Articles | Volume 24, issue 6
https://doi.org/10.5194/hess-24-3097-2020
https://doi.org/10.5194/hess-24-3097-2020
Research article
 | 
16 Jun 2020
Research article |  | 16 Jun 2020

Interpretation of multi-scale permeability data through an information theory perspective

Aronne Dell'Oca, Alberto Guadagnini, and Monica Riva

Related authors

Relative importance of uncertain model parameters driving water fluxes in a Land Surface Model
David Luttenauer, Aronne Dell'Oca, Alberto Guadagnini, Sylvain Weill, and Philippe Ackerer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-73,https://doi.org/10.5194/hess-2024-73, 2024
Preprint under review for HESS
Short summary
Moment-based metrics for global sensitivity analysis of hydrological systems
Aronne Dell'Oca, Monica Riva, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 21, 6219–6234, https://doi.org/10.5194/hess-21-6219-2017,https://doi.org/10.5194/hess-21-6219-2017, 2017
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Uncertainty analysis
Data-driven estimates for the geostatistical characterization of subsurface hydraulic properties
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024,https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020,https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization
Robert Reinecke, Laura Foglia, Steffen Mehl, Jonathan D. Herman, Alexander Wachholz, Tim Trautmann, and Petra Döll
Hydrol. Earth Syst. Sci., 23, 4561–4582, https://doi.org/10.5194/hess-23-4561-2019,https://doi.org/10.5194/hess-23-4561-2019, 2019
Short summary
Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios
Syed M. Touhidul Mustafa, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els Van Uytven, Patrick Willems, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 23, 2279–2303, https://doi.org/10.5194/hess-23-2279-2019,https://doi.org/10.5194/hess-23-2279-2019, 2019
Short summary
Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019,https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary

Cited articles

Andersson, J. E., Ekman, L., Gustafsson, E., Nordqvist, R., and Tiren, S.: Hydraulic interference tests and tracer tests within the Brändöan area, Finnsjon study site, the fracture zone project-Phase 3, Technical Report 89-12, Sweden Nuclear Fuel and Waste Management Company, Stockholm, 1988. 
Attinger, S.: Generalized coarse graining procedures for flow in porous media, Comput. Geosci., 7, 253–273, https://doi.org/10.1023/B:COMG.0000005243.73381.e3, 2003. 
Barahona-Palomo, M., Riva, M., Sanchez-Vila, X., Vazquez-Sune, E., and Guadagnini, A.: Quantitative comparison of impeller flowmeter and particle-size distribution techniques for the characterization of hydraulic conductivity variability, Hydrogeol. J., 19, 603–612, https://doi.org/10.1007/s10040-011-0706-5, 2011. 
Beckie, R.: A comparison of methods to determine measurement support volumes, Water Resour. Res., 37, 925–936, https://doi.org/10.1029/2000WR900366, 2001. 
Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., and Ay, N.: Quantifying unique information, Entropy, 16, 2161–2183, https://doi.org/10.3390/e16042161, 2014. 
Download
Short summary
Permeability of natural systems exhibits heterogeneous spatial variations linked with the size of the measurement support scale. As the latter becomes coarser, the system appearance is less heterogeneous. As such, sets of permeability data associated with differing support scales provide diverse amounts of information. In this contribution, we leverage information theory to quantify the information content of gas permeability datasets collected with four diverse measurement support scales.