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Abstract. Sensitivity analysis methods have recently re-
ceived much attention for identifying important uncertainty
sources (or uncertain inputs) and improving model calibra-
tions and predictions for hydrological models. However, it is
still challenging to apply the quantitative and comprehensive
global sensitivity analysis method to complex large-scale
process-based hydrological models (PBHMs) because of its
variant uncertainty sources and high computational cost.
Therefore, a global sensitivity analysis method that is capa-
ble of simultaneously analyzing multiple uncertainty sources
of PBHMs and providing quantitative sensitivity analysis re-
sults is still lacking. In an effort to develop a new tool for
overcoming these weaknesses, we improved the hierarchi-
cal sensitivity analysis method by defining a new set of sen-
sitivity indices for subdivided parameters. A new binning
method and Latin hypercube sampling (LHS) were imple-
mented for estimating these new sensitivity indices. For test
and demonstration purposes, this improved global sensitivity
analysis method was implemented to quantify three different
uncertainty sources (parameters, models, and climate scenar-
ios) of a three-dimensional large-scale process-based hydro-
logic model (Process-based Adaptive Watershed Simulator,
PAWS) with an application case in an ∼ 9000 km2 Amazon
catchment. The importance of different uncertainty sources
was quantified by sensitivity indices for two hydrologic out-

puts of interest: evapotranspiration (ET) and groundwater
contribution to streamflow (QG). The results show that the
parameters, especially the vadose zone parameters, are the
most important uncertainty contributors for both outputs. In
addition, the influence of climate scenarios on ET predictions
is also important. Furthermore, the thickness of the aquifers
is important for QG predictions, especially in main stream
areas. These sensitivity analysis results provide useful infor-
mation for modelers, and our method is mathematically rig-
orous and can be applied to other large-scale hydrological
models.

1 Introduction

The rapidly increasing computing power in recent years has
accelerated the innovation of hydrological models, and more
complex hydrological processes have been included in new
models, which are capable of simulating large-scale prob-
lems (Freeze and Harlan, 1969; Singh and Woolhiser, 2002).
Process-based hydrological models (PBHMs) are complex
hydrological models that link the characteristics of a river
basin with hydrological processes (Refsgaard and Knudsen,
1996; Maxwell et al., 2014). The functions of PBHMs in-
clude both evaluation of the watershed response to future cli-
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mate scenarios and simulation of the basin- to continental-
scale ecosystem energy balance, biogeochemistry, and eco-
logical functioning (Vertessy et al., 1993; Parkin et al., 1996;
Bixio et al., 2002; Oogathoo et al., 2011; Weill et al., 2011;
Shen et al., 2013; Maxwell et al., 2014; Riley and Shen,
2014). Specific to the hydrological process, PBHMs are ca-
pable of simulating the surface water processes of ET, over-
land flow, channel runoff, and so on (Beven, 2002). For sub-
surface water, PBHMs can simulate complex hydrological
processes in the soil, such as root extraction, infiltration,
soil evaporation, and groundwater discharge and recharge in
the vadose zone, by solving the Richards equation (Maxwell
et al., 2014). However, these complex processes and gov-
erning equations embedded in the PBHMs inevitably in-
duce large uncertainties in the modeling predictions (Neu-
man, 2003; Rojas et al., 2010; Lu et al., 2012; Shen et al.,
2014; Razavi and Gupta, 2015, 2016; Qiu et al., 2019). How
to efficiently decrease these large uncertainties becomes an
essential problem for modelers. Sensitivity analysis aims to
identify the most influential sources of uncertainty and is
therefore an important tool (Saltelli and Sobol, 1995; Saltelli
et al., 2000, 2010; Song et al., 2015). The sensitivity analysis
results assist modelers and managers in focusing on observ-
ing and calibrating the uncertain inputs that have the greatest
influences on model outputs. Thus, the sensitivity analysis
process saves resources (e.g., funding and labor) used for cal-
ibration and significantly improves the efficiency of reducing
the uncertainty of PBHM predictions.

In general, sensitivity analysis methods can be divided into
local and global categories. The main limitation of the local
sensitivity analysis is that its results are only valid for a small
range of parameter values (Gedeon and Mallants, 2012; King
and Perera, 2013; Wainwright et al., 2014; Dai and Ye, 2015).
Compared with the local method, global sensitivity analysis
can provide sensitivity estimates for the entire range of un-
certain parameter values (Saltelli et al., 2000, 2010; Razavi
and Gupta, 2015, 2016). Because of this advantage, global
sensitivity analysis has gained popularity in recent model-
ing works despite its high computational cost (Hamby, 1994;
van Griensven et al., 2006; Sulis et al., 2011; Baroni and
Tarantola, 2014). Common global sensitivity analysis meth-
ods include screening methods, regression-based methods,
variance-based methods, meta-model methods (Song et al.,
2013), and information-entropy-based methods (Zeng et al.,
2012). Among the different global sensitivity analysis meth-
ods, the variance-based method has been widely accepted
and used because of its ability to accurately quantify the im-
portance of uncertain parameters while considering their in-
teractions (Saltelli and Sobol, 1995; Zhang et al., 2013; Dai
and Ye, 2015).

To date, considerable research has been conducted to re-
duce the uncertainties in hydrological models by using local
or global sensitivity analysis methods (e.g., Nijssen et al.,
2001; Chávarri et al., 2013; de Paiva et al., 2013). However,
conducting a comprehensive global sensitivity analysis, es-

pecially variance-based sensitivity analysis on PBHMs, re-
mains a challenge, and there are two main obstacles. The
first obstacle is the high computational cost arising from
two sources: the high complexity of the model itself and
the method requirement of variance-based global sensitivity
analysis. A PBHM usually has a very large number of param-
eters and multiple high-order nonlinear governing equations.
These facts combined with a large-scale model domain cause
the running of a PBHM itself to be very computationally ex-
pensive. For the sensitivity analysis method, compared with
the local sensitivity analysis, which can only provide results
valid in a certain range of parameter values (e.g., the deriva-
tive of the model prediction with respect to parameter A at a
certain value point can be a measurement of A’s local sensi-
tivity at this point), the global sensitivity analysis is more
comprehensive because its results are valid for the whole
range of parameter values. To achieve this goal, the meth-
ods of global sensitivity analysis are all relatively computa-
tionally expensive, especially for the variance-based method,
which uses complex sampling techniques, and its computa-
tional cost grows exponentially with the number of parame-
ters (Saltelli et al., 2000, 2010). Therefore, the implementa-
tion of a global sensitivity analysis for a PBHM leads to an
extremely high computational cost considering that we have
to run a large number of simulations for a complex PBHM
using different parameter samples.

The second obstacle of implementing the global sensi-
tivity analysis method in PBHMs is the variant uncertainty
sources included in the model. Conventional global sensitiv-
ity analysis generally considers only uncertainty from model
parameters and ignores other important hydrological model
uncertainties. However, for PBHMs, uncertainties usually
arise from three different sources, including parametric un-
certainty, model structural uncertainty (induced through mul-
tiple different plausible conceptual or mathematical models),
and scenario uncertainty (caused by alternative unpredictable
future climate conditions) (Ye et al., 2005; Makler-Pick et al.,
2011; Neumann, 2012; Dai and Ye, 2015; Song et al., 2015;
Dai et al., 2017a, b; Zeng et al., 2018; Pan et al., 2020).
To overcome these two obstacles, Dai et al. (2017a) devel-
oped a new hierarchical sensitivity analysis method that in-
tegrates the variance-based method and hierarchical uncer-
tainty framework. By combining uncertain inputs based on
their characteristics and dependencies, hierarchical sensitiv-
ity analysis can quantify the sensitivity of different sources
of uncertainty involved in hydrological models (e.g., param-
eters, models, and climate scenarios) and dramatically re-
duce the computational cost. However, the original hierar-
chical sensitivity analysis method is limited to considering
parameters as a whole, and the sensitivity indices of differ-
ent parameters cannot be defined or estimated. This simple
strategy may be adequate for a groundwater modeling case,
but it cannot provide detailed information for a PBHM that
includes multiple hydrological processes.
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This research presents a new tool of the improved hierar-
chical sensitivity analysis method and demonstrates its im-
plementation to a pilot example for comprehensive global
sensitivity analysis of large-scale PBHMs. A new set of sub-
divided parametric sensitivity indices was defined to quan-
tify the importance of a physical process involving only par-
tial model parameters. A new binning method was imple-
mented with the Latin hypercube sampling (LHS) method
to estimate these subdivided parameter sensitivity indices.
The LHS method also makes the assessment of hierarchical
sensitivity analysis for large-scale PBHMs more computa-
tionally affordable compared with the original Monte Carlo
method. This new and flexible hierarchical sensitivity analy-
sis method provides modelers with the novel capability of an-
alyzing sensitivity from the physical process viewpoint and
estimating accurate importance for further subdivided pa-
rameter groups.

