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Abstract. We employ elements of information theory to
quantify (i) the information content related to data collected
at given measurement scales within the same porous medium
domain and (ii) the relationships among information con-
tents of datasets associated with differing scales. We focus
on gas permeability data collected over Berea Sandstone and
Topopah Spring Tuff blocks, considering four measurement
scales. We quantify the way information is shared across
these scales through (i) the Shannon entropy of the data
associated with each support scale, (ii) mutual information
shared between data taken at increasing support scales, and
(iii) multivariate mutual information shared within triplets of
datasets, each associated with a given scale. We also assess
the level of uniqueness, redundancy and synergy (rendering,
i.e., information partitioning) of information content that
the data associated with the intermediate and largest scales
provide with respect to the information embedded in the data
collected at the smallest support scale in a triplet.

Highlights.

– Information theory allows characterization of the infor-
mation content of permeability data related to differing
measurement scales.

– An increase in the measurement scale is associated with
quantifiable loss of information about permeability.

– Redundant, unique and synergetic contributions of in-
formation are evaluated for triplets of permeability
datasets, each taken at a given scale.

1 Introduction

Characterization of permeability of porous media plays a
major role in a variety of hydrological settings. There are
abundant studies documenting that permeability values and
their associated statistics depend on a variety of scales,
i.e., the measurement support (or data support), the sam-
pling window (domain of investigation), the spatial corre-
lation (degree of structural coherence) and the spatial reso-
lution (rendering the degree of the descriptive detail asso-
ciated with the characterization of a porous system) (see,
e.g., Brace, 1984; Clauser, 1992; Neuman, 1994; Schad and
Teutsch, 1994; Rovey and Cherkauer, 1995; Sanchez-Villa
et al., 1996; Schulze-Makuch and Cherkauer, 1998; Schulze-
Makuch et al., 1999; Tidwell and Wilson, 1999a, b, 2000;
Vesselinov et al., 2001a, b; Winter and Tartakovsky, 2001;
Hyun et al., 2002; Neuman and Di Federico, 2003; Maréchal
et al., 2004; Illman, 2004; Cintoli et al., 2005; Riva et al.,
2013; Guadagnini et al., 2013, 2018, and references therein).
Among these scales, we focus here on the characteristic
length associated with data collection (i.e., support scale).

In this context, experimental evidence at the laboratory
scale (observation scale on the order 0.1–1.0 m) suggests that
the mean value and the correlation length of the permeability
field tend to increase with the size of the data support, the
opposite trend being documented for the variance (e.g., Tid-
well and Wilson, 1999a, b, 2000). Similar observations, al-
beit with some discrepancies, are also tied to investigations at
larger scales (i.e., 10–1000 m) (Andersson et al., 1988; Guz-
man et al., 1994, 1996; Neumann, 1994; Schulze-Makuch
and Cherkauer, 1998; Zlotnik et al., 2000). We consider here
laboratory-scale permeability datasets which are associated
with various measurement scales.
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Figure 1. Examples of spatial distributions of the natural logarithm of normalized gas permeability, Yri , for two faces of a cubic block of
Berea Sandstone (first and second rows) and Topopah Spring Tuff (third and fourth rows) taken with four increasing support scales (columns,
left to right).

The above-mentioned documented pattern suggests that
the spatial distribution of permeability tends to be charac-
terized by an increased degree of homogeneity (as evidenced
by a decreased variance and an increased spatial correlation)
as the support/measurement scale increases. At the same
time, increasing the measurement scale somehow hampers
the ability to detect locally low permeability values, as re-
flected by the observed increased mean value of the data. As
an example of the kind of data we consider in this study to
clearly document these features, Fig. 1 depicts the spatial dis-
tribution of the natural logarithm of (normalized) gas perme-
abilities, i.e., Yri = ln(kri /kri ) (where kri is gas permeability
and kri is the mean value of the data), collected across two
faces of a laboratory-scale block of (i) a Berea Sandstone
(Tidwell and Wilson, 1999a) and (ii) a Topopah Spring Tuff
(Tidwell and Wilson, 1999b) at four support scales ri (see
Sect. 2 for a detailed description). As a preliminary observa-
tion, one can note that increasing the measurement scale ri
yields a decreased level of descriptive detail of the heteroge-
neous spatial distribution of the system properties. It is im-
portant to note that a reduced level of detail in the description

of the system properties (e.g., Yri ) could hinder reliability
and accuracy of further predictions of system behavior (in
terms of, e.g., flow and solute transport patterns). It is there-
fore relevant to quantify the amount of loss (or of preser-
vation) of the information about the system properties asso-
ciated with a fine scale(s) of reference as the data support
increases.

Our study aims at providing an assessment and a firm
quantification of these aspects upon relying on information
theory (IT) (e.g., Stone, 2015) and the multi-scale collection
of data described above. We consider such a framework of
analysis as it provides the elements to quantify (i) the infor-
mation content associated with a dataset collected at a given
scale as well as (ii) the information shared between pairs or
triplets of data, each associated with a unique scale (while
preserving the design of the measurement device). In this
context, IT represents a convenient theoretical framework
to properly assist the characterization of the way the infor-
mation content is distributed across sets of measurements,
without being confined to a linear analysis (relying, e.g., on
analyses of linear correlation coefficients) or invoking some
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tailored assumption(s) about the nature of the heterogene-
ity of permeability (e.g., the characterization of the datasets
through a Gaussian model).

