “field”).
These operations were performed in parallel using hun-
dreds of CPUs on a high-performance computing cluster
(see https://www.hpc.kaust.edu.sa/ibex, last access: 10 Jan-
uary 2020, for further details). To do this, data were first ex-
tracted for each field using Geospatial Data Abstraction Li-
brary (GDAL) tools. Next, LAI spatio-temporal information
was used to detect the seasonal activity of each field. This
included the possibility that one field actually contained two
different crops with different growing periods, a practice that
was recognized by analysing the images, as well as on-site
observations. Details of the automated detection capability
developed within this framework are provided in Sect. 3.3.
After this analysis, a “field temporal use index” was com-
puted, defined here as the percentage of time that the field
was used to grow a crop within the year of study. This index,
referred to as field use (%), is required to compare irrigation
practices among different farms and/or regions.

The Community Atmosphere Biosphere Land Exchange
model (CABLE; Kowalczyk et al., 2006; Sect. 3.4.2) was
used as an offline land surface hydrology model to indirectly
estimate the irrigation rate applied over each season, for any
particular field, for the study year of 2015. As rainfall is lim-
ited in this region, implementing CABLE simulations with-
out an irrigation component leads to an almost complete lack
of evaporation signal. TSEB information on evaporation was
used to infer the irrigation amount that would be needed
in CABLE to reproduce the estimated evaporation. In this
sense, TSEB improves the estimation of CABLE by provid-
ing the missing irrigation component in this region. The pro-
cedure is done as follows: for each active season identified
in a field, an ensemble of CABLE runs was performed under
different irrigation amounts. Denoting Egy as the remotely
sensed estimates of evaporation (obtained using TSEB; see
Sect. 3.4.1) and Ersm as the output evaporation from the
CABLE land surface model, a cost function that was pro-
portional to the difference between Ey1 sy and Egy was accu-
mulated during each available observation of Egy:

J=Zi[Y(ti)_H(X(ti))]T[Y(li)_H(X(ti))]v ey

where H is an operator that maps the land surface model
space X (t;) to the observation space Y (#;); n.b., the satel-
lite estimates need not be available at the same resolution
as the model or might be incomplete (e.g., due to the pres-
ence of clouds). Lépez (2018) used a stochastic optimiza-
tion approach (Spall, 1998) that iteratively updates the irri-
gation rates to minimize the objective function. That method
required tuning of two parameters that control the speed at
which the update occurs, a process that was initially per-
formed by trial and error. Importantly, the number of fields
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that were evaluated in Lopez (2018) was significantly smaller
(40) than the present study (more than 5000). Unfortunately,
the transferability of the optimization parameters to a larger
number of fields was limited, as the optimized irrigation rates
either diverged or the values did not update at all due to im-
proper scaling of the gradient of the cost function. Under
the rationale that the search space is relatively small, i.e., by
constraining the irrigation rate to realistic values (e.g., 1.1-
3 times the observed evaporation rates), a simple exhaustive
search (brute force) was implemented in this study. This re-
moved the need for a trial-and-error approach for optimiza-
tion of parameters as well as the need to compute a gradi-
ent (which requires at least two model runs for each step),
i.e., trading off precision for improvements in computation.
The latter was a key consideration to efficiently apply this
methodology to thousands of fields.

At the end of the process, the irrigation rate that produced
the most accurate evaporation estimate (compared to TSEB
estimates) was the one used to calculate the total groundwater
abstraction over the field. The irrigation rate (Irr) applied to
CABLE is the actual amount of water reaching the ground,
and it was assumed to be a constant fraction (1 — Cjogs) of
groundwater abstraction (G ) as in Eq. (2):

Irr = Gy (1 — Clogs) - (@)

The loss term was calculated using the following rationale.
The amount of water pumped out of the well (Gy,) is sprayed
by nozzles positioned on a rotating arm irrigating the field.
A fraction of this water (Cjogs) is lost due to wind carry-
ing moisture out of the field to the desert soil or to other
fields. Under similar conditions (hyper-arid irrigated fields),
this fraction has been estimated to be between 12 % and 20 %
(Steiner et al., 1983; Sadeghi et al., 2017). Without frequent
on-site measurement of this loss value across the whole field,
it is not possible to incorporate it directly into the model.
In this study, the aim was to provide an estimate of the irri-
gation amount (Irr) as an approximation of the groundwater
abstraction (G, ). Efforts to translate this into actual ground-
water abstraction on a regular basis for large areas are nec-
essary but will require ground observations or further model
improvement. For this study, a conservative value (in time
and throughout the fields) of 20 % (Cjoss = 0.2), and thus a
factor of 1.25, i.e., (1 — Closs) !, was used to scale irrigation
to abstracted groundwater.

In terms of the overall field water balance, the approach
employed in this study was simplified by the fact that rainfall
in this region does not represent a significant source that can
be used by crops. As such, the rainfall component in CABLE
was replaced by the irrigation rate that is being estimated in
the iterative procedure. The validity of this assumption and
thus the applicability of this model are certainly reasonable
in most of the major agricultural regions of Saudi Arabia,
with the exception of regions with significant rain-fed agri-
culture, such as those in Jizan and Baha. However, even in
those regions, the annual rainfall rarely exceeds 300 mm and
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monitoring framework.

occurs within a relatively well-defined period of the year. For
example, coffee production is an important economic activ-
ity in Jizan, occurring mainly at high altitudes within the Fifa
mountains, and farmers there regularly require groundwa-
ter as an additional source to meet the water needs of cof-
fee trees, especially during extended periods of drought (Al-
Abdulkader et al., 2018; Sayed et al., 2019). In other regions,
the contribution of rainfall might be proportionally higher
and thus need to be removed before obtaining the irrigated
amount.

3.1 Vegetation indices and biophysical parameters
retrieved from satellite data

NDVI is a widely used metric describing surface greenness
(Tucker, 1979; Beck et al., 2011) and is computed herein
directly from the Landsat near-infrared (851-879 nm) and
red bands (636-673 nm). Prior to computing NDVI, Landsat
images for the year 2015 (between 20 and 22 scenes were
acquired for each of the tiles used in this study) were at-
mospherically corrected to surface reflectances using a re-
gionally optimized Second Simulation of the Satellite Sig-
nal in the Solar Spectrum (6S; Kotchenova et al., 2006)-
based approach (Houborg and McCabe, 2017). Cloud and
cloud shadow detection was performed using the Function
of mask (Fmask) algorithm (Zhu and Woodcock, 2012). An-
other biophysical indicator for vegetation growth monitor-
ing is the LAI, defined as the projected area of leaves over a
unit of land area. LAl is a key parameter that has been used
to improve water and energy flux modeling over agricultural
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fields (Aragon et al., 2018). However, as opposed to NDVI,
LAI cannot be computed directly from satellite data. While
simple relationships between LAI and other vegetation in-
dices (including NDVI) have been used (Turner et al., 1999;
Colombo et al., 2003; Fan et al., 2009), the applicability of
such relationships for regions other than where they were
developed (using ground measurements) has been brought
into question (Wang et al., 2005; Atzberger et al., 2015;
Kang et al., 2016). Houborg and McCabe (2018a) used a
machine-learning approach to develop relationships between
LAI and several vegetation indices over a desert agricul-
ture site in Saudi Arabia (Tawdeehiya farm; Sect. 2.1). They
used a combination of in situ measurements and physically
based model inversion results as a hybrid training dataset,
with retrievals showing good performance compared to the in
situ LAI measurements. In our study, a coupled leaf-canopy
model (PROSAIL) produced forward runs over a wide range
of realizations, and these were used as a training dataset to
develop estimates of LAI using a random forest (RF) ap-
proach. The inversion of the forward runs needed to derive
LAI was based on the REGularized canopy reflectance model
(REGFLEC; Houborg et al., 2015), which has been shown
to be suitable for largely automated applications (Houborg
and McCabe, 2016). The configuration of REGFLEC in this
study followed Houborg and McCabe (2018a) but using only
the model inversion results (e.g., PROSAIL) due to a lack
of in situ LAI data in the larger region of Al Jawf. PRO-
SAIL combines a leaf optical properties model (PROSPECT;
Jacquemoud and Baret, 1990) with a canopy bidirectional re-
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flectance model (SAIL; Verhoef, 1984) and has been used
to retrieve LAI for a wide range of crops (Jacquemoud et
al., 2009; Vohland et al., 2010; Rivera et al., 2013). The RF
ensemble-based decision tree technique was used to learn the
complex non-linear associations between the spectral data
and the target biophysical property (i.e., LAI). In this study,
the “ranger” RF package in R was used for model training
and prediction. This package is optimized for efficient mem-
ory usage with large and high-dimensional datasets, a criti-
cal aspect for working with Landsat tile domains. Figure 3
shows the resulting NDVI and LAI maps for one Landsat
tile (path/row 172/39) on 23 April 2015, demonstrating the
high contrast between the bare desert soil and irrigated agri-
culture and the within-field variability that can be observed
at these high resolutions. Most of the agricultural fields in
Al Jawf (95 %) were located within this Landsat domain;
however, the adjoining path/row 171/39 was also included
to give a complete account of agriculture in Al Jawf (see
Fig. 1). The Tawdeehiya farm is located on the eastern edge
of path/row 165/43 and hence some fields can also be ob-
served by path/row 164/43.