The Process-based Adaptive Watershed Simulator
(PAWS) model was first developed in Shen and Phanikumar
(2010); PAWS is capable of simulating large catchments
and long-term frames by efficiently coupling surface and
subsurface hydrological processes. Coupling PAWS with
the CLM (Community Land Model) can enable the model
to describe vegetation respiration and evapotranspiration
in a physics-based manner (Shen et al., 2014; Niu et al.,
2017). The model has been applied extensively in many
watersheds, e.g., the large-scale watersheds in Michigan,
USA (Shen et al., 2013, 2014, 2016; Niu et al., 2014,
2017; Ji et al., 2015; Qiu et al., 2019), and the watershed
in the Amazon basin (Niu et al., 2017), and the model has
presented good performances in these watersheds. PAWS
can also estimate multiple key variables of hydrological
states and fluxes at different spatiotemporal scales. The
high efficiency, great performance, and complex variables
all make PAWS an excellent model choice for PBHMs to
evaluate and demonstrate the sensitivity analysis method.

The PAWS model with the new hierarchical sensitivity
analysis method was implemented in a study area of the
∼ 9000 km2 Amazon catchment located in northern Man-
aus, Brazil, for the purposes of evaluation and demonstration.
Three different types of uncertainty sources (climate sce-
nario, model, and parameters) were all included in this test
case. The parameters were further divided into three groups
(vadose zone parameters, groundwater parameters, and over-
land flow parameter) to investigate the detailed importance
information of the model parameters through the new subdi-
vided parameter sensitivity indices. By developing the new
hierarchical sensitivity analysis method and implementing
it in this test case, we aim to (1) provide a new tool and
pilot example of comprehensive global sensitivity analysis
for the PBHMs, (2) identify the most important uncertainty
sources for modeling hydrological processes in the Amazon,
and (3) investigate the possible patterns for sensitivity analy-
sis results of PBHMs.

Figure 1. Two-dimensional map of the watershed used in this
study, showing the elevation, channels, and watershed boundary.
The study area extends from 1◦57′36′′ to 2◦56′00′′ S and from
59◦14′48′′ to 60◦20′0′′W.

We introduce the study area and the numerical model in
Sect. 2.1. Section 2.2 and 2.3 present the improved hierar-
chical sensitivity analysis method and its algorithms in de-
tail. Then, we describe the generation of uncertainty sources
based on the study site information in Sect. 2.4. We present
and discuss the results in Sect. 3. Finally, Sect. 4 summarizes
the key findings of this research.

2 Materials and methods

2.1 Study site and numerical model

The study site is located in northern Manaus, Brazil (Fig. 1),
and the site has a drainage area of ∼ 9000 km2. Within the
central Amazon, the watershed is mostly covered by tropi-
cal forest, with ∼ 12 % cropland and ∼ 5 % wetland (based
on CLM land surface data; Niu et al., 2017). With the rela-
tively high elevation (90–210 m) of the upper landscape and
relatively low elevation (45–55 m) of the swampy valleys, a
dense drainage network formed in the region. The watershed
has four rivers: the Urubu, Preto da Eva, Tarumã-açu, and
Tarumã-mirim rivers. The average precipitation in this region
has large seasonal variability. December to May is the wet
season, and June to November is the dry season.

The modeling tool used in this study is the PAWS model
(Shen and Phanikumar, 2010; Shen et al., 2014; Niu et al.,
2017). The main reason for choosing PAWS as the pilot
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example of PBHMs is that, compared with other PBHMs,
PAWS is a comprehensive and representative large-scale hy-
drological model that can be applied to large catchments
and long-term frames by efficiently coupling both surface
and subsurface hydrological processes (Shen and Phaniku-
mar, 2010). The complexity and parameter dimensionality
of PAWS are high enough to test and demonstrate our new
global sensitivity analysis method. Furthermore, PAWS was
previously applied to the studied watershed, and it was ca-
pable of simulating multiple key variables of hydrological
states and fluxes at different spatiotemporal scales and pre-
sented good model performance validated by various ground
and satellite observation data (Niu et al., 2017). This previous
model application provides a solid basis for our uncertainty
identification and sensitivity analysis study.

The details of the numerical implementation and the gov-
erning equations of PAWS can be found in Appendix A.
Briefly, four flow domains are simulated in PAWS, includ-
ing the stream channel, overland flow, vadose zone, and sat-
urated groundwater. The structured grid-based finite-volume
method is the main numerical scheme applied to discretize
the governing equations of the various hydrologic compo-
nents. PAWS also simulates two land surface subdomains,
i.e., infiltration and evaporation, which are depicted in the
ponding subdomain, while overland flow occurs in the sur-
face flow subdomain. PAWS considers the horizontal inter-
action of both surface runoff and groundwater flow between
model grids, which represents the actual hydrological pro-
cesses and is often ignored by other regional and global hy-
drologic models. The 1-D diffusive wave equation is solved
to simulate channel flow, and the 2-D version is used for
overland flow. The “leakance” concept is applied to explic-
itly simulate the exchange between the channel and ground-
water. PAWS has been coupled with the CLM (Shen et al.,
2014), which calculates the surface energy balance and soil
and plant carbon and nitrogen cycles. Canopy interception
and ET demand (both transpiration and soil evaporation) are
also computed in the CLM at each time step.

For the numerical model case in this study, a 1 km× 1 km
grid is used for horizontal discretization, resulting in
118× 122 grid cells for the study site. In this model, 20 ver-
tical layers are defined to discretize the vadose zone, and
for the fully saturated groundwater, there are two layers: the
unconfined aquifer at the top and the confined aquifer at
the bottom. In this study, the 90 m resolution NASA Shuttle
Radar Topography Mission (SRTM) (US Geological Survey;
http://eros.usgs.gov, last access: 27 July 2020) data are ap-
plied as DEM input, but for the channel network and water-
shed boundary delineation, the Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER) provides
the 30 m resolution Global Digital Elevation Model Version 2
(GDEM V2). CLM land surface data are applied as land-
use and land-cover (LULC) inputs. Details regarding these
data can be found in Niu et al. (2017). More information on

the governing equations of PAWS can be found in Shen and
Phanikumar (2010) and Niu et al. (2014).

2.2 Hierarchical sensitivity analysis method with
subdivided parametric sensitivity

The essential concept of the hierarchical sensitivity analysis
method involves categorizing and quantifying different com-
plex uncertainties of certain model systems while consid-
ering their dependence relationships. Different uncertainty
sources (or uncertain inputs) are placed in different layers
of a hierarchical uncertainty framework, which is then in-
tegrated with the variance-based global sensitivity analysis
method to form a new set of sensitivity indices to accurately
quantify the importance of different uncertainty sources.

In this study, climate scenarios, different aquifer thick-
nesses, and parameters are treated as random uncertain in-
puts, and they represent the climate scenario uncertainty,
model uncertainty, and parameter uncertainty, respectively.
Notably, the thicknesses of aquifers here represent the model
uncertainty because the different thicknesses of distinct types
of aquifers lead to different conceptual hydrological models,
and a similar concept (different thicknesses were used for
two underground geological formations) for the model un-
certainty was used in previous work (Dai et al., 2017a). Six
model parameters are included in this test case, and they are
divided into three groups. The first group includes vadose
zone parameters (PRVDZ): soil saturated hydraulic conduc-
tivity, Ks (md−1); the van Genuchten equation parameters α
(m−1); and N (unitless) (van Genuchten, 1980). The sec-
ond group is composed of groundwater parameters (PRGW):
unconfined aquifer hydraulic conductivity, K1 (md−1), and
confined aquifer hydraulic conductivity, K2 (md−1). The
third group is the overland flow parameter (PROVN): the
length of the flow path for runoff contribution to the overland
flow domain, L (m). Here, we consider the van Genuchten
parameters α and N , because the correlation between α and
N can largely affect the soil water release and infiltration
processes in the vadose zone (Pan et al., 2011). In the hi-
erarchical uncertainty framework, all these uncertainties are
placed into the proper levels based on their dependence rela-
tionships. The climate scenario uncertainty is at the top layer,
and the model uncertainty and parameter uncertainty are at
the middle and bottom layers, respectively (Fig. 2), which is
because the climate scenarios (CSs) are the driving forces of
the hydrological model system, and multiple models can be
built under a single scenario. Similar to the model and param-
eters, each model can contain a different set of parameters
(Meyer et al., 2007). According to the hierarchical sensitiv-
ity analysis method, the partial variances contributed by the
climate scenario uncertainty, model uncertainty, and parame-
ter uncertainty can be expressed as Eqs. (1)–(3), respectively
(see Appendix B for more details).