To the best of our knowledge, as compared to surface hy-
drology systems only a limited set of works consider rely-
ing on IT concepts to analyze scenarios related to processes
taking place in subsurface porous media. Nevertheless, we
note a great variety in the topics covered in these works, re-
flecting the broad potential for applicability of IT concepts.
These studies include, e.g., the works of Woodbury and Ul-
rych (1993, 1996, 2000), who apply the principle of mini-
mum relative entropy to tackle uncertainty propagation and
inverse modeling in a groundwater system. The principle
of maximum entropy is employed by Gotovac et al. (2010)
to characterize the probability distribution function of travel
time of a solute migrating across a heterogeneous porous for-
mation. Within the same context, Kitanidis (1994) leverages
the definition of entropy and introduces the concept of a di-
lution index to quantify the dilution state of a solute cloud
migrating within an aquifer. Mishra et al. (2009) and Zeng et
al. (2012) evaluate the mutual information shared between
pairs of (uncertain) model input(s) and output(s) of inter-
est and view this metric as a measure of global sensitiv-
ity. Nowak and Guthke (2016) focus on sorption of metals
onto soil and the identification of an optimal experimental
design procedure in the presence of multiple models to de-
scribe sorption. Boso and Tartakovsky (2018) illustrate an
IT approach to upscale/downscale equations of flow in syn-
thetic settings mimicking heterogeneous porous media. Re-
lying on IT metrics, Butera et al. (2018) assess the rele-
vance of non-linear effects for the characterization of the
spatial dependence of flow and solute transport related ob-
servables. Bianchi and Pedretti (2017, 2018) developed novel
concepts, mutuated by IT, for the characterization of hetero-
geneity within a porous system and its links to salient so-
lute transport features. Wellman and Regenaur-Lieb (2012)
and Wellman (2013) leverage IT concepts to quantify uncer-
tainty and its reduction about the spatial arrangement of ge-
ological units of a subsurface formation. Recently, Mälicke
et al. (2020) combined geostatistics and IT to analyze soil
moisture data (representative of a given measurement scale)
to assess the persistence over time of the spatial organization
the soil moisture under diverse hydrological regimes.

Here, we focus on the aforementioned datasets of Tidwell
and Wilson (1999a, b), who conducted extensive measure-
ment campaigns collecting air permeability data across the
faces of Berea Sandstone and Topopah Spring Tuff blocks,
considering four different support/measurement scales (see
Sect. 2 for details). While our study does not tackle directly
issues associated with the way one can upscale (flow or trans-
port) attributes of porous media, we leverage such unique and
truly multi-scale datasets to address research questions such
as “How much information about the natural logarithm of
(normalized) gas permeabilities is lost as the support scale
increases?” and “How informative are data taken at a coarser

support scale(s) with respect to those associated with a finer
support scale?” (see Sect. 3). In this sense, our study yields a
unique perspective of the assessment of the value of hydro-
geological information collected at differing scales.

2 Dataset

We consider the datasets provided by Tidwell and Wil-
son (1999a, b), who rely on a multisupport permeame-
ter (MSP) to evaluate spatial distributions of air permeabil-
ities across the faces of a cubic block of Berea Sandstone
(hereafter denoted as Berea) and Topopah Spring Tuff (here-
after denoted as Topopah). Data are collected at uniform in-
tervals with spacing 1= 0.85 cm across a grid of 24× 24
and 36× 36 nodes along each face (of uniform side equal to
19.5 and 29.75 cm, to avoid boundary effects) of the Berea
and Topopah blocks, respectively. Four measurement cam-
paigns are conducted, each characterized by the use of a MSP
with a tip seal of inner radius ri (i = 1, 2, 3, 4)= (0.15, 0.31,
0.63, 1.27) cm and outer radius 2ri (interested readers can
find additional details about the MSP design and function-
ing in Tidwell and Wilson, 1997). While the precise nature
and size of the support/measurement scale associated with
a MSP are still under study for heterogeneous media (e.g.,
Goggin et al., 1988; Molz et al., 2003; Tartakovsky et al.,
2000; Beckie, 2001), hereafter we denote data associated
with a given support/measurement scale by referring these to
the associated value of ri . The ensuing dataset is then com-
posed of 3456 and 6480 data points for each measurement
scale, ri , for the Berea and Topopah blocks, respectively (we
exclude data for one of the faces of the Topopah block, due to
some anomalies with respect to the other faces). We consider
here the quantity Yri = ln(kri /kri ), i.e., the natural logarithm
of the air permeability normalized by the mean value (i.e.,
kri ) of the data of the corresponding sample.

The two types of rocks analyzed display distinct features.
The Berea sample may be classified as a very fine-grained,
well-sorted quartz sandstone. Following Tidwell and Wil-
son (1999a), visual inspection of the spatial distributions
of Yri (see, e.g., Fig. 1) shows that the Berea sample ex-
hibits a generally uniform spatial organization of permeabil-
ities, devoid of particular features, with the exception of a
mild stratification, thus allowing us to consider this sample
a fairly homogenous system. Otherwise, the Topopah rock
sample clearly exhibits a heterogenous structure, whereas
pumice fragments (∼ 23 % of the sample) are embedded in
the surrounding matrix (see Fig. 1). In general, the pumice
is characterized by higher permeability values than the sur-
rounding matrix. As such, the Topopah sample can be con-
sidered a fairly heterogenous system, with a tendency to dis-
play a bimodal distribution of permeability values (see also
Sect. 4.2). In this sense, the two rock samples analyzed pro-
vide two clearly distinct scenarios for the analysis of the in-
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terplay of the information contained in datasets collected at
diverse measurement scales.