3.2 Semi-automatic delineation of center-pivot
irrigation fields using Landsat imagery

A GEOBIA approach was developed in the eCognition De-
veloper 9.3 software to delineate individual fields for the
study sites. As seasonal crop cycles prevent all active fields
within a specific year from being detected at a single point
in time, the full Landsat image time series was used for
2015. Two layers based on the annual image time series
(20-22 images) were produced: (1) a maximum NDVI layer
and (2) a minimum panchromatic layer. NDVI was first cal-
culated for all images in the time series, and the maxi-
mum NDVI value for each pixel in the time series was as-
signed to the final maximum NDVI layer. Similarly, all the
panchromatic images within the time series were used to
produce a single panchromatic layer, representing the min-
imum value within the time series. To detect all active fields
in 2015, a multi-threshold segmentation was applied to clus-
ter all pixels with a maximum NDVI value of > 0.20 together
and classify these objects as “vegetation”. Unclassified pix-
els surrounded by “vegetation” objects were first merged
with the respective “vegetation” objects, and these objects
were then classified as center pivots if the object length was
< 1200m, length/width ratio < 1.1, and elliptic fit > 0.90.
The length/width ratio and elliptic fit features were used to
identify round objects, while the length feature ensured that
neighboring fields merged together were not initially clas-
sified as fields before they had been separated into objects,
representing an individual field.

The minimum panchromatic layer was subjected to an
edge-extraction Lee sigma filter. This filtering process pro-
duced another layer, highlighting bright edges in the imagery,
i.e., areas with large contrast in panchromatic pixel values,
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such as the edges between center pivots and surrounding
sandy soil. Separating adjoining fields required several pro-
cessing steps to first identify pixels with high edge-filtering
values and the use of region-growing algorithms to grow
these high-value edge-filtered pixels into neighboring pixels
with lower values. This allowed most of the adjoined fields
to be separated.

Some refining of the delineation results was then per-
formed to ensure the fields were extended to their perimeter,
which was done using a number of object shape criteria and
an NDVI threshold of 0.20. While most of the fields (approx-
imately 85 %) were correctly classified at this stage, there
were still several half or “Pac-man”-shaped fields remaining
to be classified. These remaining fields were manually delin-
eated, followed by an object-growing and object-shrinking
process to refine the manually delineated field edges.

3.3 Irrigation activity detection using LAI

LAI time series were used as an indication of vegetation
growth to estimate periods of active irrigation, which were
then used to constrain the start and end dates of CABLE
model runs. However, upon visual analysis of multiple fields
within the study regions, we observed that fields are often
divided into two halves, each with its own crop and poten-
tially different irrigation amounts. Therefore, prior to obtain-
ing a representative LAI time series for analysis, it was nec-
essary to further delineate the two sections of the field if it
was indeed divided. To achieve this, the k-means clustering
algorithm was employed. In general, the idea of clustering is
to identify groups of objects that are similar to one another
and different from those in other groups (Jain and Dubes,
1988; Jain et al., 1999). The k-means algorithm (MacQueen,
1967) is a partitioning clustering method (i.e., there is no
overlap between the groups) that has been widely used in
remote sensing studies. For this purpose, let X = {x;}, i =
1, 2, 3,...,n be a set of n-dimensional points to be clustered
into a set of K clusters C ={cx}, k=1, 2, 3,..., K (in our
study, K is set to 2). The squared error between the mean
of each cluster and the points within the cluster can be com-
puted by Eq. (3):

Ty = i —ull. 3)

The aim of the K-means algorithm is to minimize the sum
of J(cx) fork =1, 2, 3,..., K. Four main steps are followed
iteratively to minimize this sum: (1) select K points as the
initial centroids, (2) form K clusters by assigning all points
to the closest centroid, (3) re-compute the centroid of each
cluster, and (4) repeat (2) and (3) until there is no signifi-
cant change in the centroids within consecutive iterations. To
speed up convergence, the “k-means++" (Arthur and Vas-
silvitskii, 2007) algorithm was used to select the initial clus-
ter centers. A more detailed description of the k-means algo-
rithm is provided by Jain (2010).
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Figure 3. Example of the full Landsat tile (path/row 172/39) NDVI (left) and LAI (right) estimation, demonstrating the footprint from
center-pivot-irrigated fields in this region (high contrast with the bare desert soil).

Prior to applying the clustering algorithm, it was more ef-
ficient to extract the features to represent the characteristics
of the time series. To do this, the discrete wavelet transform
(DWT) was employed, which is an efficient procedure used
to separate deterministic from stochastic components of a
signal (Heil and Walnut, 1989). The DWT has been used to
analyze satellite images in the context of noise reduction as
well as change detection (Zhu and Yang, 1998; Wang and
Paliwal, 2006; Martinez and Gilabert, 2009). The main idea
behind application of the DWT is that the signal is repre-
sented as a combination of approximation and detail coeffi-
cients (Heil and Walnut, 1989):

x() = Ay + Y7 D0,
=7
As0) =3 o),
D0 =30 djtr (o), 4)

where AJ(t) and Dj () are, respectively, the approximation
and detail coefficients, and J is the decomposition level. The
detail coefficients are generated by projecting the original
signal x(¢) using a set of wavelet basis functions defined as
Vi) =N2"IyQ It —k), j=1,...,Jk € Z, where k is
the shift parameter and is the base function. In other words,
the detailed signal Dj(¢) at level j is generated by the de-
tailed signal Dj(¢) at scale j and can be obtained by ap-
plying a high-pass filter (g) on the original and scaled sig-
nals. In a similar way, the approximation coefficients are
generated by projecting the signal onto a set of orthonor-
mal scaling functions given by ¢; x(¢) = V21, Gt —k),
j=1,...,Jk € Z. Similarly, the scale signals are computed
by applying a low-pass filter (2) on the original and scaled
signals. Gao and Yan (2010) provide a more detailed descrip-
tion of the DWT.