V (CS)= VCSENM|CSEPR|NM,CS (1|NM,CS) , (1)

Hydrol. Earth Syst. Sci., 24, 4971–4996, 2020 https://doi.org/10.5194/hess-24-4971-2020
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Figure 2. The framework of the hierarchical sensitivity analysis developed for PAWS and applied to the central Amazon basin. The three
uncertainty source types are placed into the appropriate hierarchical level according to their dependence relationships. The left part of this
figure shows the sources of these uncertainties, and the right side shows the abbreviations and the structural relationships among the various
uncertainties. The number of climate scenarios (CSs) in this study is six; the number of plausible numerical models under each climate
scenario is three; and the number of parameter sets under each numerical model is 600. Notably, the parameter uncertainty sources are
further divided into three parts: vadose zone parameters, groundwater parameters, and the overland flow parameter.

V (ST)= ECSVNM|CSEPR|NM,CS (1|NM,CS) , (2)
V (PR)= ECSENM|CSVPR|NM,CS (1|NM,CS) , (3)

where1 is the model output, CS represents the set of alterna-
tive climate scenarios, NM represents the multiple plausible
models with different aquifer thicknesses, and PR represents
the multiple parameter sets under a certain model. The nota-
tions of “NM|CS” and “PR|NM,CS” indicate the hierarchi-
cal relationships that models are conditioned on climate sce-
narios and parameters are conditioned on models and climate
scenarios. The term “1|NM,CS” indicates that the output is
calculated using the parameter sets that are conditioned on
climate scenarios and models.

The sensitivity indices for the climate scenarios SCS, mod-
els SNM, and parameters SPR are expressed as Eqs. (4)–(6),
following the hierarchical sensitivity analysis method:

SCS =
VCSENM|CSEPR|NM,CS (1|NM,CS)

V (1)
=
V (CS)
V (1)

, (4)

SNM =
ECSVNM|CSEPR|NM,CS (1|NM,CS)

V (1)
=
V (NM)
V (1)

, (5)

SPR =
ECSENM|CSVPR|NM,CS (1|NM,CS)

V (1)
=
V (PR)
V (1)

, (6)

where V (1) is the total variance in the model output
(Eq. B5). The above equations are directly derived based
on the hierarchical sensitivity analysis method. Notably, the
parameter sensitivity index in Eq. (6) includes the influence
of all parameters. However, to explore the detailed parame-
ter sensitivity, the total parameter uncertainty is further de-
composed into three components, representing the uncer-
tainties contributed from vadose zone parameters (PRVDZ),
groundwater parameters (PRGW), and the overland flow pa-
rameter (PROVN). Using the variance decomposition method
(Eq. B1), the partial variance in the parameters can be further

decomposed as follows:

V (PR)= ECSENM|CSVPR|NM,CS (1|NM,CS)

=ECSENM|CS



VPRVDZ|NM,CS
·
(
EPR∼VDZ|PRVDZ,NM,CS
· (1|PRVDZ,NM,CS))+

EPRVDZ|NM,CS
·
(
VPR∼VDZ|PRVDZ,NM,CS
· (1|PRVDZNM,CS))


= ECSENM|CSVPRVDZ|NM,CS

·EPRGW,PROVN|PRVDZ,NM,CS (1|PRVDZ,NM,CS)
+ECSENM|CSEPRVDZ|NM,CS

·VPRGW,PROVN|PRVDZ,NM,CS (1|PRVDZ,NM,CS) , (7)

where the notation PR∼VDZ refers to other uncertain parame-
ters excluding vadose zone parameters, which are groundwa-
ter parameters and the overland flow parameter. The first term
of Eq. (7) on the right-hand side is the partial variance con-
tributed by PRVDZ, and the second term represents the partial
variance in the other parameters, which are groundwater pa-
rameters and the overland flow parameter. Note that Eq. (7) is
decomposed based on the vadose zone parameters; when we
decompose the partial variance in parameters based on the
groundwater parameters or the overland flow parameter, the
partial variance in the parameters can be further decomposed
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as Eqs. (8) and (9):

V (PR)= ECSENM|CSVPR|NM,CS (1|NM,CS)

= ECSENM|CS



VPRGW|NM,CS
·
(
E∼PRGW|PRGW,NM,CS
· (1|PRGW,NM,CS))+

EPRGW|NM,CS
·
(
V∼PRGW|PRGW,NM,CS
· (1|PRGW,NM,CS))


= ECSENM|CSVPRGW|NM,CS

·EPRVDZ,PROVN|PRGW,NM,CS (1|PRGW,NM,CS)
+ECSENM|CSEPRGW|NM,CS

·VPRVDZ,PROVN|PRGW,NM,CS (1|PRGW,NM,CS) ,
(8)

V (PR)= ECSENM|CSVPR|NM,CS (1|NM,CS)

= ECSENM|CS



VPROVN|NM,CS
·
(
E∼PROVN|PROVN,NM,CS
· (1|PROVN,NM,CS))+

EPROVN|NM,CS
·
(
V∼PROVN|PROVN,NM,CS
· (1|PROVN,NM,CS))


= ECSENM|CSVPROVN|NM,CS

·EPRVDZ,PRGW|PROVN,NM,CS (1|PROVN,NM,CS)
+ECSENM|CSEPROVN|NM,CS

·VPRVDZ,PRGW|PROVN,NM,CS (1|PROVN NM,CS) . (9)

The first terms in Eqs. (8) and (9) represent the partial vari-
ances contributed by the groundwater and overland flow pa-
rameters, respectively. Then, we can define a new set of sub-
divided parameter sensitivity indices for PRVDZ, PRGW, and
PROVN following the first-order sensitivity index definition
(Eq. B2):

SPRVDZ =

ECSENM|CSVPRVDZ|NM,CS
·EPRGW,PROVN|PRVDZ,NM,CS
·(1|PRVDZ,NM,CS)

V (1)

=
V (PRVDZ)

V (1)
, (10)

SPRGW =

ECSENM|CSVPRGW|NM,CS
·EPRVDZ,PROVN|PRGW,NM,CS
·(1|PRGW,NM,CS)

V (1)

=
V (PRGW)

V (1)
, (11)

SPROVN =

ECSENM|CSVPROVN|NM,CS
·EPRVDZ,PRGW|PROVN,NM,CS
·(1|PROVN,NM CS)

V (1)

=
V (PROVN)

V (1)
. (12)

2.3 Sensitivity index estimation using the LHS and
binning method

The hierarchical sensitivity analysis method proposed by Dai
et al. (2017a) was sampled using the conventional Monte
Carlo random sampling method, which is computationally
expensive for the sensitivity analysis of large-scale PBHMs.
In this study, the different parameters were simultaneously
sampled by the LHS method (Zhang and Pinder, 2003; Kanso
et al., 2006). Compared with the conventional Monte Carlo
method, the LHS method can guarantee space filling and
noncollapsing of parameter samples (Grosso et al., 2009;
Crombecq et al., 2011; Husslage et al., 2011; Damblin et al.,
2013; Ba et al., 2015; Qian, 2012), which means that the
sampling points can be evenly distributed throughout the
sampling region and that there are no two sampling points
with the same value. Thus, LHS is a sampling method with
higher sampling efficiency (Helton and Davis, 2003). The
convergence rate of the conventional Monte Carlo method
is O(N−1/2), where N is the sample size (Caflisch, 1998).
However, for a system where the parameters are simply dis-
tributed (e.g., uniformly distributed), the convergence rate of
LHS can reachO(N−3) (Iman and Conover, 1980). The LHS
method has been one popular sampling technique used to re-
duce computational cost.

For the function Y = f (X), the input vector X consists of
k parameters (i.e., X = (X1,X2, . . .,Xk)). By using the LHS
method, the range of Xi , i = 1,2, . . .,k can be divided into
n nonoverlapping intervals with equal probabilities. The n
values obtained from X1 are randomly paired with n values
obtained from X2; these n paired values are then combined
with those n values from X3. We repeat this process until the
new n×k sample matrix A is developed. This sample matrix
A can be used to calculate the sensitivity index for the model
output. More details regarding LHS are described in previous
studies (McKay et al., 1979; Owen, 1998; Helton and Davis,
2003).