We note that the IT elements described in Sect. 3 refer
to discrete variables. While corresponding definitions are
available also for continuous variables (i.e., summation(s)
and probability mass function(s) are replaced by integral(s)
and probability density function(s), respectively), these are
characterized by a less intuitive and immediate interpreta-
tion (e.g., entropy could be negative, infinite or could not be
evaluated in case of probability density function(s) involving
a Dirac delta; see, e.g., Kaiser and Schreiber, 2002; Cover
and Thomas, 2006). Moreover, in case the probability density
functions of the analyzed continuous variables cannot be as-
sociated with an analytical expression, it is necessary to sub-
ject these variables to quantization, and the IT metrics related
to the continuous variables are estimated through their quan-
tized counterparts (see Cover and Thomas, 2006). In general,
the quality of these estimates increases (in a way which de-
pends on the specific metric) with the level of quantization
of the continuous variables (see, e.g., Kaiser and Schreiber,
2002). This leads us to treat Yri as a discrete variable, a mod-
eling choice which is consistent with several previous studies
(see, e.g., Ruddell and Kumar, 2009; Goodwell and Kumar,
2017; Nearing et al., 2018, and references therein).

3 Methodology

3.1 Information theory

Considering a discrete random variable, X, one can quantify
the associated uncertainty through the Shannon entropy

H(X)=

N∑
i=1

pi log2

(
p−1

i

)
, (1)

where N is the number of bins used to analyze the outcomes
of X; and pi is the probability mass function and ln(p−1

i ) is
the (so-called) information (or degree of surprise) associated
with the ith bin (see, e.g., Shannon, 1948). We employ base
two logarithms in (1), thus leading to bits as a unit of measure
for entropy and for the IT metrics we describe in the follow-
ing. While other choices (relying, e.g., on the natural loga-
rithm) are admissible, the nature and meaning of the metrics
we illustrate remain unaffected. The Shannon entropy can be
interpreted as a measure of the uncertainty associated with X;
i.e., H(X) is largest and equal to log2(N) in case pi is uni-
form across all bins (i.e., pi = 1/N ), while it is zero when
outcomes of X reside only within a single bin. Moreover,
one can note that Shannon entropy in (1) is directly linked to
the average number of binary questions (i.e., questions with
a yes or no answer) one needs to ask to infer the state in
which X is. In our study, samples drawn from the popula-
tion of the random variable X are identified with values Yri

and Shannon entropy can also be interpreted as a measure
of the degree of heterogeneity of the system. In this sense,

considering a support scale ri , if the collected data (which
are spatially distributed over the system) would cluster into
one (or only a few) bin(s), one could interpret the system as
homogeneous (or nearly homogeneous) at such a scale.

The information content shared by two random variables,
i.e., X1 and X2, is termed bivariate mutual information and
is defined as

I (X1;X2)=

N∑
i=1

M∑
j=1

pi,j ln
(

pi,j

pipj

)
, (2)

where N and M represent the number of bins associated
with X1 and X2, respectively; pi and pj are marginal prob-
ability mass functions associated with X1 and X2, respec-
tively; and pi,j is the joint probability mass function of X1
and X2. The bivariate mutual information measures the av-
erage reduction in the uncertainty (as quantified through the
Shannon entropy) about one random variable that one can
obtain by knowledge of the other variable (Gong et al., 2013,
and references therein). As such, the bivariate mutual in-
formation (a) vanishes for two independent variables and
(b) coincides with the entropy of either of the two vari-
ables when one variable fully explains the other one, i.e.,
H(X2)=H(X1)= I (X1; X2). In light of the latter obser-
vations, it is clear that the bivariate mutual information can
also be interpreted as a measure of the degree of dependence
between X1 and X2.

When considering three discrete random variables, it is
possible to quantify the amount of information that two of
these (termed sources, i.e., XS1 and XS2 ) share with the third
one (termed the target variable, i.e., XT) upon evaluating the
following multivariate mutual information:

I
(
XS1 ,XS2;XT

)
=

N∑
i=1

M∑
j=1

W∑
k=1

pi,j,k ln
(

pi,j,k

pi,jpk

)
. (3)

Here, N , M , and W represent the number of bins associ-
ated with XS1 , XS2 , and XT, respectively; pk is the proba-
bility mass function of XT; pi,j is the joint probability mass
function of XS1 and XS2 ; and pi,j,k is the joint probability
mass function of XS1 , XS2 , and XT. Relying on the par-
tial information decomposition or information partitioning
(Williams and Beer, 2010), the multivariate mutual informa-
tion in Eq. (3) can be partitioned into unique, redundant, and
synergetic contributions, i.e.,

I
(
XS1 ,XS2;XT

)
= U

(
XS1;XT

)
+U

(
XS2;XT

)
+R

(
XS1 ,XS2;XT

)
+ S

(
XS1 ,XS2;XT

)
. (4)