In our study, LAI time series were first transformed into
DWT components by level-1 decomposition of the basis
function “haar”. Then, to establish whether the field is di-
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vided into two parts or not, two threshold values were used.
Both values relate to the “cosine similarity” (Eq. 5), which
measures the similarity among pixels of the same field:

A-B ' A;B;
similarity = = Liz14iB &)

PATNBI - s a2 [ 52

where A; and B; are components of vectors A and B, respec-
tively (i.e., one vector represents the time series of one pixel).
The cosine similarity values of two vectors range from —1 to
1. The closer the value approaches 1, the closer the direction
of the two vectors. On the other hand, the closer the value
gets to —1, the more the two vectors go in the opposite di-
rection. For each pair of pixels, the cosine similarity of DWT
components of time series was first computed, and then the
time series of the two pixels were determined to be simi-
lar or not by using a threshold of the cosine similarity (tcs).
The second threshold used was based on the fraction of pairs
where the value of cosine similarity was higher than tcs, i.e.,
defining nTcs as the number of pair values with similarity
higher than tcs and N as the total number of pairs; the ratio to
use as the second threshold was tpcs = nTcs/N. Upon an ex-
ploratory analysis based on a representative sample of a few
hundred fields, the appropriate values for these two thresh-
olds were determined as tcs = (0.75 and tpcs = 0.8. Hence,
a field was classified as partitioned when the tpcs value was
exceeded and was thus further processed by the k-means al-
gorithm for clustering.

Next, a number of representative pixels within the field (or
sub-field if partitioned) were selected and used to determine
the start and end dates for each season within the land surface
hydrology model runs. The pixels were selected based on a
criterion that the daily LAI values, obtained by linearly in-
terpolating from the 16 d LAI time series, were consistently
within the interquartile range (e.g., 25 % and 75 %). This was
done to remove the influence of outlier pixels. Finally, the
mean value over these pixels each day was taken as the mean
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LAI time series (mLAI). Using this mean LAI time series,
crop growing seasons were then selected based on the start
and end dates of the first season, defined by the period where
mLAI is higher than a threshold tLAI (in m> m~2). A value
of tLAI = 0.3m?>m~2 provided a reasonable delineation of
growing seasons for a large number of fields. Furthermore,
to remove noise that could result from the interpolation of
the LAI time series, only seasons that were at least 30d in
duration were processed, which is the approximate length of
the shortest crop growing seasons observed for alfalfa crops
and also ensures that it includes at least one Landsat scene.

Upon analysis of the shape of mLAI, in terms of the num-
ber of peaks as a measure of the oscillatory nature of the
time series, fields were then classified into two possible cat-
egories: seasonal or perennial. A “seasonal” field had clearly
defined growing cycles that were separated by inactive pe-
riods. Figure 4a shows a field that was active for only 3
months, with clear start and end dates obtained by comput-
ing the dates at which the mean seasonal pixels in the LAI
time series intersected with 0.3 m> m™2. Perennial fields had
vegetation patterns that reflected long periods (up to year-
round) of vegetation above the LAI threshold but with inter-
mittent cut and re-growth periods. This is typical of a field
growing alfalfa or grass, where the production is continuous
throughout most of the year. An example of a perennial field
is shown in Fig. 4b. This field was active from April to De-
cember 2015 but with intermittent cut/re-growth cycles. For
this second category of crops, it was not straightforward to
select clear periods for retrieving irrigation, due to Landsat’s
temporal resolution of 16d. To ensure that there would be
enough satellite evaporation estimates for constraining the
land surface model runs, the process for these types of pivots
was performed on a quarterly basis.

3.4 Models and ancillary data
3.4.1 Satellite evaporation estimation using TSEB

The TSEB model (Norman et al., 1995) was used to obtain
the satellite-based estimates of evaporation that constrain the
land surface hydrology model runs. TSEB was selected based
on its proven utility in the estimation of evaporation over ir-
rigated crops in semi-arid and arid regions (e.g., Colaizzi et
al., 2012; Zhuang and Wu, 2015; Nieto et al., 2019). TSEB
is based on the energy balance (R, = LE+ H + G), where
R, is the net radiation reaching the crop canopy and soil sur-
face, H is the sensible heat flux (i.e., the energy transformed
to heat and released into the atmosphere), G is the soil heat
flux, and LE is the latent heat flux of evaporation, which is
the key link between the energy and water balance equations.
In TSEB, the LE term is obtained as a residual of the energy
balance equation and along with H and R, is divided into
separate components for the soil and canopy at each pixel.
The model for sensible heat flux in TSEB is based on a net-
work of temperature gradient—transport resistances between
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the air, canopy boundary layer, canopy, and soil. In this study,
the “in-series” resistance scheme (Shuttleworth, 1985) for
the sensible heat flux was used. The in-series scheme was
selected as it has been demonstrated to estimate heat fluxes
of densely vegetated areas more accurately than the parallel
or patch schemes (Kustas et al., 1999; Colaizzi et al., 2012).
In center-pivot fields, the crops are not structured in rows,
and at maturity the canopy covers the entirety of the soil sur-
face (with the exception of the beam tracks of the pivot), and
thus the area was considered to be densely vegetated. The in-
series approach accounts for the coupling between soil and
canopy heat fluxes.

The sensible heat flux is defined below for canopy (H.)
and soil (Hs) in Eq. (6):

T — Tac Ts — Tac
H: = pcp <C—> , Hy=pcp (S—> ) (6)

rx s

where T is the canopy temperature, 75 is the soil tempera-
ture, Tac is the temperature of the canopy-air space, rx is the
canopy boundary-layer resistance, r is the resistance of air
between the soil surface and source height, p is the density of
water, and ¢, is the specific heat of water. The calculation of
the two resistances rs and r was done following the methods
of Sauer et al. (1995) and McNaughton (1995), respectively.

The LE fluxes for the canopy and soil are determined
based on initial estimates for 7. and Ty, which are then it-
eratively refined until LEs is positive (or after a maximum
number of iterations). An initial estimate of LE; (canopy la-
tent heat flux) is required in order to obtain the values of T
and T. This is done by using the Priestley—Taylor equation
and then solving for 7¢:

Tc = Ty — (Rnc — LE¢) ran/(0cp), @)

where T, is the air temperature from the WRF data and ryp
is the aerodynamic resistance to heat transport. The value of
ran depends on atmospheric stability parameters, wind speed,
and measurement heights for temperature and wind speed,
which is set to WRF’s near-surface level (2 m in this study).
The aerodynamic roughness length for heat and momentum

transport were defined as zoy = Hc/8 and zopg = — P,
exp(kB )

where the kg ' (i.e., In(zom/z0#)) parameter was set to 2 as
in Norman et al. (1995). Without detailed in situ information
describing land cover and crop development stage, canopy
height was prescribed to a constant value of 0.3 m, a reason-
able assumption based on the typical crops such as alfalfa,
wheat, and vegetables being grown in this region.

The net radiation is computed by Eq. (8):

Ry = (1 — @) San + Lan — surtopLST?, (8)

where « is the albedo (computed from Landsat data as in
Liang, 2001), Sy, and Ly, are the incoming shortwave and
longwave radiation components (derived from WRF data),
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Figure 4. Example of two types of crops identified for this study based on an LAI threshold of 0.3 m?m—2. (a) Images of the six scenes
when the field was identified as active are shown on top, which correspond to the six dates marked as diamonds inside the dashed lines in
the bottom plot. The season start and end dates (10 February and 21 May) correspond to dates when the mean LAI crosses the threshold of
0.3 m%m~2. (b) This particular field was inactive during the first 3 months of the year, followed by large LAI oscillations, indicating repeat
cut/re-growth activities. Landsat scenes for this field are shown on top, increasing in date to the right and bottom, while the dates are marked

as diamonds in the LAI time series plot.

Esurf = (fpéveg + (1 — fyp)egra) is the surface emissivity with
fo described in Eq. (11), &yeg =0.98 and &g,q = 0.93 are
the canopy and soil emissivities, respectively, and oy, is the
Stefan—Boltzmann constant.

The net radiation that reaches the canopy Ry is modeled
as

Ry =R, (1 _ o~ 045LAI//2cos (¢Z)) 7 9)

where @, is the solar zenith angle. This simple parameteri-
zation for Ry. was developed based on the Cupid model for
dense canopies as described in Zhuang and Wu (2015). The
initial soil temperature is then given by Eq. (10) and is up-
dated iteratively as described in Norman et al. (1995):

1= (T = £ T8 (1= fy).