Using the variance definition, the partial variance in
V (PR) can be first expressed as follows:

V (PR)= ECSENM|CSVPR|NM,CS (1|NM,CS)

= ECSENM|CS

(
EPR|NM,CS(1|NM,CS)2

−
(
EPR|NM,CS (1|NM,CS)

)2)
. (13)

After applying the formula of expectation and the LHS
method, the terms V (PR), V (NM) and V (CS) can be ex-
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pressed as follows:

V (PR)= ECSENM|CS

(
EPR|NM,CS(1|NM,CS)2

−
(
EPR|ST, CS (1|NM,CS)

)2)
= ECSENM|CS

(
1
n

n∑
j=1

12 (PRj |NMk,CSl
)

−

(
1
n

n∑
j=1

1
(
PRj |NMk,CSl

))2


=

∑
l

∑
k

(
1
n

n∑
j=1

12 (PRj |NMk,CSl
)

−

(
1
n

n∑
j=1

1
(
PRj |NMk,CSl
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V (NM)= ECSVNM|CSEPR|NM,CS (1|NM,CS)

=

∑
l
P (CSl)



∑
k

(
1
n

n∑
j=1

1
(
PRj |NMk,CSl

))2

·P(NMk|CSl)

−

(∑
k

(
1
n

∑n
j=11

(
PRj |NMk,CSl

)
·P (NMk|CSl)

))2


,

(15)

V (CS)= VCSENM|CSEPR|NM,CS (1|NM,CS)

=

∑
l
P (CSl)(P (NMk|CSl)

·

(
1
n

n∑
j=1

1k
(
PRj |NMk,CSl

)))2

−

(∑
l

∑
k
P (CSl)P (NMk|CSl)

·

(
1
n

n∑
j=1

1k
(
PRj |NMk,CSl

)))2

, (16)

where n and j represent the total sample number of LHS
and the index of LHS samples, respectively, P (NMk|CSl)
represents the prior weight of model NMk under climate sce-
nario CSl with

∑
k

P (NMk|CSl)= 1, and P (CSl) is the prior

weights of different CS satisfying
∑
l

P (CSl)= 1. The val-

ues of the weights for alternative models or CS could be se-
lected using prior knowledge or objective criteria, e.g., poste-
rior probabilities of the Bayesian theorem (Neumann, 2012;
Schöniger et al., 2014).

To calculate the subdivided parametric sensitivity indices,
i.e., the sensitivity indices for vadose zone parameters,
groundwater parameters, and overland flow parameter, a
binning method was implemented in this study. This binning
method was designed to estimate the partial variance terms of
subdivided parameter groups with paired LHS samples of pa-
rameters. Using the sensitivity index of vadose zone parame-
ters as an example, the range of vadose zone parameters was
divided into multiple equal bins, and the partial variance term
VPRVDZ|NM,CSEPRGW,PROVN|PRVDZ,NM,CS (1|PRVDZ,NM,CS)
was approximated by VPRbin

VDZ|NM,CSEPRGW,PROVN|PRbin
VDZ,NM,CS(

1|PRbin
VDZ,NM,CS

)
using the model outputs calculated

by those parameter sample pairs that contain vadose zone
parameters in the same bin (noted as PRbin

VDZ). Then, the
partial variance term in Eq. (10) can be computed as follows:

VPRVDZ|NM,CSEPRGW,PROVN|PRVDZ,NM,CS

· (1|PRVDZ,NM,CS)
= VPRbin

VDZ|NM,CSEPRGW,PROVN|PRbin
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·
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1|PRbin
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)
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EPRGW,PROVN|PRbin
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·

(
1|PRbin

VDZ,NM,CS
))2

−

(
EPRbin

VDZ|NM,CS

(
EPRGW,PROVN|PRbin

VDZ,NM,CS

·

(
1|PRbin

VDZ,NM,CS
)))2

. (17)

The subscript PRbin
VDZ|NMCS represents the vadose zone pa-

rameters in the same bins under the fixed model and fixed
climate scenario. The subscript PRGW, PROVN|PRbin

VDZ, NM,
CS represents the change in the combination of PRGW and
PROVN sets belonging to a specific PRVDZ bin under a fixed
model and fixed climate scenario. The term 1|PRbin

VDZ, NM,
CS represents the output under the fixed vadose zone pa-
rameter, subsurface stratigraphy model, and climate scenario.
P
(
PRbin

VDZ|NM,CS
)

refers to the weights of different bins for
PRVDZ under the fixed model and fixed climate scenario.

The procedures for calculating the subdivided paramet-
ric sensitivity indices for PRVDZ using the combined LHS
and binning methods are listed as follows: (1) simulate
1 for all CSs, models, and parameter realizations; (2) di-
vide the PRVDZ realizations into bins; and (3) calculate
EPRGW,PROVN|PRVDZ,NM,CS (1|PRVDZ,NM,CS) by replacing
it withEPRGW,PROVN|PRbin

VDZ,NM,CS
(
1|PRbin

VDZ,NM,CS
)
. After

EPRGW,PROVN|PRbin
VDZ,NM,CS

(
1|PRbin

VDZ,NM,CS
)

is calculated
for each bin of PRVDZ, the partial variance for PRVDZ, i.e.,
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the numerator of Eq. (10), can be expressed as follows:
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(18)

where the symbol U refers to the number of combinations
of PRGW and PROVN in bin PRbinw

VDZ, i.e., the size of the pa-
rameter set in bin PRbinw

VDZ, and the symbol u is the index for
these combinations. w represents the index for the bins of
vadose zone parameters, and W is the total number of bins.
After applying the LHS sampling method and the same bin-
ning method, the partial variance for PRGW and PROVN can
be estimated as follows:
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The binning method is a rigorously derived mathemati-
cal technique designed to separate and estimate the partial
variances contributed from different parameters of one LHS
method sampled parameter set. Because the mathematical
equations are general and rigorous, this method can be ap-
plied to any modeling case with LHS parameter samplings.
However, when the samplings for different parameters are to-
tally random and unrelated, such as the conventional Monte
Carlo simulation, the binning method is not applicable. Us-
ing LHS and the binning method, the number of realiza-
tions is reduced to the size of the parameter sets obtained
from the LHS method. Thus, the computation cost for esti-
mating the subdivided parametric indices can be highly re-
duced. Dai et al. (2017b) confirmed a similar accuracy of
36 000 000 Monte Carlo realization results with 16 000 re-
alizations when applying only the binning method for a syn-
thetic example. The combination of the LHS method with the
binning method makes it computationally affordable to ana-
lyze the detailed parametric sensitivity for such a large-scale
complex hydrologic model.

2.4 The generation of uncertain inputs

For the CS, we generated six typical and alternative scenar-
ios based on NASA’s Tropical Rainfall Measuring Mission
(TRMM) data (https://trmm.gsfc.nasa.gov/publications_dir/
TRMM_Reentry_Risk_Assessment_FINAL_20150604.pdf)
and the default CLM CRU-NCEP (CRUNCEP) dataset
(Piao et al., 2012) from 1998 to 2013. We considered five
climate variables: daily precipitation, temperature, solar
radiation, humidity, and wind speed. The precipitation data
were obtained from TRMM, while the temperature, solar
radiation, humidity, and wind speed data are based on the
CRUNCEP, because the model fails to capture the peak
stream discharges using the CRUNCEP rainfall data (Niu
et al., 2017). We first divided the annual climate dataset into
dry and wet seasons according to the precipitation values
(6 months for each season). Then, we sorted the wet and
dry seasons according to their total precipitation values
during the whole season. Next, we divided these wet and dry
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Figure 3. We identified six CSs based on precipitation data for 1998–2013 from NASA’s TRMM data (https://trmm.gsfc.nasa.gov/
publications_dir/TRMM_Reentry_Risk_Assessment_FINAL_20150604.pdf). The first climate scenario (CS1) is the wettest one, and the
sixth climate scenario (CS6) is the driest one.

Table 1. Statistical information for the daily data for the six CSs. Here, µ represents the mean value and σ represents the SD.

Wet season Dry season

Climate scenarios CS1 CS2 CS3 CS4 CS5 CS6

Precipitation
(mm) (µ, σ )

(10.96, 2.78) (9.49, 2.8) (7.87, 2.91) (4.84, 1.81) (3.99, 1.62) (3.38, 1.35)

Maximum
temperature
(◦C) (µ, σ )

(29.33, 0.66) (29.94, 0.60) (30.03, 0.62) (30.80, 0.65) (30.80, 1.03) (31.50, 1.04)

Minimum
temperature
(◦C) (µ, σ )

(25.13, 0.54) (25.63, 0.55) (25.74, 0.48) (25.59, 0.77) (25.47, 0.81) (26.02, 0.82)

Radiation
intensity
(MJm−2) (µ, σ )

(3973.5, 129.6) (3975.1, 122.9) (3982.4, 113.6) (4285.5, 199.1) (4299.5, 195.6) (4312.1, 215.8)

Relative
humidity
(unitless) (µ, σ )

(0.0188, 4.65× 10−4) (0.0191, 3.54× 10−4) (0.0192, 4.72× 10−4) (0.0186, 5.44× 10−4) (0.0185, 5.76× 10−4) (0.0188, 5.75× 10−4)

Average wind
speed
(ms−1) (µ, σ )

(0.595, 0.122) (0.648, 0.141) (0.642, 0.148) (0.549, 0.073) (0.518, 0.061) (0.552, 0.081)

seasons into three different groups representing six climate
scenarios from wet to dry (Fig. 3). The mean and SD of the
values of the different climate variables (e.g., precipitation,
maximum temperature) for each group were calculated using
the daily data (Table 1). Finally, we generated random daily
weather data for each climate scenario based on these mean
and SD data using a normal distribution. The mean and SD
for each climate scenario’s daily data are listed in Table 1,
and Fig. 3 displays a box plot of the precipitation data for
the six climate scenarios (CS1–CS6).