Here, U(XS1 ; XT) and U(XS2 ; XT) represent the amount of
information that is uniquely provided to the target XT by XS1

and XS2 , respectively (i.e., the information U(XS1 ; XT) can-
not be provided to XT by knowledge of XS2 , a corresponding
observation holding for U(XS2 ; XT)); the redundant contri-
bution R(XS1 , XS2 ; XT) is the information that both source
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Figure 2. Venn diagram representation of the information theory concepts considering two sources, i.e., XS1 and XS2 , and a target variable,
XT. Areas of the circles are proportional to Shannon entropy (i.e., H(XS1), H(XS2) and H(XT)); overlaps of pairs of circles reflect bivariate
mutual information (i.e., I (XS1 ; XT), I (XS2 ; XT), and I (XS1 ; XS2)); and the strength of the multivariate mutual information (i.e., I (XS1 ,
XS2 ; XT)) corresponds to the region delimited by the thick black curve. Unique (i.e., U(XS1 ; XT) and U(XS2 ; XT)), synergetic (i.e., S(XS1 ,
XS2 ; XT)), and redundant (i.e., R(XS1 , XS2 ; XT)) components are also highlighted, as well as the interaction information (i.e., I (XS1 ; XS2 ;
XT)).

variables provide to the target (i.e., it is the amount of in-
formation transferable to XT that is contained in both XS1

and XS2 ); and the synergetic contribution S(XS1 , XS2 ; XT) is
the information about XT that knowledge of XS1 and XS2

brings in a synergic way. Note that the latter contribution
corresponds to the amount of information that (possibly)
emerges by simultaneous knowledge of the two sources and
through an analysis of their joint relationship with XT; i.e.,
it would not appear by knowing both XS1 and XS2 while
analyzing their individual relationship with XT separately.
All components in Eq. (4) are positive (Williams and Beer,
2010). Figure 2 provides a graphical depiction in terms of
Venn diagrams of the above information components in a
system characterized by two sources and a target variable.

The bivariate mutual information shared by the target and
each source can be written as

I
(
XS1;XT

)
= U

(
XS1;XT

)
+R

(
XS1 ,XS2;XT

)
,

I
(
XS2;XT

)
= U

(
XS2;XT

)
+R

(
XS1 ,XS2;XT

)
. (5)

Note that Eq. (5) reflects the nature of the information that is
shared by the target and each of the sources, when these are
taken separately; i.e., no synergy can be detected here. We
also remark that one should expect the emergence of some
redundancy of information when the two sources are corre-
lated.

An additional element of relevance for the aim of our study
is the interaction information

I
(
XS1;XS2;XT

)
= I

(
XS1;XT|XS2

)
− I

(
XS1;XT

)
= I

(
XS2;XT|XS1

)
− I

(
XS2;XT

)
. (6)

Here, I (XSi
; XT|XSj

) is the bivariate mutual information
shared by source XSi

(i = 1, 2) and the target, conditional
to the knowledge of source XSj

(j = 2, 1). Note that I (XSi
;

XT|XSj
) can be evaluated in a way similar to Eq. (2) upon

relying on the conditional probability for XT. Williams and
Beer (2010) show that

I
(
XS1;XS2;XT

)
= S

(
XS1 ,XS2;XT

)
−R

(
XS1 ,XS2;XT

)
. (7)

According to Eq. (7), the bivariate interaction information
could be either positive, i.e., when synergetic interactions
prevail over redundant contribution, or negative, i.e., when
the degree of redundancy overcomes the synergetic effects.

Inspection of Eqs. (4)–(7) reveals that an additional equa-
tion is required to evaluate all components in Eq. (4). Various
strategies have been proposed in this context (e.g., Williams
and Beer, 2010; Harder et al., 2013; Bertschinger et al., 2014;
Griffith and Koch, 2014; Olbrich et al., 2015; Griffith and
Ho, 2015). We rest here on the recent partitioning strategy
formalized by Goodwell and Kumar (2017), due to its capa-
bility of accounting for the (possible) dependences between
sources when evaluating the unique and redundant contribu-
tions. The rationale underpinning this strategy is that (i) each
of the two sources can provide a unique contribution of infor-
mation to the target even as these are correlated, and (ii) re-
dundancy should be lowest in case of independent sources.
The redundant contribution can then be evaluated as (Good-
well and Kumar, 2017)

R
(
XS1 ,XS2;XT

)
= Rmin

(
XS1 ,XS2;XT

)
+ Is

(
RMMI

(
XS1 ,XS2;XT

)
−Rmin

(
XS1 ,XS2;XT

))
, (8a)
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with
Rmin

(
XS1 ,XS2;XT

)
=max

(
0,−I

(
XS1;XS2;XT

))
;

RMMI
(
XS1 ,XS2;XT

)
=min

(
I
(
XS2;XT

)
,I
(
XS1;XT

))
;

Is =
I
(
XS1;XS2

)
min

(
H
(
XS1

)
,H

(
XS2

)) . (8b)

