Articles | Volume 24, issue 10
Hydrol. Earth Syst. Sci., 24, 4971–4996, 2020
https://doi.org/10.5194/hess-24-4971-2020
Hydrol. Earth Syst. Sci., 24, 4971–4996, 2020
https://doi.org/10.5194/hess-24-4971-2020

Research article 23 Oct 2020

Research article | 23 Oct 2020

Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed

Haifan Liu et al.

Related authors

Hierarchical Sensitivity Analysis for Large Scale Process-based Hydrological Modeling with Application in an Amazonian Watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Han Qiu, Dongwei Gui, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-246,https://doi.org/10.5194/hess-2019-246, 2019
Manuscript not accepted for further review

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Uncertainty analysis
Interpretation of multi-scale permeability data through an information theory perspective
Aronne Dell'Oca, Alberto Guadagnini, and Monica Riva
Hydrol. Earth Syst. Sci., 24, 3097–3109, https://doi.org/10.5194/hess-24-3097-2020,https://doi.org/10.5194/hess-24-3097-2020, 2020
Short summary
Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization
Robert Reinecke, Laura Foglia, Steffen Mehl, Jonathan D. Herman, Alexander Wachholz, Tim Trautmann, and Petra Döll
Hydrol. Earth Syst. Sci., 23, 4561–4582, https://doi.org/10.5194/hess-23-4561-2019,https://doi.org/10.5194/hess-23-4561-2019, 2019
Short summary
Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios
Syed M. Touhidul Mustafa, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els Van Uytven, Patrick Willems, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 23, 2279–2303, https://doi.org/10.5194/hess-23-2279-2019,https://doi.org/10.5194/hess-23-2279-2019, 2019
Short summary
Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019,https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary
Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks
Zexuan Xu, Bill X. Hu, and Ming Ye
Hydrol. Earth Syst. Sci., 22, 221–239, https://doi.org/10.5194/hess-22-221-2018,https://doi.org/10.5194/hess-22-221-2018, 2018
Short summary

Cited articles

Ba, S., Myers, W. R., and Brenneman, W. A.: Optimal sliced Latin hypercube designs, Technometrics, 57, 479–487, 2015. 
Baroni, G. and Tarantola, S.: A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: a hydrological case study, Environ. Modell. Softw., 51, 26–34, https://doi.org/10.1016/j.envsoft.2013.09.022, 2014. 
Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Process., 16, 189–206, https://doi.org/10.1002/hyp.343, 2002. 
Bixio, A., Gambolati, G., Paniconi, C., Putti, M., Shestopalov, V., Bublias, V., Bohuslavsky, A., Kasteltseva, N., and Rudenko, Y.: Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone, Environ. Geol., 42, 162–177, https://doi.org/10.1007/s00254-001-0486-7, 2002. 
Brunke, M. A., Broxton, P., Pelletier, J., Gochis, D., Hazenberg, P., Lawrence, D. M., Leung, L. R., Niu, G.-Y., Troch, P. A., and Zeng, X.: Implementing and evaluating variable soil thickness in the community land model, Version 4.5 (CLM4.5), J. Climate, 29, 3441–3461, https://doi.org/10.1175/jcli-d-15-0307.1, 2016. 
Download
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.