In this study, the radiometric temperature (7;) is the LST de-
rived from Landsat’s thermal infrared sensor data, with atmo-
spheric correction of the at-sensor brightness surface temper-
ature performed using MODTRAN (Berk et al., 2005; Rosas
et al., 2017). In this process, atmospheric profile data from
MERRA?2 (Gelaro et al., 2017) were used and emissivity
fields were based on the methods of French et al. (2005) us-
ing estimates of vegetation fraction (Anderson et al., 2007).
A data mining sharpener (DMS) technique based on regres-
sion tree analysis (Gao et al., 2012) was used to perform
spatial sharpening of LST to 30 m resolution. The vegetation
fraction at the sensor view angle ¢ (0 for Landsat) is

—0.5LAI
cos(p) )

The vegetation fraction assumes a spherical leaf angle dis-
tribution, which is a good approximation for general plant

(10)

f(p:l—exp( (11)
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canopies, spreading the leaf area uniformly across solar
zenith angles (Campbell and Norman, 1998). For Saudi Ara-
bia, at the Landsat overpass time, the extension coefficient
Kb is approximately equal to 0.5.

For pixels with low LAI values (LAI < 1), i.e., where
the soil component is dominant, the canopy component was
omitted by applying a simpler, one-source energy balance
(OSEB). In the OSEB, the sensible heat flux is estimated by
using a one-layer circuit network. Although this can lead to a
sharp transition in evapotranspiration (ET) for values around
LAI =1, this was done in order to reduce the influence of
high bare soil evaporation values using TSEB, which would
cause an overestimation of water use in fallow or inactive
fields and where the surface can be modeled as a single layer.
In OSEB, H is simply given by

T, —T.
H:'OCP< rrah a>‘

The soil heat flux (G) model of Santanello and Friedl (2003)
was used in this study. This model includes a simple relation
describing the covariation between daytime ground heat flux
and net radiation (R):

27 (t + 10800))
- 5 nss

12)

13)

G:Acos(
B

where A represents the maximum ratio of G/ Ry, B is a con-
stant that minimizes the divergence of the equation to that of
measured values, and ¢ is the number of seconds between the
satellite overpass time and solar noon. The values of A and B
were left as in the original parameterization, with A =0.31
and B = 74000s.

The use of TSEB to estimate evaporation has been vali-
dated in similar arid regions (Colaizzi et al., 2012; Zhuang
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and Wu, 2015; Nieto et al., 2019). With a lack of sufficient
ground-based measurements in our study regions, we did not
attempt to provide a new validation dataset for TSEB. How-
ever, we used data from one eddy-covariance tower installed
in 2016 on a center-pivot-irrigated field in Tawdeehiya farm
(Fig. 1; Sect. 2.1), which showed good estimation for oper-
ational purposes in this data-limited region (Fig. S1 in the
Supplement).

34.2 CABLE

CABLE was used as a stand-alone (offline) land surface hy-
drology model to estimate irrigation rates based on the evap-
oration estimates obtained with TSEB. CABLE was selected
given its application in other dryland environments and as the
land surface scheme for regional and global climate mod-
els (Zhang et al., 2009; Haverd et al., 2013; Hirsch et al.,
2019), but the approach described in this study is not lim-
ited to any particular scheme. Energy and water interactions
are modeled in CABLE across six layers of soil (with thick-
ness from the surface to bottom layer of 2.2, 5.8, 15.4, 40.9,
108.5, and 287.2 cm), the canopy layer, and the atmosphere.
Similar to TSEB, the heat fluxes in CABLE are modeled by a
network of aerodynamic resistances. The sensible and latent
heat fluxes are also partitioned into a flux from the soil to the
canopy and from the canopy to the atmosphere. However, in
CABLE, the canopy layer is further divided (two-leaf canopy
model) between sunlit and shaded leaves, using an approach
developed by Leuning et al. (1995).

Another feature of CABLE is that the canopy transpiration
as well as root water extraction both depend on whether the
canopy is wet, dry, or partially wet (Lai and Katul, 2000). A
coupling between the root water extraction and stomatal con-
ductance was added by Haverd et al. (2016), enabling a “root
shut-down” that tests for over-extraction in each soil layer,
which would otherwise result in high water use efficiencies
under drying conditions. Hydraulic redistribution (Ryel et al.,
2002) was also added to CABLE in order to improve the rep-
resentation of the water flux between soil layers. This com-
ponent involves redistribution of water by roots and depends
on the root density and the rhizosphere conductivity. This
term was added as an additional term in Richard’s equation,
which describes the soil moisture (6) flux and is based on the
one-dimensional conservation equation and Darcy’s law:

20 0 a6
v- —3—Z<K+Da—z>+mz>, (14)
where K is the hydraulic conductivity, D is diffusivity, and
Fy(z) includes water lost due to soil evaporation and root
extraction or water gained or lost in a layer by hydraulic re-
distribution (Ryel et al., 2002). In this study, CABLE version
2.3.4 was used. This version of CABLE is freely available
at http://trac.nci.org.au/trac/cable (last access: 20 Novem-
ber 2019) after registration. Detailed descriptions of the
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model are available in Kowalzcyk et al. (2006), Wang et al.
(2011), Kowalzcyk (2013), and Haverd et al. (2016).

To support the generality of our approach, the offline
global simulations in this application of CABLE use look-up
tables for soil and vegetation classification. By default, CA-
BLE includes a soil classification table derived from Zobler
(1999) and vegetation types defined by the International Geo-
sphere and Biosphere Program (Loveland et al., 2000). CA-
BLE auxiliary files also include monthly LAI data derived
from MODIS data averaged from 2002 to 2009 (Gao et al.,
2008; Ganguly et al., 2008), as specified in the CABLE user
guide (Srbinovsky et al., 2012). In this study, the default soil
texture was used and assumed to be uniform across the study
region (the soil corresponds to sandy loam soil in the irri-
gated regions explored here). However, LAl data in this study
were derived as described in Sect. 3.1, as the coarse-scale
MODIS-derived dataset is not representative of the actual
crop-growing patterns. The possibility of different crops and
crop rotation in the same field within the year was consid-
ered, as explained in Sect. 3.3, using the clustering technique
based on LAI data. One limitation of the framework is the
lack of a crop identification module, which would improve
the definition of vegetation characteristics. Here, vegetation
parameters were assigned based on the default CABLE crop-
land vegetation class, as currently no crop identification strat-
egy was implemented other than the delineation and cluster-
ing technique. Finally, CABLE was forced with hourly me-
teorological data from a WRF reanalysis (Sect. 3.4.3).

Under basin-scale water budget studies, a spin-up of the
model is generally required to achieve a realistic initial soil
moisture state. This is normally done by running a represen-
tative year of meteorological data several times or running
several years prior to the start of the study period (Ajami et
al., 2014, 2015) and assuming that the spin-up period is rep-
resentative of the “normal” conditions. This assumption does
not hold in our simulations because we are aiming to retrieve
irrigated amounts, which could change from one year to the
other as different crops are grown. Therefore, this posed a
challenge for representing the initial state of irrigated agri-
cultural fields at the start of our simulations. In our study, the
spin-up for each field was performed as follows: after esti-
mation of the irrigation amount for one season, the model is
run using this irrigation amount, and the final state is saved
as the initial state for the next iterative process. However, the
problem still lies with the spin-up of the first period. To solve
this, we started by first running the groundwater abstraction
strategy for a 3-month period prior to the start of the study
period, thus generating an initial state for the actual period of
study.