Goodwell and Kumar (2017) termed Eq. (8) as a rescaled
measure of redundancy, whereas (a) Rmin(XS1 , XS2 ; XT)

represents the lowest bound for redundancy, which is set
on the basis of the rationale that the minimum value of re-
dundancy must at least be equal to −I (XS1 ; XS2 ; XT) in
case I (XS1 ; XS2 ; XT) < 0 (thus also ensuring positiveness
of the synergy; see Eq. 7); (b) RMMI(XS1 , XS2 ; XT) is an up-
per bound, consistent with the rationale that all information
from the weakest source is redundant; and (c) Is accounts for
the degree of dependence between the sources, i.e., Is = 0
and R(XS1 , XS2 ; XT)= Rmin(XS1 , XS2 ; XT) for independent
sources, while Is = 1 and redundancy in Eq. (8) attains its up-
per limit value, RMMI(XS1 , XS2 ; XT), in case of a complete
dependency (i.e., XS1 = f (XS2) or vice versa) between the
sources. Once the redundancy has been evaluated, all of the
other components in Eq. (4) can be determined.

We emphasize that, despite some additional complexities,
analyzing the partitioning of the multivariate mutual infor-
mation provides valuable insights into the way information
is shared across three variables, these being here perme-
ability data associated with three diverse support scales. In
summary, addressing information partitioning enables us to
(i) quantify and (ii) characterize the nature of the information
that two variables (sources) provide to a third one (target) as a
whole, i.e., considering the entire triplet. Doing so overcomes
the limitation of depicting the system as a simple sum of
parts, as based on solely inspecting the corresponding pair-
wise bivariate mutual information, which allows quantifica-
tion of just the amount of information that pairs of variables
(i.e., the first source and the target, and the second source and
the target) share (without being able to define redundant or
unique contributions; see Eq. 9). In the context of our work,
this implies that information partitioning enables us to char-
acterize the nature of the information that permeability data
collected at two support scales provide to/share with perme-
ability data taken at a third one.

3.2 Implementation aspects

Evaluation of the quantities introduced in Sect. 3.1 is accom-
plished according to three main steps. We employ the Ker-
nel Density Estimator (KDE) routines in Matlab2018© to
estimate the continuous counterparts of the probability mass
functions pi , pj , pi,j , and pi,j,k and assess the associated
probability density functions, i.e., pdfs. This step enables us
to smooth and regularize the available finite datasets. We then
discretize the ensuing pdfs to evaluate the associated proba-
bility mass functions. Note that this two-step procedure al-
lows us to obtain results that are more stable (with respect

to the number of bins employed) than those that one could
obtain upon discretizing directly the available finite datasets.
As a final step, we evaluate the metrics detailed in Sect. 3
by treating separately the multi-scale measurements on each
face and then averaging the ensuing face-related results for
each of the two rock samples. The benefit of resting on this
approach is especially critical when considering the Topopah
rock, whereas pooling the data of all faces as a unique sam-
ple hindered the emergence of the bimodal behavior (i.e.,
the permeability values corresponding to the peaks of the bi-
modal distributions are slightly different depending on the
face considered, and the joint treatment of the data from all
faces yielded a nearly unimodal distribution). We employ a
binning scheme corresponding to a uniform discretization of
the range delimited by the lowest and largest values detected
considering all datasets associated with both rocks (i.e., we
employ the same specific binning for the Berea and Topopah
rock samples to assist quantitative comparison of the results).
We observe that within an IT approach the selection of a bin
size is an a priori choice (see, e.g., Gong et al., 2014; Loritz et
al., 2018), the influence of which should be properly assessed
(see Sect. 4 and Supplement). We inspect how the IT met-
rics described in Sect. 2 vary as a function of (i) the num-
ber of bins (i.e., we consider a number of 50, 75, 100, and
125 bins for the discretization of the range of data variabil-
ity) and (ii) the size of the kernel bandwidth (which is varied
within the range 0.1–0.4) employed in the KDE routine (see
Figs. S1–S3 in the Supplement for additional details). This
analysis highlights a weak dependence of the values of the in-
vestigate IT metrics on the number of bins and on the size of
the bandwidth employed in the KDE procedure, the overall
patterns of these metrics remaining substantially unaffected.
This leads us to use 100 bins and a kernel bandwidth equal
to 0.3. Note that we consistently employ this binning for the
evaluation of all metrics introduced in Sect. 2.

We remark that the bivariate and multivariate mutual infor-
mation metrics are evaluated by focusing on the joint prob-
ability mass function based on the multi-scale data collected
at the same location on the sampling grids.

4 Results

Figure 3 depicts the probability mass function p(Yri ) for
i = 1 (r1; black symbols), 2 (r2; red symbols), 3 (r3; blue
symbols), and 4 (r4; green symbols) for the (a) Berea and
(b) Topopah rock samples. For both rocks the p(Yri ) associ-
ated with only one face is depicted (similar patterns are noted
for all of the remaining faces). Figure 3c depicts the Shan-
non entropy H(Yr∗i

) as a function of the MSP support scale
normalized by the smallest one, i.e., r∗i = ri/r1, for the Berea
(diamonds) and Topopah (circles) samples. Figure 3d depicts
the bivariate mutual information between data collected at
two distinct support scales normalized by the entropy of the
data associated with the smaller support scale, i.e., I ∗(Yri ;
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Figure 3. Probability mass function of the logarithm of normalized gas permeability, p(Yri ), for various support scales, ri (i = 1 (black),
2 (red), 3 (blue), and 4 (green)) for (a) the Berea and (b) Topopah samples; (c) Shannon entropy H(Yr∗i

) versus r∗
i

for the Topopah (circles)
and Berea (diamonds) samples; (d) bivariate normalized mutual information I∗(Yri ;Yrj )= I (Yri ;Yrj )/H(Yri ) between data at a reference
support scale, Yri , and data at larger support scales, Yrj , for i = 1 (blue symbols) and 2 (green symbols) against r∗

j
, considering the Berea

(diamonds) and Topopah (circles) rock samples.