For the model uncertainty, the research of Brunke et al.
(2016) shows that the shallow bedrock depth or deep bedrock
depth has a great influence on surface runoff and base flow
in CLM. Therefore, in this study, we will consider the ef-
fects of different aquifer models. Niu et al. (2017) simulated
an unconfined aquifer with 100 m depth and 200 m thick-

ness for the confined aquifer. Considering that (1) the strat-
ification of the soil and aquifer is relatively stable (and the
thickness does not change much) (do Rosário et al., 2016),
(2) there is a lack of actual measurements in this area to
determine the stratification of unconfined aquifers and con-
fined aquifers, and (3) according to Pelletier et al. (2016), the
thickness of the unconfined aquifer in the central Amazon is
larger than 50 m (and the depth of the bedrock is very deep),
three aquifer models involving different thicknesses of the
unconfined and confined aquifers were generated to inves-
tigate the sensitivity of the model outputs to aquifer thick-
ness. These three aquifer models involving different thick-
nesses of the unconfined and confined aquifers are (1) 100
and 200 m (NM1), (2) 50 and 250 m (NM2), and (3) 250 and
50 m (NM3), respectively. These three models represent the
situations of (i) similar thickness of the unconfined and con-
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fined aquifer, with medium bedrock depth; (ii) thick confined
aquifer, with low bedrock depth; and (iii) thick unconfined
aquifer, with large bedrock depth.

The six different model parameters were sampled by LHS
within the feasible range (Table 2), and 600 samples of the
parameter set were generated. The reasons for using 600 pa-
rameter samples in this study are because, first, based on the
experiences of previous research cases (Emery et al., 2016;
Dai et al., 2019), 600 is an adequate parameter sample size
for this research considering the model domain and number
of uncertain parameters and, second, considering the compu-
tational cost, 600 parameter samples is an appropriate sam-
ple size for this study. By combining model uncertainty and
climate scenario uncertainty, there are 600× 3× 6= 10 800
simulations in total. The pure simulation time without an-
alyzing data is already very time consuming even when us-
ing the best high-performance computing (HPC) platform we
have.

According to the study of Cuartas et al. (2012), the clay
content in the northwestern part of Manaus is very high
(65 %–90 %). Considering the difference in regional soil tex-
ture (Fisher et al., 2008; Teixeira et al., 2014), the allow-
able range of soil saturated conductivity, Ks, selected in this
study is between 0 and 10 md−1. The ranges of unconfined
aquifer conductivity, K1, and confined aquifer conductivity,
K2, are chosen as 0–10 and 0–60 md−1, respectively. The
results of the model calibration in Niu et al. (2017), which
are related to the characteristics of the soil and groundwater
layers in the watershed (Oleson et al., 2008; Christoffersen
et al., 2014), are used to define the mean values of distri-
butions used for these uncertain parameters. The soil satu-
rated conductivity, Ks; unconfined aquifer conductivity, K1;
and confined aquifer conductivity, K2, were assumed to fol-
low lognormal distributions (log-N (1.6094, 0.42142), log-
N (3.4012, 0.42142), and log-N (1.6094, 0.42142), respec-
tively). The remaining three parameters (α, N , and L) were
assumed to follow a uniform distribution:U (0.1, 4),U (1.03,
5), andU (20, 700). The allowable ranges of these six param-
eters are listed in Table 2.

From Sect. 3.1 to 3.4, we assumed that the different sce-
narios have equal probability. Moreover, three models un-
der each climate scenario were also assumed to have equal
weights, i.e., P(CSl)= 1/6, and P(NMk|CSl)= 1/3. How-
ever, the weights for models and scenarios may affect the
output results. We investigated the variability in the results
to the changing weights for NM1, CS1 (the wettest climate
scenario), and CS6 (the driest climate scenario) in Sect. 3.5.
This experiment is helpful for improving our understanding
of sensitivity analysis results.

3 Results and discussion

3.1 Model predictions

As mentioned in the above section, the total number of
PAWS+CLM simulations considering all possible combina-
tions of the three uncertain factors is 6× 3× 600= 10 800,
which represents six climate scenarios, three model concep-
tualizations of aquifer thickness, and 600 sampled parame-
ter sets. We used the parallel computing technique for run-
ning these simulations through the HPC platform (13 cores
of Xeon 2.8 GHz CPU). The average time spent on a sin-
gle simulation was 2.8 min, and a total of 10 800 simulations
were run for 3 weeks. The simulation time for all the simula-
tions was 6 months (180 d, 4320 h), which is the length of the
dry or wet season in the central Amazon region. The results
given by PAWS were represented in two forms: (1) space-
accumulative output values over the whole grid at each time
step and (2) time-accumulative output values over the whole
simulated period for each grid. In this study, the time step
is 1 h. Figure 4 depicts the space-accumulative model pre-
dictions for the two outputs of interest, ET and QG, using
different inputs of scenarios, models, and parameter sets. All
prediction results are grouped into 24 groups based on local
time, which represent 01:00 to 24:00 (all times are given in
local time, LT, unless stated otherwise) throughout the day
(Fig. 4). Each box in Fig. 4 describes the prediction results
estimated using all the combinations of 600 parameter sets,
three models, and six CSs at the same local times. Figure 4a
shows that the ET predictions throughout a day have a time-
varying pattern, and their values are significantly larger dur-
ing the daytime and smaller at night. This pattern coincides
with the physical fact that sunlight leads to higher tempera-
ture and more plant transpiration. The uncertainty of ET pre-
dictions during the daytime is also larger than that during
the night. Figure 4b shows that the predictions of QG have
no significant time-varying pattern throughout the day. How-
ever, the prediction results of ET and QG both demonstrate
great variability or uncertainty for each time group. Further
quantitative sensitivity analysis is necessary to identify the
most important sources of uncertainty for these predictions.

3.2 Sensitivity indices for evapotranspiration

First, we calculated the sensitivity indices for the space-
accumulative ET over the whole watershed at all time steps
using Eqs. (4)–(6). Figure 5a shows the sensitivity indices
for the whole simulation period of 4320 time steps. All the
sensitivity indices fluctuate strongly with time, except for
the sensitivity indices of the models. The sensitivity indices
for the models (SNM) are always close to zero at every time
step, indicating that aquifer thickness has little influence on
space-accumulative ET. Figure 5b–g plot the sensitivity in-
dices across six periods, exhibiting the details at each time
step. Every period lasts for 3 d. The patterns of the sensi-
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Table 2. Six chosen parameters to be included in parameter uncertainty.

Group Parameter Unit Description Allowable range

Vadose zone (PRVDZ) Ks md−1 soil saturated hydraulic conductivity 0.0–10.0
α m−1 Van Genuchten parameter 0.1–4.0
N Van Genuchten parameter 1.03–5.0

Groundwater (PRGW) K1 md−1 unconfined aquifer hydraulic conductivity 0.0–60.0
K2 md−1 confined aquifer hydraulic conductivity 0.0–10.0

Overland flow (PROVN) L m length of flow path for runoff contribution to the
overland flow domain

20.0–700.0

Figure 4. The spatial-accumulative outputs for evapotranspiration (ET) (a) and groundwater contribution to stream flow (QG) (b) at all time
steps and considering all three uncertainties. Each time step is divided into different groups based on local time. Different groups represent
different hours of the day.

tivity indices have a daily cycle, but specific values of the
sensitivity indices at the same wall-clock time on different
days are distinguished. Figure 5 indicates that the sensitiv-
ity to various factors is strongly time dependent. Notably,
at 12:00–13:00, the CSs are always the most important fac-
tors affecting the sensitivity of ET (Fig. 5b–g), which may
be because ET is directly influenced by solar radiation val-
ues, and the radiation forcing used in this study reaches its
maximum value at approximately 12:00. Therefore, the CSs
dominate the uncertainties at 12:00–13:00. Another finding
is that at 24:00–01:00 the sensitivity indices for the param-
eters (SPR) show absolute dominance, but the sensitivity in-

dices for the climate scenarios (SCS) are decreased. A pos-
sible explanation for this result might be that precipitation
and radiation forcing all decrease to zero during this period,
leading to a decrease in the sensitivity indices for the climate
scenarios (SCS). In contrast, the importance of parameters is
greatly increased. Six time points (simulation times are 1428,
1440, 2868, 2880, 4308, and 4320 h) were chosen as exam-
ples to show the specific sensitivity indices (Fig. 6). Simu-
lation times of 1428, 2868, and 4320 h belonged to different
days, but all corresponded to 12:00 LT. At these time points,
the climate scenario uncertainty (SCS) is the most important
contributor to the total ET prediction uncertainty, accounting
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for 54 %–77 % of the total uncertainty, and parameters (SPR)
contribute the second most to uncertainty. However, at dif-
ferent time points (1440, 2880, and 4320 h, corresponding to
24:00 LT), the parameters are the dominant uncertainty con-
tributor, with SPR ranging from 89 % to 92 %.