3.4.3 Meteorological data
The meteorological data required to drive the TSEB and CA-

BLE models were derived from a numerical weather pre-
diction simulation of the Weather Research and Forecast-
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ing (WRF) model, specifically, the Advanced Research WRF
(ARW; Skamarock et al., 2008) model version 3.7.0. The re-
gional simulation, performed over the entire Arabian Penin-
sula and neighboring regions, used dynamical downscal-
ing of global analysis data from the National Centers for
Environmental Prediction (NCEP). Dynamical downscaling
refers to a method to generate a higher spatial and tempo-
ral resolution regional climatic model by assimilating avail-
able regional datasets and initialized from coarser reanaly-
sis data (Giorgi and Mearns, 1991; Wilby and Wigley, 1997,
Viswanadhapalli et al., 2017, 2019; Dasari et al., 2019). This
is typically done by nesting a high spatial resolution do-
main within a coarser domain. Observational data used in
this regional climate model included quality-controlled data
from the NCEP Atmospheric Data Project (ADP), such as
surface station data, wind data from the Quick Scatterome-
ter (QSCAT) and WindSat and ASCAT scatterometers, and
atmospheric motion vectors from geostationary satellites.
The methodology, model parameters, and model physics fol-
lowed a similar approach to that described in Jiang et al.
(2009), Langodan et al. (2014, 2016), Viswanadhapalli et al.
(2017), and Dasari et al. (2019). The simulations were per-
formed over a 5-year period (2011-2015) at an hourly time
step and with the internal model domain with a spatial reso-
lution of 3 km covering the Arabian Peninsula.

3.5 Evaluation of model performance

To evaluate the modeling approach across thousands of indi-
vidual field sites would require the provision of an extensive
dataset of on-ground water use measurements, ideally col-
lected from numerous pivots and over an extensive period of
time. However, detailed abstraction, irrigation, and crop wa-
ter use data in such quantities rarely exist in even the most
well-monitored sites, let alone for developing country appli-
cations. Although we could not collate comprehensive and
spatially distributed evaluation data for the Al Jawf study
region, we utilize data from the smaller-scale Tawdeehiya
farm to provide farm-reported data for the year 2015. The
available evaluation data consisted of monthly values of to-
tal irrigation application time (in hours) and a single value
of flow rate in gallons per minute for each field. To convert
to groundwater abstraction (GWA), the flow rate was multi-
plied by the number of minutes irrigated in each month and
converted to units of millions of cubic meters (MCM). The
model’s performance to quantify field groundwater abstrac-
tion was evaluated using the Nash—Sutcliffe efficiency, given
by Eq. (15):

YL (Si— 00)?
TR —
ZIN=1 (Oi - 0)
where O represents the observations (farm data) and S our
estimations, both in MCM for the year 2015. NSE values can

be negative (from —o0) or a value from 0 to 1, where 1 rep-
resents a perfect match between estimates and observations

NSE=1-— (15)
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and a value of O shows that the estimates are as good as the
mean of the observed values (O).

4 Results

The strategy as described in this study (Sect. 3) was applied
to two study regions. Section 4.1 presents the results of GWA
of 40 fields at the Tawdeehiya farm and evaluates the perfor-
mance based on farm data for these fields. Next, Sect. 4.2 and
4.3 focus on the larger-scale application of the methodology
across the Al Jawf region, demonstrating the framework’s ca-
pability in terms of information it can reveal at a regional
level. First, Sect. 4.2 explores patterns of irrigation activity,
e.g., for how much time these fields are active throughout
the year; whether there is a preference for seasonal or peren-
nial types of fields (as defined in Sect. 3.3); and the spatial
distribution of yearly groundwater abstraction and field use
within the region. Finally, Sect. 4.3 demonstrates the range
of monthly to annual water use in the region, i.e., irrigation
rates and derived groundwater abstraction values. A compar-
ison of evaporation estimated by CABLE (with inferred irri-
gation based on our approach) and TSEB is shown in Fig. S2
in the Supplement. As a result of this work, a first of its kind
spatially distributed map of field-based groundwater abstrac-
tion was created as a key output of the monitoring strategy.

4.1 Pivot-based framework performance at the
Tawdeehiya farm

In order to evaluate the performance of the approach, the
pivot-based water accounting methodology (described in
Sect. 3) was first applied to the 40 active fields at the Tawdee-
hiya farm (Fig. 1). Seventeen fields were identified as follow-
ing a perennial planting pattern, with yearly field use values
around 86 %. Twenty-three fields were classified as seasonal
fields, with average field use vales of 57 %. The performance
evaluation was based on a comparison of the estimated yearly
groundwater abstraction rates and farm-based data reports of
flow rates delivered to the irrigation booms. Upon examina-
tion of the estimated monthly irrigation rates from the sea-
sonal fields, a systematic mismatch was observed during pe-
riods where fields were identified as being “inactive”. From
knowledge of the local farm-based operations, it is not un-
usual that fields required a significant amount of pre-planting
irrigation (likely to reduce the salt load in the soil and in
preparation for seeding), but during this period, the LAI
would be below the threshold used to define an “active” sea-
son (Sect. 3.3), and thus water accounting in the model would
not be triggered. Lowering the LAI threshold would not help
in identifying this pre-planting stage, because it is already
essentially zero when vegetation is not present. Reducing it
further to arbitrarily low values would defeat the purpose of
seasonal activity detection. As an alternative, the season can
be extended to include a pre-planting stage of a pre-defined
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Figure 5. Comparison of annual groundwater estimates to farm
data. The blue line shows the regression based on the black and
green dots (adjusted to include only active seasons for 11 seasonal
fields). The gray points show the original farm data with long pre-
planting stages for those same 11 seasonal fields.

amount of time. However, this parameter would depend on
a variety of factors, such as the type of crop being planted
and other farm management practices. Without a sufficient
amount of data with which to derive strategies to account for
irrigation during this pre-planting stage, the groundwater ab-
straction values for seasonal fields in this study can only be
interpreted as a lower bound.

Figure 5 presents the groundwater abstraction estimates
calculated for the center-pivot fields compared against farm-
reported flow rates (multiplied by irrigation duration). As
can be seen, there is a significant amount of variability be-
tween the pivot results, largely a consequence of seasonal
versus perennial fields. However, for a number of the sea-
sonal fields, there was a clear and defined underestimate of
groundwater abstraction relative to the reported flow-rate ex-
trapolations (identified by the gray dots). Indeed, 11 fields
had an unrealistically long pre-planting stage of more than 2
months, based on the reported flow-rate data. It is extremely
unlikely that these reflect real farming practices and are al-
most certainly a result of local reporting errors. Taking into
account the uncertainty of the farm data for these 11 pivots,
the yearly groundwater abstraction values were re-calculated
to estimate only when fields were determined to be active,
i.e., based on the satellite-derived LAI values. Using this as-
sessment threshold, the NSE value was 0.38 with an R? of
0.61 for all 40 pivot fields, with a linear regression described
by the blue line in Fig. 5 (slope of 0.62, intercept of 0.51).
For reference, the 11 gray dots (not included in the NSE cal-
culation) present the original data that include the “inactive”
period, i.e., with the long pre-planting stage.
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Further exploring the relationship between monthly
groundwater abstraction and its relation to the level of a
field’s activity (based on LAI data), Fig. 6 shows the results
for two different fields and their spatial and temporal changes
in LAIL The first field (Fig. 6¢ and d) presents a 6-month pe-
riod when LAI is above the defined threshold (0.3 m®m~2)
and a long inactive period (August—-December) which would
be designated as low-to-no estimated irrigation. For the pe-
riod of activity (January—July, excluding a planting stage in
March) the agreement between reported flow rate and es-
timated groundwater abstraction is good. However, for the
August—December period, when the LAI imagery shows low
LAI to bare soil conditions, the farm data report a varying
amount of irrigation based on the fixed flow rate records.
For the second field (Fig. 6e and f), the monthly variations
in groundwater abstraction are in good agreement with farm
data for the majority of the year, with the exception of a 3-
month period (January to March), which was identified as in-
active, but where farm-reported data again indicate irrigation
is active.