Yrj )= I (Yri ; Yrj )/H(Yri ) with j > i, for i = 1 (blue sym-
bols) and 2 (green symbols). The latter is plotted against
the ratio between the larger and the smallest support scales
considering those associated with each pair of datasets i.e.,
r∗j = rj/r1 (blue symbols) or r∗j = rj/r2 (green symbols).
Results for the Berea (diamonds) and Topopah (circles) sam-
ples are reported.

Inspection of Fig. 3a and b reveals that distributions re-
lated to increasing values of ri tend not to encompass ex-
treme values (in particular the low ones) of Y . This obser-
vation supports the fact that increasing ri favors a homog-
enization of the permeability values and suggests that the
response of the MSP tends to be only weakly sensitive to
the less permeable portions of the rock that are encompassed
within a given measurement scale. As a consequence, the
p(Yri ) associated with increasing ri are characterized by a
reduced number of populated bins, this feature being in turn
reflected in the observed reduction of H(Yr∗i

) with increas-
ing r∗i (Fig. 3c) for both rock samples. This result can be in-
terpreted as a signature (see also the discussion about (1) in
Sect. 3.1) of the effect of increasing ri , which yields a de-
crease in (i) the uncertainty about the spatial distribution of
the values of Yri and (ii) the ability to capture the degree of
spatial heterogeneity of Y . Note that Fig. 3c suggests that the
value of H(Yr∗i

), given r∗i , associated with the Topopah sam-

ple is always higher than its counterpart associated with the
Berea rock. This outcome is consistent with the higher het-
erogeneity displayed by the former sample, where the spatial
distribution of Yri is affected by an increased level of uncer-
tainty as compared to its Berea-based counterpart.

Otherwise, two distinct behaviors emerge with regard to
the location of the peak(s) of the distributions: (i) the location
of the peak of the distributions is virtually insensitive to ri for
the Berea sample, while (ii) the two peaks of the bimodal dis-
tributions of the Topopah sample display a clear tendency to
migrate towards higher permeability values as ri increases.
These observations are consistent with the homogeneous na-
ture of the Berea sample and the two-material (pumice and
matrix being high and low permeable, respectively) type of
heterogeneity displayed by the Topopah sample. It is also in
line with the previously noted weak sensitivity of the MSP
measurements to regions of low permeability. With reference
to the Berea sample, if a measurement taken at a given loca-
tion with a small ri is close to the average value (i.e., Yri is
close to zero in our setting), it is likely that the same behavior
is observed also for larger ri due to the homogeneity of the
sample. Otherwise, in the case of the Topopah sample there
are more chances that increasing ri (hence involving larger
volumes of the rock) yields a shift of the ensuing measure-
ments toward higher values.
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Figure 4. Information partitioning of the multivariate mutual information, I (Yri+1 , Yri+2 ; Yri ), considering two triplets of data and ri = (a) r1
and (b) r2 for the Berea sample and ri = (c) r1 and (d) r2 for the Topopah sample. For ease of comparison, we show the redundant, unique,
and synergetic contributions normalized by I (Yri+1 , Yri+2 ; Yri ).

Inspection of Fig. 3d reveals that, given a reference sup-
port scale ri , the mutual information shared with measure-
ments taken at larger support scales rj decreases with an in-
creasing ratio r∗j for both rock samples. In other words, the
representativeness for system characterization of the sets of
data associated with increasingly coarse support scale dimin-
ishes, as compared to the data collected at the given reference
scale. At the same time, we note that the way in which I ∗(Yri ;
Yrj ) decreases with r∗j is very similar for (i) the two analyzed
reference support scales, i.e., r1 and r2, and (ii) for the two
considered rock types. We interpret this result as a sign of (at
least qualitative) consistency in the way information is shared
between datasets of measurements associated with increas-
ing size of ri , despite the different geological nature of the
two types of samples analyzed. Otherwise, Fig. 3d indicates
that the (normalized) mutual information I ∗(Yri ; Yrj ) is al-
ways lower in the Topopah system than in the Berea system.
This result provides a quantification of the qualitative obser-
vation that there is an overall decrease in the representative-
ness of the datasets associated with increasing data support
(with respect to data collected with smaller ri) as the system
heterogeneity becomes stronger.