We also calculated the sensitivity indices for every grid
cell within the model domain using the time-accumulative
ET predictions over all simulation periods (4320 h). Figure 7
shows the spatial variability in the sensitivity indices for the
temporal mean ET predictions. The maps demonstrate that
for most grids, parameters are the most important uncertainty
contributor to ET predictions (SPR> 0.50), and CS are the
second most important contributor to uncertainty. However,
for stream grid cells, the importance of aquifer thicknesses
increases. Therefore, the parameters and aquifer thicknesses
are both important. Here, aquifer thicknesses refer to the
average aquifer thickness for the whole watershed. The in-
crease in the model sensitivity indices indicates that the struc-
ture of the aquifer significantly affects the baseflow and then
influences the river evaporation predictions. Figure 7 shows
that the parameter uncertainty within the overall watershed is
important for ET, and for river evaporation, the aquifer thick-
nesses are also important.

3.3 Sensitivity indices for groundwater contribution to
streamflow

Groundwater has been demonstrated to be crucial for
soil moisture in the Amazon region by previous research
(Miguez-Macho and Fan, 2012b). Meanwhile, it also exerts
a significant buffering effect on maintaining evapotranspi-
ration during dry seasons (Miguez-Macho and Fan, 2012a;
Pokhrel et al., 2014). The model PAWS uses the output ofQG
to quantify the variation in groundwater volumes and mea-
sure the interaction process between groundwater and rivers.
It is essential to implement the sensitivity analysis to inves-
tigate which factor is most influential on this groundwater
exchange process. The same sensitivity analysis procedures
were also conducted for the model predictions of QG.

Figure 8a shows the sensitivity indices for the whole sim-
ulation period of 4320 time steps for QG predictions. This
figure indicates that regardless of the time steps, parameters
are always the dominant contributor to the total QG predic-
tion uncertainty. This result may be explained by the fact that
soil parameters strongly affect the soil water redistribution
process, including infiltration into groundwater. We selected
the same period as Fig. 5b–g to display the more detailed re-
sults for QG predictions in Fig. 8b–g. As shown in these fig-
ures, the sensitivity indices of the models (SNM) and climate
scenarios (SCS) reach peak values at approximately 01:00.
In terms of SCS, this may be because the exchange between
groundwater and river flow occurs hours later than the rain-
fall process, and the amount of water during the exchange
process always reaches its peak at night, at approximately
01:00. The SNM might be because the thickness of aquifers

will greatly influence the water redistribution process in the
aquifer. Another pattern demonstrated in Fig. 8 is that the
values of SCS generally increase with time. This trend may
be caused by the seasonality effect of CS or the long-term
cumulative influence of CS on the groundwater flow.

Because groundwater exchange with stream flow occurs
only at grid cells along the streams, the sensitivity indices
only have valid values in those stream grid cells (Fig. 9). Our
results indicate that considering most grid cells, the parame-
ters are the most important contributor to the uncertainty of
time-accumulative QG predictions, and the second most im-
portant factor is aquifer thickness. However, if we divide the
grid cells into groundwater and stem river grid cells based
on their location relative to the river and aquifer type, the
sensitivity analysis results are totally different in these two
types of grid cells. The model parameter uncertainty is usu-
ally the most important in stem river grid cells; in contrast,
the aquifer thicknesses contribute the largest portion of the
uncertainty in groundwater grid cells. This pattern of results
may be caused by the unconfined aquifer and river being un-
connected in the stem river grid cells, and there is an unsatu-
rated zone between two of them. Therefore, the soil parame-
ters affect QG predictions in stem river grid cells. Moreover,
the groundwater table is relatively high, and the groundwa-
ter is directly connected with rivers in the groundwater grid
cells. Thus, the aquifer thicknesses are more important under
this condition.

3.4 Sensitivity indices for subdivided parameters

Based on the sensitivity analysis for ET and QG predictions,
the results show that parameters are important uncertain in-
puts for both the space-accumulative and time-accumulative
uncertainties. In this study, we used Eqs. (10)–(12) to fur-
ther calculate the subdivided parametric sensitivity indices,
which can provide a more detailed sensitivity analysis for
model simulation. Through this investigation, the parametric
sensitivity was subdivided into three groups: (1) the sensi-
tivity for vadose zone parameters (SPRVDZ ), (2) the sensitiv-
ity for groundwater parameters (SPRGW ), and (3) the sensi-
tivity for the overland flow parameter (SPROVN ). Using the
binning method, we calculated the space-accumulative and
time-accumulative subdivided parametric sensitivity indices
for ET and QG. We plotted frequency histograms of the sub-
divided parametric sensitivity indices over 4320 h in Fig. 10.

Figure 10a depicts the results for ET. The value of SPRVDZ

is concentrated in the range of 0.1–0.9, and SPRGW is con-
centrated in the range of 0.003–0.032. The value of SPROVN

is so small that the influence of the overland flow parame-
ter can be ignored. This indicates that vadose zone parame-
ters (PRVDZ) dominate the total parametric uncertainties for
ET. Figure 10b shows the frequency histogram of space-
accumulative subdivided parametric sensitivity results for
QG; SPRVDZ is still concentrated in the larger number range
(0.2–0.53), and the value of SPRGW changes from 0.04 to 0.3.
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Figure 5. Estimated sensitivities for the spatially averaged evapotranspiration (ET) at whole time steps (a). We chose six periods at 3 d
intervals to display the sensitivity index values in detail. The bottom six figures exhibit the sensitivity index results for 241–312 h (b), 961–
1032 h (c), 1681–1752 h (d), 2401–2472 h (e), 3121–3192 h (f), and 3841–3912 h (g). SPR is the sensitivity index for parameters. SNM is
the sensitivity index for models and represents the influence of aquifer thickness. The SCS is the sensitivity index for climate scenarios. The
bottom x axis of (b–g) represents the simulated time steps, and the upper x axis of (b–g) represents the local time.

The number of SPROVN is also the lowest, indicating that the
overland flow parameter has little effect on QG. The order
of importance of the uncertain inputs is the same for both
ET and QG predictions. However, it is significantly different
from ET in that although PRGW is the second most important
parameter group, the value of SPRGW in the QG results is an
order of magnitude higher than that in the ET results. In the
QG results, the range of SPRGW is concentrated in the range
of 0.05–0.2, while in the ET results, the value of SPRGW is
concentrated in the range of 0.003–0.032.

We plotted the time-accumulative subdivided parametric
sensitivity indices for ET in Fig. 11a and for QG in Fig. 11b.
Considering ET as our output, for most grids, the vadose
zone parameters are the most important contributor to para-
metric uncertainties. Compared with that on other grids, the
influence of groundwater parameters on the river grids is

more significant (Fig. 11a). For the QG results, the vadose
zone parameters generally dominate the parametric sensitiv-
ities for most grids (Fig. 11b). However, if considering dif-
ferent types of grid cells, we find that the vadose zone pa-
rameters mainly affect the stem river grid cells and have a
relatively small influence on the groundwater grid cells. This
pattern coincides with our hypotheses that there is an unsat-
urated zone between the stem rivers and groundwater. More
detailed sensitivity indices for all six parameters are demon-
strated in Appendix C.

3.5 Effects of prior weights on sensitivity indices

In this section, we changed the prior weights of the CS
and numerical models to investigate their influences on the
space-accumulative sensitivity indices. Because the number
of space-accumulative results for ET and QG is too large to
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Figure 6. Estimated sensitivities for the spatially averaged evapotranspiration (ET) at six time points (simulation times are 1428 h (Day 60,
12:00), 1440 h (Day 60, 24:00), 2868 h (Day 120, 12:00), 2880 h (Day 120, 24:00), 4308 h (Day 180, 12:00), and 4320 h (Day 180, 24:00)).
SPR is the sensitivity index for the parameters. SNM is the sensitivity index for the numerical models, and SCS is the sensitivity index for the
climate scenarios.

Figure 7. Maps of parametric (SPR), numerical model (SNM), and climate scenario (SCS) sensitivity index values for time-averaged evapo-
transpiration (ET) predictions.

be well exhibited, we chose one time step (4308 h, 12:00
wall-clock time) to show the trend. We randomly changed
the values of the weights for NM1 (the thickness of the un-
confined aquifer is 50 m and that of the confined aquifer is
250 m), CS1 (the wettest climate scenario), and CS6 (the dri-
est climate scenario) to between 0 and 1. If the weight for
NM1, CS1, or CS6 is p, then the weight of the remaining cli-
mate scenarios or models will be assumed to be (1−p)/n,
where n is the number of the remaining climate scenarios or
models. Figure 12a indicates that when we consider ET as
our output, with the increase in the prior weight of NM1, the
uncertainty of the CS will decrease to 50 %, while the uncer-
tainty of the parameters will increase to 50 %. Both param-
eters and CSs have important effects on ET. Different from
the results for ET, with the increase in the prior weights of

NM1, the sensitivity index of the numerical models for QG
decreases to 0 (because only one model exists under this con-
dition), and the scenario uncertainty changes only slightly.
Moreover, the uncertainty of parameters always dominates
the total uncertainty forQG (Fig. 12b) regardless of the prior
weight value. In general, the different prior weight values
for the numerical models only slightly change the sensitiv-
ity analysis results.