While undertaking a field-based assessment of the strat-
egy is obviously an area of importance, it is tempered by
the reality of using data that is often of less than “high qual-
ity”. However, by combining independent observation avail-
able from satellite platforms, we can further discriminate
these spurious data points, and refine the assessment pro-
cess. These types of analyses highlight the need for foren-
sic assessment of ground-based (and satellite) observations
and the value of establishing consistency between available
datasets (McCabe et al., 2008; Lopez et al., 2017). Indeed, in
this case, the proposed model-satellite fusion approach cor-
rectly identifies errors in “ground-based” data and provides
a clear example of the observation and monitoring challenge
in this and many other regions.

4.2 Irrigation activity detection in Al Jawf

Given the quite different application scale of the pivot-based
groundwater estimation approach when performed over the
Al Jawf region (compared to Tawdeehiya), overview and
analysis of intermediate processing steps are warranted. The
object-based image analysis approach (see Sect. 3.2) pro-
duced a map containing 5567 individually delineated fields,
covering a total area of 2494 kmz, i.e., more than 60 % higher
than previous reporting (FAO, 2013). The majority of the
delineated fields (81 %) were identified as “perennial” (see
Fig. 4b), with less than 1.5 % recognized as inactive us-
ing the LAI-based approach. Examples of these delineations
are shown in Fig. 1 (top; outlined in black). On average,
the sizes of the fields were 45ha (0.45 kmz), with no ob-
servable distinction in acreage between perennial and sea-
sonal fields. Figure 7 displays the distribution of size (in
hectares) for all fields (first quartile of 25.54 ha, third quartile
of 66.05 ha). The field sizes do not follow a normal distribu-
tion but form clusters (e.g., around 82, 67, and 50 ha; see in-
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Figure 6. Estimated groundwater abstraction in million cubic meters (MCM) for two fields in the Tawdeehiya farm along with a comparison
based on available flow rates from farm data. (a, b) show the spatial maps of LAI data (m2m~2) using the methodology described in Sect. 3.1.
Two fields from two different periods are delineated either in black (corresponding to ¢, d) or white (e, f). (¢, e) show a spatiotemporal map
of LAI for the two fields, while (d, f) show a comparison of groundwater abstraction obtained using the framework described in Sect. 3 and
available farm data. The field marked with black is one of the 11 fields identified as having a large abstraction discrepancy; i.e., the farm data
indicate ongoing periods of irrigation, while the LAI data indicate inactivity.

set in Fig. 7), which is expected as center-pivot irrigation sys-
tems are installed in standard sizes. The largest fields (e.g.,
> 60 ha) were concentrated around the central region (30° N
38.25° E), which is where the largest commercial-scale farms
operate. In more remote areas to the north and east of Al
Jawf, a larger variation of smaller fields can be identified that
are likely owned by smaller, independent farms.

The annual field use (%), calculated as the ratio between
the number of active days and total days in the year, is shown
in Fig. 8. As expected, perennial fields have a higher field use
(average, first and third quartiles: 86 %, 77 % and 100 %, re-
spectively) than seasonal fields (average, first and third quar-
tiles: 35 %, 24 % and 46 %, respectively). In contrast with
the area distribution (Fig. 7), the majority of fields had high
annual field values, meaning they were active throughout
most of the year, independent of their location (small or large
commercial-scale farms). This is consistent with the fact that
most fields were identified as perennial, and indicates a pref-
erence towards forage crops (i.e., grass and alfalfa) during
this year, regardless of the scale of operation.

The field use (%) was also calculated on a monthly basis
as the ratio of number of days active to number of days in
each month in Fig. 9, with the distribution of values among
all fields shown as violin plots for perennial and seasonal
fields separately. Most perennial fields were consistently ac-
tive throughout the year (monthly field use above 80 %), but
for any given month there were fields that were inactive (i.e.,
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with less than 5 % monthly use). For example, the largest
number of inactive perennial fields was 958 in January, fol-
lowed by 913 in December, with the smallest being 353 in
March. Because perennial fields are, by definition, expected
to be active throughout most of the year, the violin plots
(Fig. 9) show a consistent pattern with a wide top (i.e., high
y values) and otherwise thin body. Seasonal fields on the
other hand, had a more variable range of irrigation activity.
Most fields were irrigated from February to May, with more
than 46 % of the fields with a monthly field use value larger
than 50 %. This was followed by July and August, where
more than 33 % of fields exceeded the 50 % monthly field
use. Irrigation activities were lowest during January, June
and from September to December, where less than 30 % of
fields had monthly field use values larger than 50 %. This
suggests an overall trend for seasonal crops either being used
for one growing season (from February to May), or two sea-
sons (February to May and July to August).

4.3 Monthly and annual irrigation and groundwater
abstraction

The irrigation rates for each field were determined using the
inverse modeling approach, i.e., running the CABLE model
iteratively to determine the rate needed to reproduce the
TSEB-based satellite-observed crop water use (see Sect. 3).
Figure 10 presents the derived monthly irrigation estimates.
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Figure 7. Spatial distribution and statistics of individual field areas. Clusters of large fields (those > 60ha) can be found in the main agri-
cultural zone (30° N, 38.25° E), corresponding to the location of several large commercial-scale farms. The figure’s inset on the left shows a
violin plot of the field sizes in Al Jawf: in a given field area (y axis), the plot outline (in black) is wider when there is a larger number of fields
of that given size. The black horizontal lines inside the plot show the first quartile, median, and third quartile, while the black diamond shows
the average value. The background in the inset shows colored dots (horizontal positions are given randomly for visualization purposes) to
distinguish perennial and seasonal fields.
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Figure 8. Spatial distribution and statistics of the annual field use, defined as the ratio of active irrigation days to total number of days in the
year. Most fields had high values of annual use (> 80 %). The inset on the left shows the distribution of annual field use among all fields in the
region as a violin plot. The two black diamonds show the average value grouped by the type of field (seasonal or perennial), while the black
square represents the average of all fields. The background shows colored dots (horizontal positions are given randomly for visualization
purposes) to distinguish perennial and seasonal fields.

Results were generally higher for perennial fields compared
to seasonal fields, with average values ranging from 122 to
152 mm in January, February, and from October to Decem-
ber and the highest values occurring from April to September
(210-234 mm). The monthly maximum value for a perennial
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field was 407 mm and occurred in August. Average yearly
irrigation values for the perennial fields reached 2007 mm,
with first and third quartile values of 1347 and 2799 mm
for the fields within the Al Jawf region. Average monthly
irrigation values for seasonal fields were lowest in Novem-
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Figure 9. Monthly center-pivot field use for perennial (a) and seasonal (b) fields. The black squares show the average monthly field use (%
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ber and December (50-58 mm) and highest during March
to April (165-171 mm), indicating the production of spring
crops. A second peak, indicative of a second season (as men-
tioned in the monthly field use analysis), was also evident
in the monthly irrigation profile, with average values of 145
and 131 mm in July and August, following a lower value of
109 mm in June. The highest monthly irrigation value for a
seasonal field was 348 mm during July. On average, seasonal
fields had a total annual irrigation value of 675 mm, with the
first and third quartiles at 299 and 1041 mm.