Figure 4 depicts the results of the information partitioning
procedure detailed in Sect. 2.3 considering the Berea sample
and two triplets of datasets (Yri+1 , Yri+2 ; Yri ), with ri = (a) r1
and (b) r2. Corresponding results for the Topopah sample are
depicted in (c) for ri = r1 and (d) for ri = r2. For ease of
comparison between the results, we normalize the unique,
synergetic and redundant contributions in Eq. (4) by the mul-
tivariate mutual information of the corresponding triplet, e.g.,
U∗(Yri+1 ; Yri )= U(Yri+1 ; Yri )/I (Yri+1 , Yri+2 ; Yri ), U

∗(Yri+2 ;
Yri )= U(Yri+2 ; Yri )/I (Yri+1 , Yri+2 ; Yri ); R∗(Yri+1 , Yri+2 ;
Yri )= R(Yri+1 , Yri+2 ; Yri )/I (Yri+1 , Yri+2 ; Yri ), S∗(Yri+1 ,
Yri+2 ; Yri )= S(Yri+1 , Yri+2 ; Yri )/I (Yri+1 , Yri+2 ; Yri ). Results
in Fig. 4a and b suggest that, for the Berea sample, (i) most

of the multivariate information is redundant, a finding that
can be linked to the dependence detected between the sets of
data associated with the two coarser support scales (see, e.g.,
Fig. 3d); (ii) the synergetic information is practically zero
for both triplets considered; i.e., the simultaneous knowl-
edge of the system at two coarser scales does not provide
any additional information; (iii) data associated with the mid-
dle (in the triplets) support scale provide a non-negligible
unique information content, the latter being less pronounced
for the data referring to the coarsest support (in the triples).
These results (i.e., high redundancy and high/low unique-
ness for the middle/largest support scale) suggest that, con-
sidering the depiction of the system rendered at the finest
support scale, the information provided by the investigations
at the coarsest support scale is mostly contained by the in-
formation provided by the data collected at the intermedi-
ate scale. This element suggests a nested nature of the in-
formation linked to data collected at progressively increas-
ing scales with respect to the information contained in the
data associated with the smallest support scale. This finding
can be linked to the homogeneous nature of the Berea sam-
ple, whereas the characterization at diverse scales does not
change dramatically (e.g., note the similarities in the spatial
patterns of Yri in Fig. 1 for the Berea sample as a function
of ri), thus promoting (a) the redundancy of information as-
sociated with measurements at the intermediate and larger
scales and (b) the uniqueness of information revealed for the
intermediate scale.

Otherwise, inspection of Fig. 4c and d reveals that, for
the Topopah rock sample, (i) most of the multivariate in-
formation coincides with the unique information associated
with the intermediate scale; (ii) the redundant and unique
contributions associated with the largest scale are still non-
negligible yet substantially smaller than the uniqueness con-
tribution provided by the intermediate scale; and (iii) there is
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practically no synergetic information. This set of results de-
rives from the moderate or marked discrepancies displayed
by Yri data as ri increases by one or two sizes, respectively
(e.g., see the faces depicted in Fig. 1 for the Topopah sam-
ple). In other words, relying on a device such as the MSP to
obtain permeability data enables sampling of a volume of the
rock according to which the majority of the multivariate in-
formation in a triplet is associated with a significant unique
contribution of the intermediate scale, the information related
to the largest scale still being weakly unique and weakly re-
dundant.

5 Discussion

We recall that the focus of the present study is the quan-
tification of the information content and information shared
between pairs and triplets of datasets of air permeability
observations associated with diverse sizes of the measure-
ment/support scale. We exemplify our analysis by relying
on data collected across two different types of rocks, i.e., a
Berea and a Topopah sample, that are characterized by dif-
ferent degrees of heterogeneity.

These datasets (or part of these) have been considered
in some prior studies. Tidwell and Wilson (1999a, b) and
Lowry and Tidwell (2005) assess the impact of the size of the
support/measurement scale on key summary one-point (i.e.,
mean and variance) and two-point (i.e., variogram) statis-
tics within the context of classical geostatistical methods and
evaluate kriging-based estimates of the underlying random
fields. Siena et al. (2012) and Riva et al. (2013) analyze
the scaling behavior of the main statistics of the log per-
meability data and of their increments (i.e., sample structure
functions of various orders), with emphasis on the assess-
ment of power-law scaling behavior. On these bases, Riva et
al. (2013) conclude that the data related to the Berea sam-
ple can be interpreted as observations from a sub-Gaussian
random field subordinated to truncated fractional Brown-
ian motion or Gaussian noise. All of these studies focus on
(a) the geostatistical interpretation of the behavior displayed
by the probability density function (and key moments) of the
data and their spatial increments and (b) the analysis of the
skill of selected models to interpret the observed behavior of
the main statistical descriptors evaluated upon considering
separately data associated with diverse measurement/support
scales. Furthermore, Tidwell and Wilson (2002) analyzed
the Berea and Topopah datasets (considering separately data
characterized by diverse support scales) to assess possible
correspondences between the permeability field and some
attributes of the rock samples determined visually through
digital imaging and conclude that image analysis can assist
delineation of spatial patterns of permeability.

We remark that in all of the studies mentioned above the
datasets associated with a given support (or measurement)
scale are analyzed separately. Otherwise, we leverage ele-
ments of IT, which allow a unique opportunity to circumvent
limitations of linear metrics (e.g., Pearson correlation) and
analyze the relationships (in terms of shared amount of in-
formation) between pairs (i.e., bivariate mutual information)
or triplets (i.e., multivariate mutual information) of variables.
We also note that, even as visual inspection of p(Yri ) asso-
ciated with diverse sizes of the support scale ri (see Fig. 3a
and b for the Berea and Topopah samples, respectively) can
show that these probability densities can be intuitively linked
to the documented decrease in the corresponding Shannon
entropies with increasing ri (see Fig. 3c and Sect. 4), it would
be hard to readily infer from such a visual comparative in-
spection the behavior of the bivariate (see Fig. 3d) and multi-
variate (see Fig. 4) mutual information because these require
(see Eqs. 2–8) the evaluation of the joint probability mass
functions.