Figure 12c–f exhibits the influences of prior weights for
the wettest and driest CS on ET. These figures first demon-
strate that changing the values of the prior weights of CS1
and CS6 has larger impacts on ET predictions than on QG
predictions. This pattern coincides with the fact that the
parameter uncertainty dominates the total predictive uncer-
tainty of QG and that the scenario uncertainty is relatively
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Figure 8. Estimated sensitivities for the spatially averaged groundwater contribution to stream flow (QG) at whole time steps (a). We chose
six periods at 3 d intervals to display the sensitivity index values in detail. The bottom six figures exhibit the sensitivity index results for
241–312 h (b), 961–1032 h (c), 1681–1752 h (d), 2401–2472 h (e), 3121–3192 h (f), and 3841–3912 h (g). SPR is the sensitivity index for
parameters. SNM is the sensitivity index for models and represents the influence of aquifer thickness. The SCS is the sensitivity index for
climate scenarios. The bottom x axis of (b–g) represents the simulated time steps, and the upper x axis of (b–g) represents the local time.

Figure 9. Maps of parametric sensitivity indices (SPR), numerical model sensitivity indices (SNM), and climate scenario sensitivity indices
(SCS) for the time-averaged groundwater contribution to stream flow (QG) predictions.
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Figure 10. Frequency histograms of subdivided parametric sensitivity indices for spatially averaged results over all 4320 time steps. The
results for evapotranspiration (ET) as our output are depicted in (a), and the results for groundwater contribution to stream flow (QG) as our
output are depicted in (b). PRVDZ represents the vadose zone parameters. PRGW represents the groundwater parameters. PROVN represents
the overland flow parameter.

Figure 11. Maps of vadose zone parameter sensitivity indices (SPRVDZ ), groundwater parameter sensitivity indices (SPRGW ), and overland
flow parameter sensitivity indices (SPROVN ) for time-averaged evapotranspiration (ET) (a) and groundwater contribution to stream flow
(QG) (b) predictions.
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Figure 12. Patterns of SPR, SNM, and SCS for space-averaged evapotranspiration (ET) and space-averaged groundwater contribution to
stream flow (QG) with changes in the prior weights of numerical model NM1, climate scenario CS1, and climate scenario CS6 at the time
step of 4308 h (at 12:00).

https://doi.org/10.5194/hess-24-4971-2020 Hydrol. Earth Syst. Sci., 24, 4971–4996, 2020



4988 H. Liu et al.: Hierarchical sensitivity analysis for a large-scale process-based hydrological model

small. Therefore, the selection of prior weight values for the
scenarios does not have a significant effect on the sensitiv-
ity analysis results for the QG predictions, and the param-
eter sensitivity index is always the largest (Fig. 12d and f).
For the sensitivity analysis results pertaining to ET predic-
tions, changing the values of the weights for CS1 and CS6 has
different effects. The sensitivity index values of the climate
scenarios for ET predictions monotonically decrease, while
the importance of parameters continues to increase as the
prior weight of CS1 is larger than 40 %, which reflects that
when the probability of extreme humid seasons in the Ama-
zon is greater than 40 %, the importance of parameters takes
precedence over the importance of climate scenarios for ET.
However, the value of SCS for ET predictions first increases
when the prior weight of CS6 approaches 10 % and then de-
creases after the prior weight of CS6 approaches 90 %, and
SPR shows the opposite trend (Fig. 12e). This shows that
when the probability of occurrence of extreme dry seasons
is between 10 % and 90 %, the climate scenario is always the
most important uncertain input unless the occurrence proba-
bility of the extreme dry season is greater than 90 %.

3.6 Discussion

The results from this case study exhibit the importance of
parameters, especially the vadose zone parameters, for ET
and QG predictions. Furthermore, according to the space-
accumulative results, the climate scenario is also an im-
portant uncertainty source for ET predictions, especially at
12:00. Meanwhile, the thickness of the aquifer has a nonig-
norable influence on the QG predictions on the groundwa-
ter grid cells. Moreover, according to the results of adjusting
the climate scenario and model weights, the change in model
(aquifer thickness) weights only has a small impact on the
importance of different uncertainties. When the probability
of occurrence of the extreme humid season is high, the im-
portance of the parameters increases significantly. However,
when the probability of occurrence of the extreme dry season
is high, the main factors affecting ET predation are still the
climate scenario unless the probability of occurrence of CS
is greater than 90 %. Although these patterns of sensitivity
analysis results may not be universally correct, they can still
provide useful insights for other modelers with similar cases
and models.

In addition to the specific results, we also have some new
insights into the general patterns of sensitivity analysis for
the PBHMs provided by this pilot case. For instance, first, the
ranks of importance of uncertain inputs are totally different
for different model outputs; e.g., CSs have a large impact on
ET predictions but a small impact on QG predictions. There
is no one set of results that are valid for all different model
outputs. Second, the sensitivity analysis results of ET and
QG predictions show that the uncertainty has high temporal
and spatial variability, which reflects that for very complex
hydrological models, such as PBHMs, it is incorrect to gen-

eralize the sensitivity analysis results of a grid or a time step
to the entire watershed or the entire simulation cycle. Third, it
is necessary to implement such a comprehensive global sen-
sitivity analysis method that considers more than paramet-
ric uncertainty for the large-scale PBHMs since the sensitiv-
ity analysis results showed that other sources of uncertainty
(e.g., climate scenario and model uncertainties) are essential
as well for model predictions. Finally, evaluating the sensi-
tivity of the parameters in detail is essential for PBHMs. For
such a complex surface–subsurface coupling model, the new
sensitivity analysis method can efficiently identify the uncer-
tain inputs that have the greatest impact on the model out-
puts. This process can greatly improve our understanding of
the complex model system and save time that is normally
spent calibrating the model.

4 Conclusions

This research presented an improved hierarchical sensitivity
analysis method for comprehensive global sensitivity analy-
sis of large-scale complex PBHMs. Developed based on the
previous hierarchical framework of Dai et al. (2017a), this
new methodology can simultaneously consider various types
of uncertainty sources and estimate the importance of differ-
ent processes involved in the modeling work. A new set of
sensitivity indices of subdivided parameters was defined to
quantify the importance of processes that only involve par-
tial parameters. The highly efficient sampling algorithm of
the LHS and binning method were implemented for the es-
timation of sensitivity indices to reduce computational cost.
For evaluation and demonstration purposes, we implemented
the new sensitivity analysis method into a real-world case
of large-scale complex PBHM (PAWS), which was applied
to a large Amazon catchment. Three common groups of un-
certainty sources or uncertain inputs were considered in this
study, including six CSs, three plausible aquifer models, and
six uncertain parameters (i.e., soil saturated conductivity, van
Genuchten α and N , unconfined aquifer conductivity, con-
fined aquifer conductivity, and the length of the flow path for
runoff contribution to the overland flow domain). A new set
of subdivided parametric sensitivity indices was defined for
three groups of parameters (i.e., vadose zone, groundwater,
and overland flow parameters).

The sensitivity analysis results in this study first demon-
strate the necessity of implementing such a comprehensive
global sensitivity analysis for PBHMs, because uncertainty
sources other than parameters (e.g., CS and models) are also
important for model predictions. Furthermore, the values of
model weights have a small impact on the sensitivity analy-
sis results, but the selections of weights for extreme CSs may
change the ranks of importance for uncertain inputs. More-
over, the sensitivity analysis results are both temporally and
spatially dependent and have distinct patterns for different
model outputs. Therefore, there is no single conclusion for
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all model outputs considering different times and locations.
In general, the parameter uncertainty is important for both ET
and QG predictions. Among all the parameters, the vadose
zone parameters are the most important, and the parameter
of overland flow is negligible. The CSs are also important
uncertainties for ET predictions, especially at 12:00. Along
the river grid cells, the thickness of the aquifer has a sig-
nificant influence on both ET and QG predictions. Although
the patterns of sensitivity analysis results found in this study
may not be universally valid, they can still provide useful in-
sights for modelers with similar problems. For instance, we
can suggest that when modelers apply sophisticated hydro-
logical simulators, such as PAWS, they should pay more at-
tention to the values of weather variables at approximately
12:00 (the daily peak values) and focus more on estimating
the thicknesses of groundwater aquifers near rivers and ad-
justing the vadose zone parameters.