The irrigation values were converted to groundwater ab-
straction by multiplying monthly irrigation amount by the
area covered by pixels that were actively irrigated in each
season, and then by a factor of 1.25 (i.e., 1 /(1 — Cjess)) to ac-
count for irrigation losses (as described in Sect. 3). Figure 11
shows a map of annual groundwater abstraction in the re-
gion, in MCM. The total annual groundwater consumption
in 2015 for the Al Jawf agricultural region was estimated
at 5.56 billion cubic meters (BCM). Clusters of fields with
high abstraction (> 3MCMyr~!; shown in blue) are mostly
centered in the main commercial region (38.25° E, 30° N),
where fields were generally larger (> 60 ha; Fig. 7) and irri-
gated throughout most of the year (> 80 %; Fig. 8). The first
quartile, mean and third quartile of groundwater abstraction
among all fields in Al Jawf was 0.24, 1.0 and 1.59 MCM,
respectively. The corresponding values were larger, as ex-
pected, for perennial fields: 0.43, 1.16, and 1.74 MCM, and
significantly smaller for seasonal fields: 0.06, 0.34, and
0.5 MCM.
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5 Discussion

5.1 Historical efforts towards quantifying agriculture
water use

Quantifying the water use of individual agricultural fields
has been a research objective for many decades (Jackson
et al., 1987; Rana and Katerji, 2000; Kalma et al., 2008),
with numerous efforts directed towards improving process-
based modeling approaches to characterize the evaporative
response (Ershadi et al., 2014; Anderson et al., 2018; Mc-
Cabe et al., 2019). The challenge has often been related to
the availability of data with sufficient spatial and temporal
resolution to observe fields in adequate detail as well as a
lack of knowledge on the dynamics of the underlying crop
type and condition. In addition, most efforts have tended to
focus on monitoring for relatively short periods, or perhaps
a single growing season, rather than providing a basis for
long-term retrospective or ongoing monitoring. Recent de-
velopments exploiting constellations of CubeSats have en-
abled high resolution in space and time retrievals of key land
surface parameters (Houborg and McCabe, 2018c), provid-
ing enhanced estimates of crop water use and crop develop-
ment and overcoming the spatiotemporal constraint (Aragén
et al., 2018; McCabe et al., 2017b). However, while crop wa-
ter use is an important variable in delivering insights into wa-
ter allocation and management, regulators are often most in-
terested in determining the source and volumes of water ac-
tually being extracted from reservoirs to supply this agricul-
tural need, not just the net use. This has represented a much
more challenging task, as in situ data on these systems are of-
ten non-existent and not easily inferred through remote mea-
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Figure 10. Monthly irrigation statistics (mm) for perennial (a) and seasonal (b) fields. The black squares show the average values of monthly
irrigation among the same types of fields in the region (4509 perennial fields; 974 seasonal fields). The violin plots show the distribution of
monthly irrigation values, which range from 0 (no irrigation) up to 406 mm month™! (i.e., 13.5mmd~!). Horizontal lines show the 25 %,

50 % (median), and 75 % quantiles.

surement, at least at the scales at which local and regional
management needs to be performed.

In many regions of the world, existing or historical ground-
water monitoring networks help to inform regional ground-
water depletion trends (Shamsudduha et al., 2012; Scanlon
et al., 2012; Zhou et al., 2013) and offer insights into re-
lated environmental impacts (Lee and Song, 2007; Erban
et al., 2014). Satellite-based gravimetry measurements from
GRACE have informed on water storage depletion trends
around the world (Rodell et al., 2018), with particular ben-
efit to data scarce regions where the quantification of aquifer
depletion would not otherwise be possible (Lezzaik and
Milewski, 2018). However, while GRACE data provide an
excellent source of large-scale information on aquifer re-
sponse (Voss et al., 2013; Famiglietti, 2014), it is not suited
to attribute to any particular use at the scales required for
resource management. For example, the Al Jawf agricul-
tural region as defined in this study (mapped agricultural
area of about 2500 km?) is small compared to the scale of
the Saq aquifer system that feeds it (about 500000 km?)
and the recommended minimal size for GRACE studies (>
200000 km2; Famiglietti, 2014; Long et al., 2015; Richey
et al., 2015). Moreover, even in regions where groundwater
monitoring networks do exist, there is a need to bridge the
gap between a regional assessment and practical farm-scale
monitoring. In this context, our study demonstrates new ca-
pability, using a satellite data-modeling framework to pro-
vide an unprecedented level of information for water man-
agement. The approach represents a dramatic improvement
on more traditional farmer-based surveys, which are time-
consuming to collect, can often be unreliable and unrepre-
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sentative, and lack the spatial and temporal detail needed to
provide accurate water accounting at the regional scale.

While a number of studies have attempted to estimate ir-
rigation by incorporating an irrigation module into a water
balance model, these approaches have often been based on
“adding” the necessary irrigation depth to maintain the soil
moisture above a threshold value (Santos et al., 2008; Oz-
dogan et al., 2010; Pokrhel et al., 2012), which may not re-
flect the actual irrigation volume being applied. Here we de-
veloped a data-modeling approach to automatically retrieve
seasonal irrigation rates for individual center-pivot fields, fo-
cusing on fields irrigated by center-pivot infrastructure: con-
sistent with the type of infrastructure that supports the ma-
jority of irrigated fields in Saudi Arabia and in other ce-
real crop production areas worldwide. The developed ap-
proach is based on constraining a land surface hydrology
model with evaporation estimates, and then “inferring” the
irrigation rate, an idea explored conceptually by Droogers et
al. (2010) and applied in a real-world case study by Lépez
(2018). As the first large-scale demonstration of this frame-
work at the regional scale, the present study represents an
effort towards more effective water use monitoring in both
Saudi Arabia and other arid countries (e.g., in the MENA
region) that rely heavily on groundwater abstraction for agri-
cultural production.

5.2 Demonstrating the capability of the pivot-based
groundwater abstraction estimation framework

The framework offers a unique monitoring and modeling ef-
fort in terms of scale and granularity, as it demonstrated a
capacity to obtain agricultural water use estimates from the
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Figure 11. Map of annual groundwater abstraction in MCM for the Al Jawf agricultural region. Values were obtained for individual fields,
as seen in the examples shown at top featuring one zone with high levels of abstractions (top-left) and another zone with a smaller density of
fields and lower values of abstraction (top-right). The background shows the same Landsat 8 images as in Fig. 2.

scale of a single pivot to more than 5000 individual fields.
Importantly, the approach is scalable and can be applied to
other domains and locations. The mapping activities used in
producing our water use estimates for the year 2015 indicate
a much larger extent of agriculture (2494 km?) in the region
than has previously been reported (1200km? for the year
2009; SSYB, 2010). Consequently, a much higher ground-
water abstraction was also estimated (5.56 BCM) than that
forecast for the year 2014 (1.2 BCM; MEP, 2010). However,
it is important to note that these prior estimates were ob-
tained by incorporating information from various private and
public sources, including on-site interviews, and are subject
to significant uncertainties. These include possible misrepre-
sentation due to the absence of metering in farms (i.e., self
underreporting) and possible omission of fields located in re-
mote areas. Regardless, our estimates are proportionally con-
sistent (in terms of area) with more recent reports of nation-
wide groundwater abstraction for the year 2015 (20.8 BCM,;
MEWA, 2019). That is, both the estimates of area and of

https://doi.org/10.5194/hess-24-5251-2020

groundwater abstraction for the Al Jawf region represent
about one-quarter of irrigated agriculture in the kingdom.

Ultimately, our study is a demonstration of using the best
available data and tools to undertake an analysis in a data-
limited region. The lack of data is very much a developing
world problem, but there are numerous “developed” world
cases where data to inform model set-up and evaluation is ab-
sent. Using the strategy proposed here, we were able to pro-
vide results that reflect expectations when compared to the
limited available datasets (both at farm and regional scale),
i.e., a positive outcome given the scenario where indepen-
dent data are not available to inform decision makers.

5.3 Limitations, potential extensions, and applications

The goal of this study was to provide a first approxima-
tion of regional groundwater abstraction independent of self-
reported data, and for this, we have used a specific choice
of models (i.e., TSEB and CABLE). Other remote sensing
approaches for evaporation estimation could be used. For ex-
ample, the use of ALEXI/DisALEXI (Norman et al., 2003)

Hydrol. Earth Syst. Sci., 24, 5251-5277, 2020



5270

could be explored to mitigate the sensitivity to the accuracy
of LST retrieval, but the trade-off between higher ET accu-
racy and the impact on computational effort should be evalu-
ated. Likewise, our approach is not limited to any particular
land surface model. Further investigation is required to de-
termine the uncertainties of the models used as well as from
other inputs such as LAI and how these propagate through
our groundwater abstraction framework. One approach that
could help mitigate biases within specific models is to ex-
plore the use of multi-model estimates, which would also
help provide ranges of groundwater abstraction.