Considering an operational context, including,
e.g., groundwater resource management or (conven-
tional/unconventional) oil recovery, we observe that it is
common to have at our disposal permeability data associated
with diverse support scales. These can be inferred from, e.g.,
large-scale pumping tests, downhole impeller flowmeter
measurements, core flood experiments at the laboratory
scale, geophysical investigations, or particle-size curves
(see, e.g., Paillet, 1989; Oliver, 1990; Dykaar and Kitanidis,
1992a, b; Harvey, 1992; Deutsch and Journel, 1994; Zhang
and Winter, 2000; Attinger, 2003; Pavelic et al., 2006; Neu-
man et al., 2008; Riva et al., 2013; Barahona-Palomo et al.,
2011; Quinn et al., 2012; Shapiro et al., 2015; Galvão et al.,
2016; Menafoglio et al., 2016; Medici et al., 2018; Dausse
et al., 2019, and reference therein). Assessing (i) the infor-
mation content and (ii) the amount of information shared
between permeability data associated with differing support
scales (and/or diverse measuring devices/techniques) along
the lines illustrated in the present study can be beneficial
for obtaining a quantitative appraisal of possible feedbacks
among diverse approaches employed for aquifer/reservoir
characterization. Results of such an analysis can potentially
serve as a guidance for the screening of datasets which are
most informative to provide a comprehensive description
of the spatially heterogeneous distribution of permeability.
While the methodology detailed in Sect. 3 is readily transfer-
able to scenarios where multi-scale permeability is available,
the appraisal of the general nature of some specific findings
of the present study (e.g., decrease in the Shannon entropy as
the support scale increases, regularity in the trends displayed
by the normalized bivariate mutual information) still remains
an open issue which will be the subject of future works.
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6 Conclusions

We rely on elements of information theory to interpret multi-
scale permeability data collected over blocks of Berea Sand-
stone and a Topopah Spring Tuff, representing a nearly ho-
mogeneous and a heterogeneous porous medium composed
of a two-material mixture, respectively. The unique multi-
scale nature of the data enables us to quantify the way in-
formation is shared across measurement scales, clearly iden-
tifying information losses and/or redundancies that can be
associated with the joint use of permeability data collected
at differing scales. Our study leads to the following major
conclusions.

1. An increase in the characteristic length associated with
the scale at which the laboratory-scale (normalized) gas
permeability data are collected corresponds to a quan-
tifiable decrease in the Shannon entropy of the associ-
ated probability mass function. This result is consistent
with the qualitative observation that the ability to cap-
ture the degree of spatial heterogeneity of the system
decreases as the data support scale increases.

2. The (normalized) bivariate mutual information shared
between pairs of permeability datasets collected at (i) a
fixed fine scale (taken as the reference) and (ii) larger
scales decreases in a mostly regular fashion independent
of the size of the reference scale, once the bivariate mu-
tual information is normalized by the Shannon entropy
of the data taken at the reference scale. This result high-
lights a consistency in the way information associated
with data at diverse scales is shared for the instrument
and the porous systems here analyzed.

3. As the degree of heterogeneity of the system increases,
we document a corresponding increase in the Shannon
entropy (given a support scale) and a decrease in the
values of the normalized bivariate mutual information
(given two support scales) between permeability data
collected at the differing measurement scales.

4. Results of the information partitioning of the multivari-
ate mutual information shared by permeability data col-
lected at three increasing support scales for the Berea
Sandstone sample exhibit a marked level of redundancy
and high/low uniqueness for the data collected at the in-
termediate/coarser scale in the triplets with respect to
the data associated with the finest scale. This result can
be linked to the fairly homogeneous nature of the sam-
ple that is also reflected in the moderate variation of the
observed (normalized) gas permeability values with in-
creasing size of the support scale.

5. Information partitioning for the Topopah tuff sample in-
dicates the occurrence of a still significant amount of
unique information associated with the data collected at
the intermediate scale, while the redundant portion and

the unique contribution linked to the largest scale in a
triplet are clearly diminished. This result descends from
the heterogeneous structure of the Topopah porous sys-
tem, where the recorded (normalized) gas permeabili-
ties display moderate or marked discrepancies as ri in-
creases by one or two sizes, respectively.

6. For both rock samples considered, the simultaneous
knowledge of permeability data taken at the intermedi-
ate and coarser support scales in a triplet does not pro-
vide significant additional information with respect to
that already contained in the data taken at the fine scale;
i.e., the synergic contribution in the resulting datasets is
virtually zero.

Given the nature of the approach we employ, the latter is
potentially amenable to being transferred to analyze set-
tings involving other kinds of datasets associated with di-
verse hydrogeological quantities (including, e.g., porosity
or sorption/desorption parameters) or considering measure-
ment/sampling devices of a diverse design. Future develop-
ments could also include exploring the possibility of embed-
ding the approach within the workflow of optimal experi-
mental design and/or data-worth analysis strategies.
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