Through this pilot example of comprehensive global sensi-
tivity analysis, this study proves that using the new improved
hierarchical sensitivity analysis method is a computationally
affordable and useful way to identify the most important un-
certain inputs for large-scale complex PBHMs. The sensi-
tivity analysis results can provide key information on uncer-
tainty sources for modelers and greatly improve the model
calibration and uncertainty analysis processes. The proposed
method is mathematically rigorous and general and can be
applied to extensive large-scale hydrological or environmen-
tal models with different sources of uncertainty.
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Appendix A

The governing equations of PAWS are presented in detail in
Shen and Phanikumar (2010) and Shen et al. (2013). Here,
we will mainly introduce the equations describing the pro-
cesses involved in this article.

In PAWS, the soil moisture in the vadose zone is calcu-
lated according to the Richards equation. The vertical move-
ment of fluid between saturated and unsaturated soil is cal-
culated based on the mixed form of the Richards equation
(Celia et al., 1990; van Dam and Feddes, 2000):

C (h)
∂h

∂t
=
∂

∂z

[
K (h)

(
∂h

∂z
+ 1

)]
+W (h), (A1)

where h represents the soil water pressure head, z is the el-
evation (positive upward), K(h) represents the soil unsatu-
rated conductivity, and W(h) is the source or sink term, in-
cluding the influence of evaporation, root extraction, and lat-
eral flow. The differential water capacity can be described
as C(h)= ∂θ/∂h, where h is the soil pressure head and
θ is the water content. The pressure head, h, is related to
the unsaturated hydraulic conductivity, K(h). According to
the Mualem–van Genuchten formula (Mualem, 1976; van
Genuchten, 1980), the soil saturated hydraulic conductivity,
Ks, and van Genuchten parameters α and N will influence
the unsaturated conductivity, K(h):

S =
θ(h)− θr

θs − θr
=

(
1+ |αh|N

)−(N−1)/N
, (A2)

K(h)=KsS
λ

[
1−

(
1− SN/(N−1)

)(N−1)/N
]2

, (A3)

where S is the relative saturation, θs is the saturated water
content, θr is the residual water content, N is related to the
pore size distribution, α indicates the reciprocal of air suc-
tion, and λ is a parameter measuring pore connectivity.

The aquifers in PAWS are depicted as a series of 2-D lay-
ers (Shen et al., 2014). In each layer, the 2-D groundwater
equation is used to describe the water movement:

S
∂H

∂t
=
∂

∂x

[
T

(
∂H

∂x

)]
+
∂

∂y

[
T

(
∂H

∂y

)]
+R

+W −Dp, (A4)

where S is the storability and T is the transmissivity of the
aquifer; T =Kb, where K is the aquifer conductivity and
b is the saturated thickness of the aquifer; H is the aquifer
hydraulic head; R is recharge or discharge; W is the source
and sink term; and Dp is percolation into deeper aquifers.

PAWS applies one-dimensional diffusive wave equations
to portray the channel flow model (Shen and Phanikumar,
2010; Shen et al., 2014). After calculating the channel flow,
the exchange between groundwater and channel flow (QG)
is immediately computed. The calculation of QG is based on

the leakance concept (Shen and Phanikumar, 2010):

hn+1
r −h∗r
1t

=Kr
H ∗− (Zb+h

n+1
r )

1Zb
, (A5)

where h∗r is the river level calculated from the channel flow
model, Kr is the riverbed conductivity, Zb is the elevation of
the riverbed, 1Zb is the thickness of the riverbed, and H ∗

is the groundwater table. Note that H ∗ can also be described
as Eq. (A5). By solving these two equations together, we can
obtainH ∗ and hn+1

r . Then, the value ofQG can be calculated
as follows (Shen and Phanikumar, 2010):

QG = w
(
hn+1

r −h∗r

)
, (A6)

where w is the wetted perimeter. If the river width is greater
than 10 m, w can be approximated as the river width.

PAWS retains its own flow scheme, but the surface pro-
cesses use the CLM 4.0 model, which enables the simula-
tion of detailed surface processes, such as surface heat flux,
water vapor flux, surface radiation balance, crop growth,
and plant photosynthesis. The calculation of ET demand is
performed in the CLM model based on the climate data,
and then, ET demand will be transferred to PAWS as a
source term for the vadose zone. More details about the
calculation of ET (both evaporation and transpiration in-
formation can be found in the technical note of CLM
4.0, http://www.cesm.ucar.edu/models/cesm1.1/clm/CLM4_
Tech_Note.pdf, last access: 27 July 2020). The coupling with
the CLM makes PAWS a more comprehensive and robust
surface–subsurface hydrological model.

Appendix B

For the model, 1= f (X)= f (X1, . . .,Xm), where 1 is the
model output andX = {X1, . . .,Xm} is a group of uncertainty
inputs; using the law of total variance, the total variance in1
can be decomposed as follows (Dai et al., 2017a):

V (1)= VXi
(
EX∼i (1|Xi)

)
+EXi

(
VX∼i (1|Xi)

)
, (B1)

where the first term of partial variance on the right-hand side
is the within-Xi partial variance and represents the variance
contribution by Xi , and X∼i represents all the inputs except
Xi . The second term on the right-hand side represents the
variance contributed by the model inputs excluding Xi as
well as the interactions of all the inputs. Based on the def-
inition of the first-order sensitivity index (Saltelli and Sobol,
1995),

Si =
VXi (EX∼i (1|Xi))

V (1)
. (B2)

The percentage of uncertainty contributed by inputXi can be
accurately quantified.
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For the hierarchical framework in Fig. 2, the variance-
based sensitivity analysis method enables decomposition of
the total variance into individual contributors as follows:

V (1)= VCS
(
E∼CS|CS (1|CS)

)
+ECS

(
V∼CS|CS (1|CS)

)
= VCS

(
ENM, PR|CS (1|CS)

)
+ECS

(
VNM, PR|CS (1|CS)

)
.

(B3)

The first term of partial variance on the right-hand side
of this equation represents the variance caused by multiple
CSs. The second term on the right-hand side is the partial
variance caused by other uncertain inputs and can be further
decomposed as follows:

VNM, PR|CS (1|CS)= VNM|CS
(
EPR|NM,CS (1|NM,CS)

)
+ENM|CS

(
VPR|NM,CS (1|NM,CS)

)
,

(B4)

where the first partial variance term on the right-hand side of
this equation represents the uncertainty contributed by multi-
ple plausible models. The second term represents the within-
model partial variance caused by the uncertain parameters.
By substituting Eq. (B4) back into Eq. (B3), we can obtain
the following equation:

V (1)= ECS
(
ENM|CSVPR|NM,CS (1|NM,CS)

+VNM|CSEPR|NM,CS (1|NM, CS)
)

+VCSENM|CSEPR|NM,CS (1|NM,CS)
= ECSENM|CSVPR|NM,CS (1|NM,CS)
+ECSVNM|CSEPR|NM,CS (1|NM,CS)
+VCSENM|CSEPR|NM,CS (1|NM,CS)
= V (PR)+V (NM)+V (CS) . (B5)

The three terms on the right-hand side of Eq. (B5) represent
the partial variances contributed by the parameters, models,
and CSs, respectively. The equation indicates that the total
variance can be decomposed into the variances contributed
by the alternative climate scenarios, denoted by CS; plausi-
ble numerical models, denoted by NM; and uncertain param-
eters, denoted by PR. Then, following the first-order sensi-
tivity index definition (Eq. B2), the hierarchical sensitivity
analysis method defines the indices for PR, NM, and CS, re-
spectively, as shown in Eqs. (4)–(6).

Appendix C

To conduct a more comprehensive analysis of all parameters
and to compare the impact of two aquifers on QG, we esti-
mated the sensitivity indices of the six parameters according
to Eq. (C1). The difference between this equation and the
previous ones is that Eq. (C1) no longer groups the parame-
ters, and it calculates the sensitivity indices individually for
six parameters.

Sθ =
ECSENM|CSVθ |NM,CSE∼θ |θ,NM,CS (1|θ,NM,CS)

V (1)

=
V (θ)

V (1)

(C1)

In this equation, θ refers to one of the six parameters, i.e.,Ks,
α,N ,K1,K2, or L. The subscript “θ |NM,CS” represents the
change in one parameter under a fixed model and a climate
scenario. The subscript “∼ θ |θ,NM,CS” refers to the other
five uncertain parameter inputs excluding θ parameter. The
term “1|θ,NM,CS” represents the output under the fixed θ ,
model, and climate scenario.

The spatial distribution of the sensitivity indices of six pa-
rameters for QG is shown in Fig. C1. According to Fig. C1,
the importance of the van Genuchten parameter N in the
stem grid cells is significant. The conductivity of unconfined
aquifer K1 has a certain impact on QG in most river grid
cells. Additionally, it can also be seen from Fig. C1 that for
most grids the influence of K1 is greater than K2, which im-
plies that the unconfined aquifer has a greater influence on
baseflow.
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Figure C1. Maps of six parameter sensitivity indices for groundwater contribution to stream flow (QG) predictions.
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