Because this study was aimed to retrieve estimates for the
year 2015, a key reference year that will be used to evalu-
ate the impact of policy changes in Saudi Arabia, Landsat
8 imagery was the primary source of satellite data. With a
sun-synchronous return frequency of 16d, this means that
for a 90-day season, the method is based on between four
and six images. Given this low number of observations, our
study aimed at retrieving seasonal irrigation amounts; i.e., we
do not estimate irrigation amounts in different crop develop-
mental stages. Added to this limitation, cloud cover can be
an important factor in the uncertainty of the irrigation ac-
tivity detection. While this is not a major issue in the cur-
rent setting (high percentage of “blue-sky” days throughout
the year), it may be pertinent to applications in other geo-
graphic locations. For more recent years, data from newer
satellites with higher temporal resolution, such as Sentinel-2
(Ferrant et al., 2017; Veloso et al., 2017) and CubeSats (Mc-
Cabe et al., 2017b; Houborg and McCabe, 2018b), could be
employed to support improved estimates, as active irrigation
seasons would be more accurately defined, and irrigation es-
timates could be obtained on a sub-seasonal basis (e.g., being
able to differentiate between crop stages). The higher spatial
resolution available (e.g., 3 m in the case of Planet data) can
also benefit the model, especially for the detection of par-
tially irrigated or partitioned (two-crop) fields, and avoid the
edge overlap in some fields that hinders the automated ca-
pability of the delineation procedure. However, the increased
computational cost of using higher-resolution data, particu-
larly with the LSM runs, is an important consideration (Wood
et al., 2011; Bierkens et al., 2015), especially when seeking
to apply the methodology over a larger number of fields (e.g.,
at a national scale).

Detecting periods of active irrigation is a crucial step of
the framework, and ensures that the model is able to retrieve
irrigation values for the appropriate periods. Ideally, the more
often that satellite information is available, the better the pre-
diction of active irrigation seasons will become. This is es-
pecially important for perennial fields, which undergo fast
response to cut and re-growth cycles that could be missed by
the 16d revisit interval of Landsat (Houborg and McCabe,
2018b). However, an aspect that requires further investiga-
tion is how to retrieve irrigation rates during the pre-planting
stage. One way to tackle this challenge would be to use high-
resolution soil moisture products to track the change in soil
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water content (Sanchez-Ruiz et al., 2014). Although this was
an unexplored aspect in this study, the obtained estimates can
be interpreted as a lower bound for seasonal fields, which
comprised less than 20 % of the fields identified in the Al
Jawf region.

As this study focused only on center-pivot irrigation, the
total quantity of abstracted water used for agricultural pro-
duction in Al Jawf will be marginally higher than the re-
ported 5.56 BCM. This value represents a first-order estimate
that can be further refined by adding the contribution of other
irrigated crops and fields, e.g., date palms and more recently
agricultural shifts to planting of olive trees. In parallel with
additional crop mapping and identification activities, efforts
are also being directed towards strategies that monitor water
use from other types of irrigation (e.g., drip and flood irri-
gation), in order to obtain a more comprehensive estimate
of groundwater abstraction in this region and beyond. As a
first step, using the object-based image analysis procedure,
we delineated and estimated an area of about 31km? of irri-
gated fields in the Al Jawf region that were not classified as
center-pivot fields. This represents about 1.22 % of the total
irrigated area, and depending on the type of irrigation (e.g.,
drip irrigation), represents a relatively small fraction of the
total groundwater abstraction. One approach to incorporate
the agricultural water use from these remaining fields would
be to first implement an advanced crop classification scheme
(Cai et al., 2018; Piedelobo et al., 2019) and then calculate
irrigation requirements for each crop (Castafio et al., 2010;
Kirby et al., 2013; Yang et al., 2019). The reason for using
other approaches with these remaining irrigated fields, is that
the framework relies on the assumption of relatively uniform
irrigation application, which simplified the effort to trans-
late irrigation rates into abstracted groundwater. Additional
improvements to the methodology would also include bet-
ter quantifying the spray-loss component of the center-pivot
system. For example, information derived from wind speed
and direction, humidity and air temperature could be used
to refine spray loss estimates over each field (Abo-Ghobar
1992; Sadhegi et al., 2015, 2017) with a dynamic, rather than
fixed value. The methodology is being further developed to
run both retrospectively and up to current periods in order
to monitor change in agricultural activities across the king-
dom and to quantify this sector’s corresponding water use.
Such data will enable responses to policy changes and man-
agement implementations to be identified, and can act to fa-
cilitate optimization practices for agricultural water use and
groundwater abstraction in other data-sparse regions.

6 Conclusions

An automated approach to estimate agricultural-driven
groundwater abstraction based on integrating satellite data
and land surface modeling was developed, with its function-
ality demonstrated over several thousand center-pivot fields
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in an arid region of Saudi Arabia. The monitoring frame-
work provided an unprecedented level of information cap-
turing water use behavior at the individual field scale and
included information metrics such as geospatial location,
distribution of cultivated areas, irrigation activity patterns,
crop water use, and ultimately the abstracted groundwater
used to grow the agriculture product. Monthly to yearly es-
timates of abstracted groundwater were obtained for more
than 5000 center-pivot fields, covering an area of approxi-
mately 2500 km?, with a total groundwater use estimated at
5.56 BCM. Individual field use ranged from 0.24 MCM to
more than 3 MCM annual abstractions for those areas operat-
ing at more than 80 % capacity. The annual total abstraction
value represents about one-quarter of the total groundwater
abstraction used for agriculture in the kingdom (20.8 BCM;
MEWA, 2019). In terms of agricultural area, the 2,500 km?
also represent about one-quarter of the kingdom’s center-
pivot-based irrigation capacity (~ 10029 km?; FAO, 2008a).

With the development of this novel water accounting ap-
proach, changes and trends in agricultural patterns from re-
gional to national scales can now be monitored, providing
information on crop type (perennial or seasonal), changes in
the cultivated areas, and volumes of water being used over
time. Such information is needed for improved water man-
agement, to inform the development of water related regula-
tions, and to assess the impact of policies on water conser-
vation. The approach is currently being deployed retrospec-
tively to monitor all center-pivot infrastructure across Saudi
Arabia for the years 2011-2015, and then to expand this for-
ward in time to allow near-real-time monitoring. Future work
will focus on the inclusion of other types of agriculture (e.g.,
date palms, orchards, and olive trees) for a more complete
accounting of water abstraction for agricultural use. In par-
allel, a classification of crop types grown within individual
center-pivot fields is being performed to better identify po-
tential water-saving and irrigation optimization techniques at
the individual field scale. The availability of new and emerg-
ing sources of remote sensing information presents an op-
portunity to further advance our precision agricultural ca-
pacity and will be incorporated into the future versions of
this modeling framework, providing enhanced assessment on
crop growth and field condition.

Code and data availability. Landsat 8 imagery used in this study
is publicly available from the Google Cloud Platform at https:
/Icloud.google.com/storage/docs/public-datasets/landsat (U.S. Ge-
ological Survey and NASA, 2020). Data from the WRF reanal-
ysis performed within this study are available upon request. The
source code of CABLE version 2.3.4 used in this study is avail-
able at http://trac.nci.org.au/trac/cable (National Computational In-
frastructure, 2020) after registration with the CABLE user group at
the National Computational Infrastructure (NCI) Australia. Python
code to run the TSEB model and the pivot-based groundwater ab-
straction strategy used in this study is available upon request at hy-
drology @kaust.edu.sa.
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